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Course Companion definition 
The IB Diploma Programme Course Companions are 

resource materials designed to provide students with 

support through their two-year course of study. These 

books will help students gain an understanding of what 

is expected from the study of an IB Diploma 

Programme subject. 

The Course Companions reflect the philosophy and 

approach of the IB Diploma Programme and present 

content in a way that illustrates the purpose and aims 

of the IB. They encourage a deep understanding of 

each subject by making connections to wider issues and 

providing opportunities for critical thinking. 

The books mirror the IB philosophy of viewing the 

curriculum in terms of a whole-course approach; the 

1B mission statement 

use of a wide range of resources; international

mindedness; the IB learner profile and the IB Diploma 

Programme core requirements; theory of knowledge, 

the extended essay, and creativity, action, service 

(CAS). 

Each book can be used in conjunction with other 

materials and indeed, students of the IB are required 

and encouraged to draw conclusions from a variety of 

resources. Suggestions for additional and further 

reading are given in each book and suggestions for how 

to extend research are provided. 

In addition, the Course Companions provide advice 

and guidance on the specific course assessment 

requirements and also on academic honesty protocol. 

The International Baccalaureate aims to develop programmes of international education and rigorous 

inquiring, knowledgable and caring young people who assessment. 

help to create a better and more peaceful world through These programmes encourage students across the 
intercultural understanding and respect. world to become active, compassionate, and lifelong 

To this end the IB works with schools, governments learners who understand that other people, with their 

and international organizations to develop challenging differences, can also be right. 

The 1B Learner Profile 
The aim of all IB programmes is to develop 

internationally minded people who, recognizing their 

common humanity and shared guardianship of the 

planet, help to create a better and more peaceful world. 

IB learners strive to be: 

Inquirers They develop their natural curiosity. They 

acquire the skills necessary to conduct inquiry and 

research and show independence in learning. They 

actively enjoy learning and this love of learning will be 

sustained throughout their lives. 

Knowledgable They explore concepts, ideas, and 

issues that have local and global significance. In so 

doing, they acquire in-depth knowledge and develop 

understanding across a broad and balanced range of 

disciplines. 

Thinkers They exercise initiative in applying thinking 

skills critically and creatively to recognize and 

approach complex problems, and make reasoned, 

ethical decisions. 

Communicators They understand and express ideas 

and information confidently and creatively in more 

than one language and in a variety of modes of 

communication. They work effectively and willingly in 

collaboration with others. 

Principled They act with integrity and honesty, with a 

strong sense of fairness, justice, and respect for the 

dignity of the individual, groups, and communities. 

They take responsibility for their own actions and the 

consequences that accompany them. 

Open-minded They understand and appreciate their 

own cultures and personal histories, and are open to 

the perspectives, values, and traditions of other 

individuals and communities. They are accustomed to 

seeking and evaluating a range of points of view, and 

are willing to grow from the experience. 

Caring They show empathy, compassion, and respect 

towards the needs and feelings of others. They have a 

personal commitment to service, and act to make a 

positive difference to the lives of others and to the 

environment. 

Risk-takers They approach unfamiliar situations and 

uncertainty with courage and forethought, and have 

the independence of spirit to explore new roles, ideas, 

and strategies. They are brave and articulate in 

defending their beliefs. 

Balanced They understand the importance of 

intellectual, physical, and emotional balance to achieve 

personal well-being for themselves and others. 

Reflective They give thoughtful consideration to their 

own learning and experience. They are able to assess 

and understand their strengths and limitations in order 

to support their learning and personal development. 



A note on academic honesty 
It is of vital importance to acknowledge and 

appropriately credit the owners of information 

when that information is used in your work. After 

all, owners of ideas (intellectual property) have 

property rights. To have an authentic piece of 

work, it must be based on your individual and 

original ideas with the work of others fully 

acknowledged. Therefore, all assignments, written 

or oral, completed for assessment must use your 

own language and expression. Where sources are 

used or referred to, whether in the form of direct 

quotation or paraphrase, such sources must be 

appropriately acknowledged. 

How do I acknowledge the work 
of others? 

The way that you acknowledge that you have 

used the ideas of other people is through the use 

of footnotes and bibliographies. 

Footnotes (placed at the bottom of a page) or 

endnotes (placed at the end of a document) are to 

be provided when you quote or paraphrase from 

another document, or closely summarize the 

information provided in another document. You 

do not need to provide a footnote for information 

that is part of a "body of knowledge". That is, 

definitions do not need to be footnoted as they 

are part of the assumed knowledge. 

Bibliographies should include a formal list of 

the resources that you used in your work. 

"Formal" means that you should use one of the 

several accepted forms of presentation. This 

usually involves separating the resources that you 

use into different categories (e.g. books, 

magazines, newspaper articles, Internet-based 

resources, CDs and works of art) and providing 

full information as to how a reader or viewer of 

your work can find the same information. A 

bibliography is compulsory in the extended essay. 

What constitutes malpractice? 

Malpractice is behavior that results in, or may 

result in, you or any student gaining an unfair 

advantage in one or more assessment component. 

Malpractice includes plagiarism and collusion. 

Plagiarism is defined as the representation of the 

ideas or work of another person as your own. 

The following are some of the ways to avoid 

plagiarism: 

• Words and ideas of another person used to

support one's arguments must be

acknowledged.

• Passages that are quoted verbatim must be

enclosed within quotation marks and

acknowledged.

• CD-ROMs, email messages, web sites on the

Internet, and any other electronic media must

be treated in the same way as books and

journals.

• The sources of all photographs, maps,

illustrations, computer programs, data, graphs,

audio-visual, and similar material must be

acknowledged if they are not your own work.

• Works of art, whether music, film, dance,

theatre arts, or visual arts, and where the

creative use of a part of a work takes place,

must be acknowledged.

Collusion is defined as supporting malpractice by 

another student. This includes: 

• allowing your work to he copied or submitted

for assessment by another student

• duplicating work for different assessment

components and/ or diploma requirements.

Other forms of malpractice include any action 

that gives you an unfair advantage or affects the 

results of another student. Examples include, 

taking unauthorized material into an examination 

room, misconduct during an examination, and 

falsifying a CAS record. 



About the book 

The new syllabus for Mathematics Higher Level 

is thoroughly covered in this book. Each chapter 

is divided into lesson-size sections with the 

following features: 

Investigations 

f Examiner's tip 

Exploration suggestions 

[ Theory of Knowledge ) 

._
[ _o_id_yo_u_k_no_w_? __ __.

) Historical exploration

The Course Companion will guide you through 

the latest curriculum with full coverage of all 

topics and the new internal assessment. The 

emphasis is placed on the development and 

improved understanding of mathematical concepts 

and their real life application as well as proficiency 

in problem solving and critical thinking. The 

Course Companion denotes questions that would 

be suitable for examination practice and those 

where a GDC may be used. Questions are 

designed to increase in difficulty, strengthen 

analytical skills and build confidence through 

About the authors 

Josip Harcet has been teaching the IB programme 

for 20 years. After teaching for 11 years at 

different international schools he returned to 

teach in Zagreb. He has served as a curriculum 

review member, deputy chief examiner for 

Further Mathematics, assistant and senior 

examiner, as well as a workshop leader. 

Lorraine Heinrichs has been teaching IB 

mathematics for the past 12 years at Bonn 

International School. She has been the IB DP 

coordinator since 2002. During this time she has 

also been senior moderator for HL Internal 

Assessment and workshop leader for the IB. She 

was also a member of the curriculum review team. 

Palmira Mariz Seiler has been teaching 

mathematics for 22 years. She joined the IB 

community 11 years ago and since then has 

worked as Internal Assessment moderator, in 

curriculum review working groups, and as a 

understanding. Internationalism, ethics and 

applications are clearly integrated into every 

section and there is a TOK application page that 

concludes each chapter. 

It is possible for the teacher and student to work 

through the book in sequence but there is also the 

flexibility to follow a different order. Where 

appropriate the solutions to examples using the 

TI-Nspire calculator are shown. Similar solutions 

using the TI-84 Plus and Casio fx-9860GII are 

included on the accompanying interactive CD 

which includes a complete ebook of the text, 

extension material, GDC support, a glossary, 

sample examination papers, and worked solution 

presentations. 

Mathematics education is a growing, ever 

changing entity. The contextual, technology 

integrated approach enables students to become 

adaptable, lifelong learners. 

Note: US spelling has been used, with IB style for 

mathematical terms. 

workshop leader and deputy chief examiner for 

HL mathematics. 

Marlene Torres-Skoumal has been teaching IB 

mathematics for the past 30 years. She has 

enjoyed various roles with the IB over this time, 

including deputy chief examiner for HL, senior 
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forum moderator, and workshop leader. 

A special thanks to Jim Fensom for the GDC 

chapters and contribution to the Prior Learning 
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The material on your CD-ROM includes the entire student book as an 

eBook, as well as a wealth of other resources specifically written to 

support your learning. On these two pages you can see what you will find 

and how it will help you to succeed in your Mathematics Higher course. 

The whole print text is presented as a user-friendly eBook for use in class and at home. 
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The glossary provides comprehensive 
coverage of the language of the subject and 
explains tricky terminology. It is fully editable 
making it a powerful revision tool. 
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Extra content can be found in the Contents 
menu or attached to specific pages. 

Q This icon appears in the book 
� wherever there is extra content . 

Navigation is straightforward either through 
the Contents Menu, or through the Search 
and Go to page tools. 

A range of tools enables you to zoom in and 
out and to annotate pages with your own 
notes. 

Extension material is included for each 
chapter containing a variety of extra 
exercises and activities. Full worked 
solutions to this material are also provided. 
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A GDC chapter gives advice 

on using your calculator and 

is provided for TI-Nspire, 

Tl-84 Plus and Casio fx-

9860GII. 
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Practice exam papers will 

help you to fully prepare 

for your examinations. 

Worked solutions can be 

found on the website www. 

oxfordsecondary. co. uk/ 

ibmathhl 
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Alternative GDC instructions 

for all material in the book is 

given for the Tl-84 Plus and 

Casio-9860-GII calculators, 

so you can be sure you will 

be supported no matter what 

calculator you use. 

Powerpoint presentations cover detailed 

worked solutions for the practice papers 

in the book, showing common errors and 

providing hints and tips. 
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MATHEMATICS HIGHER LEVEL 

a Show that p(x) • 2r3 - 3x2 +Ox+ 5 Is divisible by 

2x + I. 
a 

x
2 

-2x +s 

2x + iJ 2x3 - 3x2 + Bx + 5 
-2x3 - x2 

-4x2 + ax 
4x2 + Zx 

10x+S 
-lOx-5 

0 

(2x ;- l)(x') = 2x1 + x' 

I (lx+l)(-2x)--4x2 -lxl 

(2x + 1)(5) = 10x + � 

What's on the website? 
As the remainder is 0, p(x) is divisible by 2x + I 

Visit www.oxfordsecondary.co.uk/ 

ibmathhl for free access to the full 

worked solutions to each and every 

question in the Course Companion. 

www.oxfordsecondary.eo.uk/ibmathhl 

also offers you a range of GDC 

activities for the TI-Nspire to help 

support your understanding. 

f) Mathematic, as a language 
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Mathematics 
as the science 
of patterns

CHAPTER OBJECTIVES:

1.1   Arithmetic sequences and series; sum of  nite arithmetic series; geometric 

sequences and series; sum of  nite and in nite geometric series; sigma 

notation; applications 

1.3   Counting principles, including permutations and combinations; binomial theorem

1.4  Proof by mathematical induction

You should know how to: 

1 Represent number sets. 

 x ∈  means that x is an integer

  x ∈ + means that x is a positive integer, 

an element of  the set {1, 2, 3, …}

2   Solve linear algebraic equations.

 e.g. Solve 2(x – 4) = x + 5

 2x – 8 = x + 5 

x = 13 

3  Simplify surds. e.g. simplify 
2

3 1+

2

3 1

2 3 1

3 1 3 1+
=

( )
+( )( )

 = 3 1−

4  Solve equations that involve fractions.

 e.g. solve 
x

x x

+

+
− =

2

1

2
1  (multiply by x (x + 1))

x (x + 2) – x (x + 1) = 2(x + 1) 

x
2 + 2x – x2 – x = 2x + 2 so x = –2

5  Find the nth term of  a sequence.

 e.g. 32, 36, 40, 44, ….→ 4n + 28

 2, 4, 8, 16, ….→ 2n

Skills check

1 List the numbers represented by each of  

these.

a x ≤ 5, x ∈ + b  –4 ≤ x < 2, x ∈ 

c  x ≤ 6, x ∈ +

2  Solve these equations.

a  3(x – 4) – 2(x + 7) = 0 

b  3x – 2(2x + 5) = 2 

c 5x + 4 – 2(x + 6) = x – (3x – 2) 

3  Simplify:

a  2 ( 3 – 2) + 3(1 – 3) 

b  
3

2
+ 5 2 c

( )

( )

1 3

1 3

+

4  Solve these equations. 

a  
1

2

3

1 2( ) ( )x x

= −

b 
2

2 1

1

12

x

x x+
=

5  Find the nth term:

a  5, 11, 17, 23, 29, ...

b  25, 18, 11, 4, –3, ...

Before you start

1
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From conjecture to proof

In 1637, Pierre de Fermat wrote that no three positive integers a, b

and c, can be found to satisfy the equation

an + bn = c n for n > 2 

He wrote this formula and the quotation in the margin of  his copy 

of  a book  written by Diophantus.

The formula became known as Fermat’s Last Theorem.

Pierre de Fermat

(1601–1665)

French mathematician 

and physicist

“I have discovered a 

truly remarkable proof 

which this margin is 

too small to contain.”
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Andrew Wiles read about Fermat’s Last 

Theorem when he was 10 years old and 

decided that he would fi nd the proof. 

Little did he realize that he had undertaken 

a lifelong challenge. He managed to 

prove it in 1995, more than three 

centuries after Fermat claimed he had 

the proof.

When Fermat wrote the statement in the book he claimed to have a 

proof. No proof  was ever found and, although the statement was 

not disproved, it remained just a conjecture. 

A conjecture is a rule generalizing fi ndings made by observing 

patterns. 

Testing different cases may verify the conjecture. 

Fermat may have come up with his statement intuitively or by 

looking for solutions. Wiles raised the status of  the conjecture to a 

theorem in 1995 by fi nding a complete proof. 

In this chapter we will be looking for patterns to help us make 

conjectures. In order to prove a conjecture we have to show that the 

rule holds for all possible values and to do this we need formal proof.

Investigation – curious numbers

The diagram represents the  oor of a square room, tiled with square 

tiles. It has a total of 9 tiles along the diagonals and 5 tiles along 

each side. 25 tiles are used to cover the  oor completely.

Another square room has a total of 13 square tiles along the diagonals. 

How many tiles are there along each side? 

How many tiles are needed to completely cover the  oor?

What if the total number of tiles along the diagonals is 133?

What if there is a total of 1333 tiles along the diagonals?

Can you guess what happens if there is a total of 13 333 tiles along the diagonals?

Continue to generate data to help you form a conjecture. Can you explain why this rule 

holds true?

Andrew Wiles

(1953– ) British 

mathematician

“I don’t believe 

Fermat had a 

proof.”
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.  Number patterns: sequences, 
series and sigma notation

A collection of  numbers in a defi ned order, following a certain rule, 

is called a sequence. Each of  the numbers in a sequence is called a 

term of  the sequence.

These sets of  numbers are all sequences:

i  2, 7, 12, 17, …  start with 2 and add 5 to previous number

ii  1, 
1

2
, 1

3
, 

1

4
reciprocals of  natural numbers

iii  3, 6, 9, 12, …  start with 3 and add 3 to previous number

Adding all the terms in a sequence gives a series. If  the sequence 

has a fi xed number of  terms then it is a fi nite series. If  the sum of  

the sequence continues indefi nitely the series is said to be infi nite

So 2 + 7 + 12 + 17 + 22 is a fi nite series with fi ve terms. The sum 

1 + 
1

2
 + 

1

3
 + 

1

4
 + … is an infi nite series.

The set of  positive integers + can be written as {1, 2, 3, 4, …, r, …} 

where r represents the general term.

The harmonic series can be written as 1 + 
1

2
 + 

1

3
 + 

1

4
 +…+ 

1

r
 + … 

where 
1

r
 is the general term. 

The general term of  the fi nite series 3 + 6 + 9 + 12 + 15 + 18 + 21 

is 3r  but r can only take the values from 1 to 7 because the series 

is fi nite.

The sigma ( ∑) notation is a compact form to represent a series. Here 

is how you write the series 

1 + 
1

2
 + 

1

3
 + 

1

4
 +…+ 

1

r
 + … + 

1

20
 using sigma notation: 

1

1

20

rr =

∑

Read this as ‘The summation of  
1

r
 from r equals 1 to 20.’

So 
1

31

4

r
r =

∑  = 
1

31
 + 

1

32  + 
1

33  + 
1

34  = 
1

3
 + 

1

9
 + 

1

27
 + 

1

81

The series 4 + 8 + 12 + 16 + …. + 48 can be written as 

4 × 1 + 4 × 2 + 4 × 3 + 4 × 4 + … + 4 × 12 = 4
1

12

r
r =

∑

1 ...
1

2

1

3

1

4

+ + + +

is known as the 

harmonic series

∑ is the Greek 

capital letter sigma, 

which is used to 

represent ‘the sum 

of’. Leonhard Euler

(1706–83) was the 

 rst mathematician to 

use this notation.

The largest value 

r can take

The smallest value 

r can take
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Example 

Write the next three terms and the general term:

a 2, 4, 8, 16, … b
1

2
, 

1

6
, 

1

12
, 

1

20
, … c  1, 

1

2
, 

1

4
, 

1

8
, …

Answers

a For the sequence 2, 4, 8, 16, ... 

the next three terms in the sequence 

are 32, 64, 128.

The terms in the sequence can be written 

21, 22, 23, 24, … , 2r, … 

 General term is 2r

 where r can take the values 1, 2, 3, ...

b For the sequence 
1 1 1 1

2 6 12 20
, , , , ... the next three 

terms are 
1

30
, 

1

42
, 

1

56

 The sequence can be written

1

1 2

1

2 3

1

3 4

1

4 5

1

1× × × × ×

, , , , ... , , ...
( )r r +

So the general term is 
1

1r × ( )r +

where r can take the values 1, 2, 3, …

c For the sequence 1
1

2

1

4

1

8
, , , , ... the next three 

terms are 
1

16
, 

1

32
, 

1

64
 The sequence can be written 

1

1

1

2

1

4

1

8

1

16

1

32

1

64
, , , , , , , ...

=
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
0 1 2 3 4 5 6 1

, , , , , , , ... , , ...
r

The general term is 
1

2
1r

where r can take the values 1, 2, 3, …

Find the general term.

Look for the patterns in the denominators.

Since the sequence has 20 in the fi rst term, 

the general term is 
1

2
r 1

Example  

Write the fi rst three terms of  each series.

a ( )3 6
1

7

r
r

+
=

∑ b ( )
=

∞

∑ 1 2

1

r

r

r

Answers

a ( ) ...3 6 9 12 15
1

7

r
r

+ = + + +
=

∑

b 
r =

∞

∑
1

(–1)r r 2

= (–1) × 12 + (–1)2 × 22 + (–1)3

× 32 + … = –1 + 4 – 9 + …

Substitute r = 1 for the fi rst term, 

r = 2 for the second term, and r = 3 

for the third term.

∞ represents in nity.
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Example 

Write these series using sigma notation.

a 2 + 12 + 22 + 32 + … + 102

b –8 + 4 – 2 + 1 – 
1

2
 + …

Answers

a 2 + 12 + 22 + 32 + … + 102 

= 
r =

∑
1

11

(10r – 8)

b –8 + 4 – 2 + 1 – 
1

2
 + … 

= (–1)1 × 
8

2
0
 + (–1)2 ×

8

2
1

+ (–1)3 ×
8

2
2
 + (–1)4 ×

8

2
3

+ (–1)5
×

8

2
4
+ … 

 = ( )
=

∞

∑ 1
8

2
1

1

r

r
r

×

The general term is 10r – 8

For the term: 102

10r – 8 = 102

10r = 110

r = 11

Alternating signs suggest that you 

need to multiply each term by –1. 

(–1) n is positive when n is even and 

negative when n is odd.

The general term is ( 1)
8

2
1

− ×
r

r

Exercise 1A

1 Write the next three terms for each sequence.

a –6, –4.5, –3, –1.5, … b
1 3 5 7

, , , , ...
2 4 6 8

c
1

3

1

15

1

35

1

63
, , , , ...

2 Write the general term for each sequence.

a 2, 6, 12, 20, …  b
1

2

1

5

1

10

1

17

1

26
, , , , , ... c –1, 1, 3, 5, …

3 Given that r can take the values 1, 2, 3, …, write the fi rst four 

terms of  the sequence with a general term:

a 4r – 3 b
r

r2 1+
c

1
2r

4 Expand these series in full.

a r r
r

( )+
=

∑ 1
1

4

b
r

rr 2 11

5

+=

∑ c ( )−
=

∑ 1 2

1

5
r

r

r

5 Write these series using sigma notation.

a –1 + 3 + 7 + 11 + …

b –1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1

c 6 – 12 + 24 – 48 + 96 – 192

Find the general term 

and the value of r that 

gives the last term.
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Investigation – quadratic sequences

Use your GDC to look at the numbers generated by 

T = n2
 – 2n + 3 where n ∈ +. 

Enter the data in the GDC:

Use a table to list the  rst differences and the 

second differences of the numbers generated 

by this quadratic formula.

n
2 – 2n + 3 

First 

difference 

Second 

difference 

2

3

6

11

18

27

38

51

1

3

5

7

9

11

13

2

2

2

2

2

2

In general three consecutive integers are p − 1, p and p + 1. 

Use these values to calculate n2 − 2n + 3 for each one.

Use algebra to justify that the second difference is always constant.

Now see what happens if you repeat the task using:

T = 2n2 + 2n + 1

T = –n2 + 3n – 4

Try to generalize your results.

Second differences are 

obtained by subtracting 

consecutive terms of 

the  rst differences.

First differences 

are obtained by 

subtracting two 

consecutive terms of 

the original sequence.

A general form for any 

quadratic equation 

is T = an2 + bn + c

where a, b and c are 

constants.

}
}
}

}

}
}

} }
}
}

}

}

}

Investigation – triangular numbers

The patterns of dots represent the  rst  ve triangular numbers.

Enter these numbers in your 

GDC or in a spreadsheet and then 

work out the  rst and second 

differences. 

You can continue generating 

consecutive numbers as shown 

in the table.

Use your  ndings from the quadratic 

sequences investigation to 

 nd a formula that generates the 

triangular numbers.
21 = 15 + 6 6 = 5 + 1

Triangle numbers First difference Second difference

1

3

6

10

15

21

2

3

4

5

6

1

1

1

1

}
}
}
}
}

}
}
}
}

Mathematics as the science of patterns8



Investigation – more number patterns

The diagrams show the  rst  ve terms of the square, 

the pentagonal, the hexagonal and the heptagonal numbers. Use 

lists and the method of differences to obtain formulae that generate 

these numbers.

Square numbers 

Pentagonal numbers

Hexagonal numbers

Heptagonal numbers

Use your results from the investigations to complete this table.

Term 1st 2nd 3rd 4th 5th 6th 7th 8th nth

Triangular numbers 1 3 6 10 15 21

Square numbers 1 4 9 16 25

Pentagonal numbers 1 5 12

Hexagonal numbers 1 6 15

Heptagonal numbers

Octagonal numbers

Nonagonal numbers

Use the table to make a conjecture about the nth term of any polygonal number. 
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. Arithmetic sequences and series

The picture represents the front of  a building with 

arches on each level. 

To fi nd out how many arches there will be on the fourth 

level you fi rst need to count the arches on each level.

This gives the sequence 5, 10, 15.

Each fl oor has 5 arches more than the previous one, so the next 

fl oor will have 20 arches.

➔ If  the difference between two consecutive numbers in a 

sequence is constant then this is an arithmetic sequence or an 

arithmetic progression. We call this constant difference the 

common di erence and denote it by d.

If  you write the fi rst term u
1
 then the sequence of  arches is

u
1
 = 5

u
2
 = 5 + 5 = u

1
 + d

u
3
 = 10 + 5 = u

2
 + d

Each term is found from the previous one by adding the common 

difference d. 

u
n
 = u

n – 1
 + d

Look again at the terms:

u
1
 = 5

u
2
 = 5 + 5 = u

1
 + d

u
3
 = 10 + 5 = u

2
 + d = u

1
 + 2d

u
4
 = 15 + 5 = u

3
 + d = u

1
 + 3d

This leads to the general term u
n
 = u

1
 + (n – 1)d

➔ An arithmetic sequence with the fi rst term u
1 
and common 

difference d is u
1
, u

1
 + d, u

1
 + 2d, . . . , u

1
 + (n – 1)d. 

 The general term is u
n
 = u

1
 + (n – 1)d

Example 

Three numbers are consecutive terms in an arithmetic sequence. 

Their sum is 48 and their product is 2800.

Find the three numbers.

Answer

Let the three numbers be 

u – d, u, u + d

u – d + u + u + d = 48

3u = 48

u = 16

Write the sum of  the three numbers.

This is called a 

recursive equation. 

You can work out 

any term using this 

equation only if you 

know or can generate 

the previous term. 

{ Continued on next page
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(u – d) u(u + d) = 2800

u (u 2 – d 2) = 2800

162 – d 2 = 175

d = ± 256 175

d = ± 9

The three numbers are 

7, 16 and 25. 

Write the product.

Substitute u = 16 and divide 

by 16.

The two values of  d give two possible 

sequences: 

7, 16, 25 or  25, 16, 7  

Example 

Find the number of  terms in these arithmetic sequences:

a 50, 47, 44, ..., 14

b a, 3a, 5a, ..., 21a

Answers

a u
1
 = 50, d = −3

u
n
 = 53 − 3n

 53 − 3n = 14

 3n = 39

n = 13

b u
1
 = a, d = 2a

u
n
 = (2n − 1)a

 (2n − 1)a = 21a

 2an = 22a

n = 11

Using u
n
 = u

1
 + (n − 1)d

Using u
n
 = 14 and solving for n

Example 

The second term of an arithmetic sequence is 15 and the fi fth term is 21.

Find the common difference and the fi rst term of  the sequence.

Answer

u
2
 = u

1
 + d = 15

u
5
 = u

1
 + 4d = 21

3d = 6

d = 2

u
1
 = 15 − 2 = 13

Using u
n
 = u

1
 + (n − 1)d

Solving simultaneously

Exercise 1B

1 Find the nth term of  these sequences.

a 5, 11, 17, 23, … b 10, 3, – 4, –11

c a, a + 2, a + 4, a + 6, …

2 Find the terms indicated in each of  these arithmetic sequences:

a 2, 11, 20, ... 15th term

b −1, , , ...
1

4

3

2
 12th term

c 3, 7, 11, ... (n + 1)th term
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3 The fourth term of  an arithmetic sequence is 18 and the 

common difference is –5. Find the fi rst term and the nth term.

4 The fourth term of  an arithmetic sequence is 0 and the 

fourteenth term is 40. Find the common difference and the 

fi rst term.

5 A job advertisement states that the job carries a salary of  

€48000 per year rising by annual increments of  €500. How much 

would the salary be after 15 years? How many years would a 

person have to hold this position for a 50% salary increase on the 

initial salary?

The sum of an arithmetic series

When Gauss was 11 years old his teacher challenged him to 

fi nd the sum of the numbers from 1 to 100. To the teacher’s 

surprise Gauss gave the correct answer almost immediately 

as 5050. Here is how he did it:

S =     1 +       2 +      3 +     4 + ...   99 + 100

S = 100 +    99 +   98 +   97 + ...     2 +     1

2S = 101 + 101 + 101 + 101 + ... 101 + 101

2S = 101 × 100

* 
10100

2

The numbers 1 to 100 are an arithmetic series with fi rst 

term 1 and common difference 1. Gauss had found a 

method for calculating the sum of  a fi nite arithmetic series.

Generalizing this method for a series containing n terms, with fi rst 

term u
1
 and common difference d gives

S
n
= u

1
+ u

1 
+ d + u

1 
+ 2d + … + u

1 
+ (n – 2)d + u

1 
+ (n – 1)d

S
n
= u

1 
+ (n – 1)d + u

1 
+ (n – 2)d + u

1 
+ (n – 3)d + … + u

1 
+ d + u

1

2S
n
= 2u

1 
+ (n – 1)d + 2u

1 
+ (n – 1)d + 2u

1 
+ (n – 1)d + … + 2u

1 
+ (n – 1)d + 2u

1 
+ (n – 1)d

2S
n
 = n[2u

1 
+ (n – 1)d]

S
n
 = 

n

2
[2u

1 
+ (n – 1)d]

Carl Friedrich Gauss

(1777–1855) German 

mathematician “Mathematics is 

the queen of all sciences”
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This formula can also be written as

S
n
 = 

n

2
[u

1
 + u

1
 + (n – 1)d ] 

 = 
n

2
[u

1
 + u

n
]

➔ The sum of  a fi nite arithmetic series is 

S
n
 = 

n

2
[ 2u

1 
+ (n – 1)d ] 

= 
n

2
(u

1 
+ u

n 
)

where n is the number of  terms in the series, u
1
 is the fi rst 

term, u
n
 is the last term and d is the common difference.

Example 

The fi rst term of  an arithmetic series is 2 and the last term is 26. The 

series has 9 terms.

Find the sum of  the series.

Answer

u
1
 = 2, u

9
 = 26, n = 9

S
9
 = 

9

2
 (2 + 26) = 126 Using S

n
 = 

n

2
 (u

1
 + u

n   
)

Example  

The fi rst term of  an arithmetic series is 25 and the fourth term is 13. 

The sum of  the series is –119.

Find the number of  terms in the series.

Answer

u
1
 = 25

u
1
 + 3d = 13

3d = 13 – 25

d = –4

S
n
 = 

n

2
[2u

1
 + (n – 1)d]

 –119 = 
n

2
[50 – 4(n – 1)]

–238 = n(54 – 4n)

4n2 – 54n – 238 = 0

2n2 – 27n – 119 = 0

(2n + 7)(n – 17) = 0

Since n ∈ +, n = 17

u
4

= u
1

+ 3d

Find d.

Solve for n.

Divide by 2.

Factorize.

+ is the set of  positive integers.

u
1

+ (n – 1)d = u
n

The natural numbers 

is the set {0, 1, 2, ...} It 

differs from + because 

it includes zero.
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Example 

Calculate ( )5 7
1

10

r
r

−
=

∑

Answer

u
1
 = 2

d = 5

u
10

= 43

S
10

 = 
10

2
 ( 2 + 43) = 205

or

Using a GDC:

( )5 7
1

10

r
r

−
=

∑ = 207

Use the formula for the sum of  a 

finite arithmetic series

Exercise 1C

1  Evaluate these series.

a  6 + 19 + 32 + … + 110

b  52 + 41 + 30 + … – 25

c  –78 – 82 – 86 – 90 – … – 142

2  Calculate:

a 



10

1

(5 7)
r

r b ( )5 3
1

15

−
=

∑ r
r

3  Find the sum of  an arithmetic series with 16 terms, given that the 

fi rst term is 60 and the 10th term is –3.

EXAM-STYLE QUESTIONS

4  The fourth term of  an arithmetic series is 8.

The sum of  the fi rst fi ve terms is 25.

Find the fi rst fi ve terms.

5 The sum of an arithmetic series is given by S
n
 = n(2n + 3). Find 

the common difference and the fi rst four terms of  the series.
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The diagram shows the  rst three steps in constructing Sierpinski’s triangle, 

named after the Polish mathematician Waclaw Sierpinski who  rst 

described it in 1915.

1 2 3 4

If you count the white triangles in each of the  gures 1 to 4 you get the 

sequence 1, 3, 9, 27 Figure 5 would have 81 white triangles. At each stage 

the number of white triangles is three times the number in the previous stage.

If the sides of the original triangle are 1 unit long, then the length of each side 

of the green triangle will be 
1

2

 unit; each side of the orange triangles will be 
1

4

unit and each side of the blue triangles is 
1

8
unit.

If the area of the  rst triangle is 1 unit2, then the area of the green triangle 

is
1

4
 unit2, since four of the green triangles make up the original triangle. The 

area of each orange triangle will be 
1

16
 unit2 and of each blue triangle will be 

1

64
 unit2

Hidden in Sierpinski’s triangle are the sequences:

1, 3, 9, 27, ...   To get next term multiply previous term by 3 

1, 1

2

1

4

1

8
, , , ...     To get next term multiply previous term by 

1

2

1, 
1

4

1

16

1

64
, , , ... To get next term multiply previous term by 

1

4

➔ If  the ratio of  two consecutive terms in a sequence is constant 

then this is a geometric sequence or a geometric progression. 

We call this ratio the common ratio and denote it by r.

So for the sequence 1, 3, 9, 27, …u
1
 = 1, r = 3 and the recursive 

equation is:

u
n
 = u

n – 1
r

For this sequence:

u
1
 = 1

u
2
 = 1 × 3 = u

1
× r

u
3
 = 3 × 3 = u

2
× r = u

1
× r

2

u
4
 = 9 × 3 = u

3
× r = u

1
× r

3

This leads to the general term u
n
 = u

1 
× r 

n – 1

➔ In a geometric sequence with fi rst term u
1
 and common ratio r

the general term is given by u
n
 = u

1
× r 

n–1, r ≠ –1, 0, 1.

The ratio of 

consecutive terms 

is a constant for each 

sequences.

A recursive equation 

is one in which the 

next term is de ned 

as a function of earlier 

terms.

Why have these values 

of r been omitted?

Claudia Zaslavsky

(1917–2006) 

Ethnomathematician 

Researched 

expressions of 

mathematics in 

African culture, 

including number 

words and signs, 

reckoning of time, 

games, and patterns. 

Africa Counts was 

published in 1973.

. Geometric sequences and series
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Example 

Find the common ratio of  each of  these sequences and write the next 

two terms of  each sequence.

a 10, 25, 62.5, ...

b
1

2
, , ...

1

6

1

18

c a, 2a3, 4a5, ...

Answers

a r =

25

10
= 2.5

The next two terms are 156.25 and 390.625

b r = − ÷ −

1

6

1

2

1

3
=

The next two terms are 
1

54
 and 

1

162

c r = =

2
3

22
a

a
a

 The next two terms are 8a7 and 16a9

Example 

Find the number of  terms in each of  these geometric sequences.

a 2, 4, 8, ..., 256

b 5, 10, 20, ..., 5 × 2k

Answers

a u
1
 = 2, r = 2

u
n
 = 2 × 2n−1 = 2 × 128 = 2 × 27

n = 8

b u
1
 = 5, r = 2

u
n
 = 5 × 2n−1 = 5 × 2k

n = k + 1

Exercise 1D

1 Write down the 6th term and the nth term of  each sequence.

a 1, 2, 4, …  b 9, 3, 1 ... c x3, x2, x, … 

2 Find the common ratio and the terms indicated in each of  these 

sequences.

a 48, 24, 12, ... 10th term

b 
16

3

8

9

4

27
, , , ...−  5th term
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3 Find the number of  terms in each of  these sequences.

a 0.03, 0.06, 0.12, ..., 1.92 b 81, 27, 9, ....,
1

81
4 The third term of  a geometrical sequence is 2 and the fi fth is 18.

Find two possible values of  the common ratio and the second 

term in each case.

5 The fi rst term of  a geometric sequence is 16 and the fi fth term 

is 9. What is the value of  the seventh term?

6 The numbers a − 4, a + 2 and 3a + 1 are three consecutive terms 

of  a geometric progression. Find the two possible values of  the 

common ratio.

The sum of a geometric series

How could you fi nd the sum of  the fi rst 10 terms of  the series 

1 + 3 + 9 + … + 3n–1  + … ?

Write 

S
10

 = 1 + 3 + 32 + 33 + … + 39

Multiply the whole series by 3 and subtract from S:

S
10

 = 1 + 3 + 32 + 33 + … + 39

3S
10

 = 3 + 32 + 33 + … + 39 + 310

(1 – 3)S
10

 = 1 – 310

This gives

S
10

 = 
1 3

1 3

1

2

10
103 1= −( )

To find the sum of  the fi rst n terms of  a geometric series use the same process 

by multiplying by the common ratio r and subtracting:

S
n

= u
1

+
1
r + r 2 + r 3 + … + u

1
r n – 1

rS
n

= u
1 1

+ u
1

3 + … + u
1
rn – 1 + u

1
rn

(1 – r)S
n 

= u
1

– u
1
rn

➔ The sum of  a geometric series is given by 

S
n
 = 

u r

r

n

r
1 1

1
1

( )
, ≠

 where n is the number of  terms, u
1
 is the fi rst term and r is the 

common ratio.
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Convergent and divergent series

A geometric series is convergent when the sum tends to a fi nite 

value as the number of  terms gets bigger. In the investigation with 

the string, the series converges to a sum S = 11.28 cm.

If  a geometric series does not converge it is divergent

Investigation – infi nite sums

In the diagram, AB represents a piece of string 11.28 cm long.

The string is cut in half and one half, CD, is placed underneath. The remaining 

half is again cut in half and one half, DE, is placed next to CD. The process is 

repeated twice more and the total length of the pieces placed side by side is noted. 

CD = 5.64cm

AB = 11.28cm

CD + DE = 8.46cm

CD + DE + EF = 9.87cm

CD + DE + EF + FG = 10.575cm

DE = 2.82cm

EF = 1.41cm

FG = 0.705cm
G

A B

C D

EC D

FEC D

FEC D

If this process is continued inde nitely, the total length will continue increasing 

BUT can never exceed 11.28 cm, the original length. Mathematically:

CD = u
1
 = 5.64 DE = u

2
= 5.64 × 

1

2

EF = u
3
= 5.64 × 1

2

2

⎛
⎝
⎜

⎞
⎠
⎟  FG = u

4
= 5.64 × 

1

2

3

⎛
⎝
⎜

⎞
⎠
⎟

u
n
= 5.64 × 

1

2

1

⎛
⎝
⎜

⎞
⎠
⎟

n

This is a geometric sequence,  rst term 5.64 and common ratio 
1

2

The sum of n terms of this series will therefore be

S
n
 =

u r

r

n

n

1 1

1

( )

5.64 1
1

2

1
1

2

=

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

Enter this on the GDC to see what happens 

as n gets bigger.

Note that when you sum 15 terms the result is 

very close to 11.28, the original length.
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➔ The sum of  n terms of  a geometric series is

S
n

n

u r

r

= 1
(1 )

(1 )

 When –1 < r < 1, r n approaches zero for very large values of  

n. The series therefore converges to a fi nite sum given by


1

1

u
S

r

Example 

Calculate the geometric series given by (3 2 )
=1

6

×∑ r

r

Answer

u
1
 = 6, r = 2

3 2 378
6 1 2

1 2

6

=1

6

×( )
( )

=∑ r

r

=

or

using GDC 3 2 378
=1

6

×( )∑ r

r

=

Convergence is 

covered in more detail 

in Chapter 4.

Investigation – convergent series 

In order to understand the condition for convergence now look 

at the formula for the sum of n terms:

S
n

u r

r

n

= 1
1

1

( )

( )

Use your GDC to calculate these values of r n for n ∈ +, 1 ≤ n ≤ 10:

a 3n b 2n c
3

2

⎛
⎜

⎞
⎟

n

d 
⎛
⎜

⎞
⎟

1

5

n

e
⎛
⎝
⎜

⎞
⎠
⎟

1

5

n

f
3

4

⎛
⎜

⎞
⎟

n

Try other values of r

Use your results to justify these statements:

● r > 1 ⇒ r n increases as n gets larger. The larger the value of r, the 

faster the value of r n increases.

● 0 < r < 1 ⇒ r n decreases as n gets larger. 

● r < – 1 ⇒ r n has a large absolute value but its sign oscillates.

● – 1 < r < 0 ⇒ r n has a very small absolute value but its sign oscillates.

● When the value of r is close to (but still less than) 1, the value 

of r n decreases more slowly but still gets close to zero when n is large enough. 

What happens as n

increases?
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Example 

Find two possible geometric sequences where the sum of  the fi rst two 

terms is 9 and the sum of  the fi rst four terms is 45 and write down the 

general term of  each sequence.

Answer

S
2
 = u

1
 + u

1
r = 9

⇒ u
1 
=

9

1 + r

S
4
 = 

u r

r

1

4
(1 )

1
= 45

⇒

9(1 )

(1+ )(1 )

4

= 45
r

r r

Find an expression for u
1

Using S
n

= 
u 1 r

1 r
1( )

Substitute u
1
 = 

9

1 r+

9(1 – r 4) = 45(1 – r 2)

(1 – r 2)(1 + r 2) = 5(1 – r 2)

⇒ 1 + r 2 = 5

⇒ r 2 = 4

r = ±2

r = 2 ⇒ u
1
 = 

9

3
 = 3

r = –2 ⇒ u
1
 = 

9

1
 = –9

The two possible geometric 

sequences are:

3, 6, 12, … , 3 × 2n – 1, …

–9, 18, –36, … , –9 × 2n – 1, …

Divide both sides by 9 and factorize 

using the ‘difference of  two squares’ 

(r ≠ 1). 

Substitute r = ±2 in u
1
 = 

9

1 r+

Example  

The sum of  the fi rst n terms of  a geometric series is given by 

S
n
 = 5n – 1. Find the fi rst term and the common ratio of  this series.

Answer

S
1
 = 51 – 1 = 4

u
1
 = 4

S
2
 = 52 – 1 = 24

u
1

+ u
2

= 24

u
2
 = 20

r = 
20

4
 = 5

Using u
2 
= u

1
r
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Exercise 1E

1 Evaluate these sums for the number of  terms stated.

a 2 + 1 + 
1 1

2 4
 … 6 terms b 2 – 3 + 4.5 – 6.75 + … 8 terms

c 1 −
1

2

1

4

1

8
...+ − −  10 terms d 0.1 + 0.02 + 0.004 + 0.0008 + … 15 terms

2 Calculate:

a 




5

3

0

5
r

r

b 9 10
0

1

×
r

r

n

( )
=
∑

3 Find the sum of  a geometric series with six terms given that the 

third term is 2 and the seventh term is 
1

128

4 The sum of  n terms of  a certain series is given by
 

 
 

3

2
1

n

a Find the fi rst three terms of  the series.

b Show that the terms of  the series are in geometric progression.

EXAM-STYLE QUESTIONS

5 S
n
 is the sum of  the fi rst n terms of  a geometric sequence with 

fi rst term a and common ratio r. Let P
n
 represent the product of  

these terms. Write P
n
 in terms of  a and r

Show that the sequence formed by taking the reciprocals of  the 

terms is also geometric. Write R
n
, the sum of  the fi rst n terms 

of  the reciprocals, in terms of  a and r and hence show that 

S

R

n

n

n

Pn

⎛

⎝
⎜

⎞

⎠
⎟ ( )=

2

6 The second term of  a geometric progression is 24 and the third 

term is 12(p − 1). Find the common ratio of  this progression 

given that the series is convergent and the sum of  the fi rst three 

terms is 76.

7 A rope of  length 2 m is divided into three pieces whose 

lengths are in geometric sequence. The longest piece is twice 

as long as the shortest piece. Find the common ratio of  the 

sequence and the exact length of  the shortest piece of  rope.

8 Write the fi rst four terms of  the series 

r

x
r

r

( +1)

3=0

∞

∑ . For what values 

of  x does this series converge? Evaluate the sum when x = −1.5

9 An infi nite geometric series is such that S − S
n
 = ku

n
, k ∈ +. Find 

the common ratio and hence show that S = (k + 1)u
1

✗
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Problem solving using geometric progressions

Example 

The number of  Facebook users in August 2008 was 100 million and 

growing at a rate of  3% per week. In August 2010 the number of  

Facebook users was 500 million. 

a If  the rate of  growth had remained constant at 3% what would the 

number of  users in August 2010 have been? 

b The growth rate of  3% per week actually remained steady for 6 

months and then dropped to 1.1% per week. Show that this model 

better describes the recorded numbers.

c If  the growth rate of  users remained at a steady 1% per week after 

August 2010, how long would it take for the number of  users to 

reach 1 billion?

Answers

a  The number of  users after 

2 years is

100 × (1.03)104 ≈ 2160 million 

(3 sf)

2 years = 104 weeks

b The number of  users after 6 

months is

100 × (1.03)26 ≈ 215.7 

million 

The number of  users in 

August 2010 would be 

215.7 × (1.011)78 ≈ 506 

million (3 sf)

This is close to the recorded 

value of  500 million.

c Number of  users in August 

2010 is 500 million

Growth model given by 

500 × (1.01)n

500 × (1.01)n = 1000 

Use GDC to solve for n

It will take 70 weeks to reach 

1 billion, approximately in 

December 2011.

6 months = 26 weeks

6 months at 3% growth p.w.

26 + 52 = 78 weeks 

18 months at 1. 1% growth p.w.

1 billion = 1000 million

≈ means approximately 

equal to.

The numbers have 

been rounded to 3 sf

In some countries 

1 billion = 1012
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Example 

When Sofi a was born, her grandparents invested € 1000 at a compound 

interest rate of  4% each year. 

They then added € 1000 to the account on Sofi a’s birthday every year. 

How much money was in Sofi a’s account just after her 18th birthday?

Answer

At Sofi a’s birth € 1000

Just before 1st birthday 

1000 (1.04) 

On 1st birthday

1000 (1.04) + 1000

Just before 2nd birthday 

(1000 (1.04) + 1000)1.04 

Just after 2nd birthday

1000 (1.04)2 + 1000 (1.04) + 1000

Amount in bank + interest for one 

year 1000 + 0.04 × 1000 

= 1000 (1.04)

Value after 1 year + second 

payment

Just after 18th birthday the amount 

is 1000(1.04)18 + 1000(1.04)17 + 

1000(1.04)16 + … + 1000 

Sn =

1000(1 (1.04) )

(1 1.04)

19

= € 27 671(to nearest €)

Using the pattern from years 1 

and 2

This is a geometric series with 

u
1
 = 1000, r = 1.04 and n = 19

Exercise 1F

EXAM-STYLE QUESTION

1  The sum to infi nity of  a geometric series is 4 times the second 

term. 

a Find the common ratio. 

 The fi rst term of  the series is 32. 

b What is the percentage error in the approximation S
5
 ≈ S?

2 On his 21st birthday, Prince Abdul started receiving annual 

payments from a trust fund. On each succeeding birthday he 

received one and a half  times as much as in the previous year. 

 By the age of  25 he had received a total of  $52 750. 

 How much did he receive on his 21st birthday?

3 Vivek can trace his family tree back fi ve generations. 

Vivek’s parents are the fi rst generation back and his fi rst set of  

ancestors. Vivek’s four grandparents are the second generation 

back. 

a How many ancestors are in his family tree? 

b How many generations would he have to trace to fi nd more 

than one million ancestors??

Including the  rst 

€ 1000 there are 

19 terms in total.

Percentage error 

= 
V V

V

A E

E

× 100% 

where V
E
 =  exact 

value 

V
A
 =  approximated 

value
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EXAM-STYLE QUESTION

4  Yi-Ching takes out a loan of  $1000 to buy a new computer. 

The terms of  the loan are that Yi-Ching will pay equal monthly 

installments. Interest is calculated monthly and is charged 

at 12% p.a. The loan is to be repaid in 2 years.

a Calculate the amount Yi-Ching has to pay each month if  

the fi rst repayment is made one month after the money is 

borrowed and after interest is calculated. 

b How much, to the nearest dollar, does Yi-Ching actually pay 

for the computer? 

. Conjectures and proofs

p.a. stands for per 

annum or yearly

In most subjects knowledge is acquired from observation. This is also true in 

mathematics but proof gives absolute rigor and certainty. 

Mathematical proof is a logical sequence of steps which establishes the 

truth of a statement beyond any doubt.

Mathematicians look for patterns and then use intuition to make a 

conjecture to describe that pattern in mathematical terms. Only when the 

conjecture has been proved does it become a theorem – a truth.

There are many types of proofs. Earlier in this chapter we used logical 

deductive reasoning to establish formulae for sums of arithmetic and 

geometric series. 

Direct proof

Example 

Use a direct proof to show that the sum of two odd numbers is always even. 

Answer

Let a and b be two odd numbers

a = 2p + 1, b = 2q + 1 

where p, q ∈ 

a + b = 2p + 1 + 2q + 1

 = 2p + 2q + 2

 = 2(p + q + 1)

Since p, q ∈ , p + q + 1 ∈ 

Therefore a + b is even.

An odd number can be written as 

2n + 1, n ∈ .  

An even number can be written as 

2n, n ∈ 

Exercise 1G

1 Show that 

a the sum of  an odd and an even number is always odd

b the product of  two odd numbers is always odd.

2  Prove that: 
1

2x
 – 

2

2 5x +
 = 

9

2 102x x+ −

Alan Turing

(1912–54) British 

mathematician 

“Mathematical 

reasoning may be 

regarded rather 

schematically as 

the exercise of a 

combination of two 

facilities, which we 

may call intuition and 

ingenuity.”
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3  Use the diagram to prove that a 2 + b 2 = c 2

c

c

c

c

a

a

a

ba

b

b

b

4 Complete the table to test if  the following conjecture is true.

‘The product of  two consecutive integers plus the larger of  the 

two integers is always a perfect square.’

3 4 3 × 4 + 4 16

7 8

–6 –5

11 12

8 9

 Use your results to prove the conjecture.

. Mathematical induction

The principle of  mathematical induction is a method 

mathematicians use to prove statements about sequences.

To illustrate the principle of  proof  by induction, imagine 

two dominoes placed at a distance less than half  their 

length. If  the fi rst domino is tilted as shown it will fall 

and cause the second domino to fall with it. This is

the starting point of  the process.

Now imagine n dominoes arranged 

in a row in the same way. If  the fi rst 

domino falls it will cause the next 

dominoes to fall with it. This assumption 

is the second step in the process. 

If  we add another domino at the end of  

the n dominoes, this last domino also falls. 

This is the third and fi nal step of  the process.

At the start of  the process the fi rst domino will cause the second 

domino to fall. It then follows using the second and third steps 

that a third domino placed behind the fi rst two will also fall. 

Knowing that three dominoes will fall and again using steps two 

and three a fourth domino will also fall. We can go on repeating 

this process as many times as we want; in other words we have 

shown that we can have as many dominoes as we like and they 

will all fall if  the fi rst one is tilted towards the second domino.

This is Pythagoras’ 

theorem.

Use algebra for the 

proof.

The method of 

induction described 

and used in this 

section is called 

‘weak’ induction. You 

could investigate the 

difference between 

‘strong’ and ‘weak’ 

induction and their 

uses.
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The dominoes analogy can be applied to mathematics.

➔ We start with a statement P (n) which we want to prove is true 

for all values of  n, n ∈ +.

 Step 1 Prove that the statement is true for a starting value P (1)

 Step 2  Assume that P (k) is true, where k is a particular value 

of  n ≥ 1.

 Step 3  Use the assumption that P (k) is true to show that 

P (k + 1) is then also true. 

Since it was proved true (the fi rst domino will fall) for n = 1 in step 1, 

and steps 2 and 3 show that if  one domino falls then its neighbor 

will also fall, then using the principle of  mathematical induction it is 

true for all values of  n ≥ 1 (all the dominoes will fall).

Example 

Use mathematical induction to show that the sum of  the fi rst n terms 

of  an arithmetic sequence with fi rst term u
1
 and common difference d 

is given by S
n
 = 

n

2
(2u

1
 + (n – 1)d) 

Answer

P
n
 = S

n
 = 

n

2
(2u

1
 + (n – 1)d )

P
1
:

LHS: S
1
 = u

1

RHS: = 
1

2
(2u

1
 + (1 – 1)d) = u

1

LHS = RHS ⇒ P
1
 is true

Assume P
k
 is true i.e.,

S
k
= 

k

2
(2u

1
 + (k – 1)d)

Show P
k+1

 is true i.e.,

S
k+1

 = 
k + 1

2
(2u

1
 + kd)

LHS = S
k
 + u

1 
+ kd

= 
k

2
(2u

1
 + (k – 1)d) + u

1
 + kd

= ku
1
 + 

k

2
(k – 1)d + u

1
 + kd

= u
1
(k + 1) + kd

k 1

2
+1

( )⎛
⎝
⎜

⎞
⎠
⎟

Notation

LHS = left-hand side

RHS = right-hand side

Substitute k in statement. 

Use assumption to prove that 

S
k+1 

= 
k 1

2

+
 (2u

1
 + kd)

Substitute n = k + 1 in 

statement u
n
 = u

1
 + (n  1)d

using assumption in step 2.

The starting value is 

not always 1.

{ Continued on next page
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= u
1
(k + 1) + kd

k +1

2

( )⎛
⎝
⎜

⎞
⎠
⎟

= 
( +1)

2

k
(2u

1
 + kd)

= 
k

u k d
+( )

+ + −( )( )1

2
2 1 11 ( )

Since the statement was shown to be 

true for n = 1, and it was also proved 

(steps 2 and 3) that if  the statement is 

true for n = k it is also true for 

n = k + 1, it follows by the principle 

of  mathematical induction that the 

statement is true for all positive 

integers n

Example  

Use mathematical induction to prove that n2 > 7n + 1 for all n ≥ 8.

Answer

Let P (n) be the statement n2 > 7n + 1

Step 1

When n = 8, n2 = 64 and 7n + 1 = 57 

Since 64 > 57, P (8) is true.

Step 2

Assume that for some k ∈ +

k 2 > 7k + 1 

Step 3 

Use assumption to prove that P (k + 1) is true:  

 (k + 1)2 > 7(k + 1) + 1

Proof: 

 (k + 1)2 = k 2 + 2k + 1 > 7k + 1 + 2k + 1

 = 7(k + 1) + 2k – 5

 = 7(k + 1) + 1 + (2k – 6)

 2k – 6 > 0 since k > 8 

∴ 7(k + 1) + 1 + (2k – 6) > 7(k + 1) + 1

It follows that (k + 1)2 > 7(k + 1) + 1 

∴ P (k + 1) is true.

Since P (8) was shown to be true, and it was also 

proved that if  P (k) is true, P (k + 1) is also true, it 

follows by the principle of  mathematical induction 

that the statement is true for all positive integers n ≥ 8.

If  k 2 > 7k + 1 

(step 2) then 

k 2 + 2k + 1 > 

7k + 1 + 2k + 1

In this example the 

starting value is 8, 

not 1. 
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Example 

Use the principle of  mathematical induction to prove that 

r r n n n
r

n

( ) ( )( )2 6 1 5
1

2

3
+ = + +

=
∑

Answer

P
n
 = r r n n n

r

n

( ) ( )( )2 6 1 5
1

2

3
+ = + +

=
∑

P
1
:

LHS = 1 × 8 = 8

RHS = × × × =
2

3
1 2 6 8

LHS = RHS ⇒ P
1
 is true.

Assume P
k
 is true, i.e.,

r r k k k
r

k

( ) ( )( )2 6 1 5
1

2

3
+ = + +

=
∑ , k ∈ +

Show P
k+1

 is true, i.e.,

r r k k k
r

k

( ) ( )(( ) )(( ) )+ = + + + + +
=

+

∑ 1 1 1 1 1 5
1

1 2

3

= + + +2

3
1 2 6( )( )( )k k k

LHS:

r r r r
r

k

r

k

ku( ) ( )2 6 2 6
1

1

1

1+ = +
=

+

∑
=

+∑⎛
⎝
⎜

⎞

⎠
⎟ +

= + + + + + +2

3
1 5 1 2 1 6k k k k k( )( ) ( )( ( ) )

using the assumption

= + + + + +

= + + + +

=

⎛
⎝
⎜

⎞
⎠
⎟

2

3

2

3

2

3

1 5 1 2 8

1 5 2 8

k k k k k

k k k k

k

( )( ) ( )( )

( ) ( ) ( )

( ++ + +1 2 6)( )( )k k

= RHS:

Since P (1) was shown to be true, and it 

was also proved that if  P (k) is true, 

P (k + 1) is also true, it follows by the 

principle of  mathematical induction that 

the statement is true for all values of n ≥ 1. 

Add on the next number in 

the sequence 

(k + 1)(2(k + 1) + 6)

Using the assumption from 

step 2.

(k + 1) is a common factor.

Expand and simplify.

This is the expression 

obtained when n = k + 1 is 

substituted in P(n).
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Exercise 1H

1 Use mathematical induction to prove that for a geometric 

series with fi rst term u
1
 and common ratio r, the sum of  the 

fi rst n terms S
n
 is given by


1(1 )

1

n

n

u r

r
S

2  Use mathematical induction to prove these statements.

a r n n
n

r

n
2

61

1 2 1= + +
=
∑ ( )( )

b 2 2 11

1

r n

r

n

= −
=
∑

c 13 + 23 + 33 + . . . + n3 = 
n2

4
 (n + 1)2

d r r n n
n

r

n

( ) ( )( )+ = + +
=
∑ 2 1 2 7

61

Example 

Use mathematical induction to prove that 32n + 7 is divisible 

by 8 for all n ∈ 

Answer

P (n): 32n + 7 = 8A

Step 1

When n = 0, LHS = 30 + 7 = 8 

so P (0) is true.

Step 2

Assume that P (k) is true for some 

value k ≥ 0, k ∈ 

32k + 7 = 8A, A ∈ +

Recall that the natural numbers 

include 0 so we must start with 

n = 0.

Step 3 

Prove that P (k + 1) is true.

32(k+1) + 7 = 8B, B ∈ +

Proof: 

32(k+1) + 7 = 9 × 32k + 7

= 9(8A – 7) + 7

= 72A – 63 + 7

= 8(9A – 7)

= 8B

Since P (0) was shown to be 

true, and it was proved that if  

P (k) is true, P (k + 1) is also true, 

it follows by the principle of  

mathematical induction that the 

statement is true for all natural 

numbers n

Using assumption

9A  7 ∈ +, since A ∈ +

B is a positive integer.

This means that 32n
+ 7 

is a multiple of 8.
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Example 

Prove that for all values of  n ∈ +, n3 + 5n is a multiple of  6.

Answer

Let P (n) = n3 + 5n

P (1) = 13 + 5 × 1 = 6

Statement is true for n = 1.

Assume P (k) is true for k ≥ 1, 

k ∈ + then  k3 + 5k = 6A, A ∈ 

Use assumption to show that P (k + 1)

(k + 1)3 + 5(k + 1) = 6B, B ∈ +

LHS

= k3 + 3k2 + 3k + 1 + 5k + 5

= 6A – 5k + 3k2 + 3k + 1 + 5k + 5

= 6A + 3(k2 + k + 2)

= 6A + 3[k (k + 1) + 2]

= 6(A + C)

= 6B

= RHS

Since P (1) was shown to be true, 

and it was also proved that 

if  P (k) is true, P (k + 1) is also 

true, it follows by the principle of  

mathematical induction that the 

statement is true for all positive 

integers n

Using k 3 = 6A – 5k from step 2.

k(k + 1) + 2 = 2C, C ∈  since 

the product of  any two consecutive 

integers is even and the sum of  two 

even numbers is also even.

Exercise 1I

1  Use mathematical induction to prove that 7n – 1 is divisible 

by 6 for all n ∈ +

2  Prove by mathematical induction that 

 1 + 3 + 5 + 7 + … + (2n – 1) = n2 for n ∈ +

3 Prove by mathematical induction that 9n
− 1 is a multiple 

of  8 for n ∈ +

4 Prove by mathematical induction that n3 – n is a multiple of  6 

for n ∈ +

5 Show using mathematical induction that  


=1

1
=

+1 +1

n

r

n

r r n
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6 Prove by mathematical induction that for all positive integer 

values of  n, 2n+2 + 32n+1 is exactly divisible by 7.

7 Find the fi rst fi ve terms of  the sequence given by u
1
 = 1, 

u
r+1

=
2 1

3

u
r

Prove using mathematical induction that u
n
 = 3 1

2

3

⎛
⎝
⎜

⎞
⎠
⎟
n

−

. Counting methods

Some mathematical problems about arrangements and 

combinations involve large numbers so you will need to develop 

a number of  counting techniques.

Factorial notation

Look at the fi rst four terms of  this sequence.

u

u

u n u
n

n n

:
0

1

1=
=

⎧
⎨
⎩ ×

u
0
 = 1 

u
1
 = 1 × u

0
 = 1

u
2
 = 2 × u

1
 = 2 × 1

u
3
 = 3 × u

2
 = 3 × 2 × 1

The general term of  this sequence is: 

u
n
 = n × (n – 1) × (n – 2) × … × 3 × 2 × 1

A simpler way to denote this sequence is to use factorial notation 

where u
n
 = n! 

It follows that u
0
 = 0! = 1

Working with large numbers is easier using factorial notation.

Here are the fi rst few factorial numbers.

0! = 1

1! = 1 = 1 × 0! 

2! = 2 × 1 = 2 × 1!

3! = 3 × 2 × 1 = 3 × 2!

4! = 4 × 3 × 2 × 1 = 4 × 3!

➔ n! = n × (n – 1) × (n – 2) × … × 3 × 2 × 1 = n × (n – 1)! 

You can use this pattern to calculate expressions such as 
8

6

!

!
8

6

8 7 6 5 4 3 2 1

6 5 4 3 2 1
8 7 56

!

!
=

× × × × × × ×
× × × × ×

= =×

This is read as 

u
n
 equals n factorial’.

Christian Kramp 

(1760–1826), a 

French mathematician, 

introduced factorial 

notation.
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Example 

Evaluate 
10 5

7 6

! !

! !

×

×

Answer

10 5

7 6

10 9 8 7 5

7 6 5

10 9 8

6

120

! !

! !

! !

! !

×

×
=

× × × ×

× ×

=
× ×

=

Example  

Simplify   

a
( )!

( )!

n

n

+1

1
b

( )! !

( )!

n n

n

+ +1

1

Answers

a
( )!

( )!

( ) ( )!

( )!

( )

n

n

n n n

n

n n

+
=

+ × × −

= +

1

1

1 1

1

1

b
( )! !

( )!

( ) ( )! ( )!

( )!

( )
(

n n

n

n n n n n

n

n n n
n n

+ +

=
+ − + −

=
+ +

= +

1

1

1 1 1

1

1

1
2))

Rewrite (n + 1)! 

as (n + 1) × n × (n – 1)! 

and n! = n × (n – 1)!

Exercise 1J

1 Copy and complete this table simplifying the expressions.

8! – 7!

10! – 9!

5! – 4!

95! – 94!

(n + 1)! – n!

2 Evaluate:

a 
4

6

!

!
b 

5 3

6

! !

!

×
c 

8 6

5

! !

!

×

3 Simplify:

a 
n n

n

! ( )!

( )!

+ −

+

1

1
b

n n

n

! ( )!

( )!

− −1

2
c 

n

n

! !

!

( )

+

2
1

1

EXAM-STYLE QUESTION

4 Show that 
( )!( !)

( )! ( )!

( )

( )

2 2

1 2

2 2 1

1

2

2

n n

n n

n

n

+

+[ ]
=

+

+
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Arrangements

Alma lays the breakfast table on Christmas Day for 6 people with an 

eggcup, a glass and a cup for each person. She cannot decide how to 

arrange them in a row, so she decides to arrange them differently for 

each person, since she thinks that there are six ways of  arranging 

three different objects. Here is her reasoning:

Starting from the left she can choose the eggcup, the glass or the cup. 

Having made her fi rst choice she is left with two objects to choose 

from, which then leaves her with one way to choose the third object.

Here are the different arrangements:

EGC  CEG  GEC

ECG    CGE  GCE

So there are 3 × 2 × 1 = 6 ways of arranging three distinct objects in a 

row. 

Similarly with four objects to arrange in a row there are 4 ways of  

choosing the fi rst object and for each of  these ways there are 3 ways 

of  choosing the second. Having chosen the fi rst two objects there are 

2 ways of  choosing the third object and one way of  choosing the last 

object, giving a total of  4 × 3 × 2 × 1 = 24 different arrangements.

This reasoning can be extended to deduce that the number of  ways 

in which n distinct objects can be arranged in a row is 

n × (n – 1) × (n – 2) × … × 3 × 2 × 1 = n! 

➔ The number of  ways of  arranging n distinct objects in a 

row is n!

Alma arranges some Christmas decorations in a line: two identical 

angels, a snowman and a bell. She can arrange them in 4! = 24 

ways. She reasons, however, that since the two angels are 

indistinguishable the number of  different arrangements is less than 

this. Here is a list of  all possible arrangements:

AASB AASB ABSA ABSA BSAA BSAA

AABS AABS ASBA ASBA SABA SABA

ABAS ABAS BAAS BAAS SAAB SAAB

ASAB ASAB BASA BASA SBAA SBAA

The arrangements in the left-hand column are only different from 

the arrangements on the right because the two angels are shown 

differently. Because the angels are identical there are only 12 ways 

of  arranging the four objects.

E represents eggcup

G represents glass

C represents cup

The different ways in 

which objects can be 

arranged are called 

permutations

A – angel

B – bell

S – snowman

Fan Rong K 

Chung Graham

(1949–) Taiwanese 

mathematician “... 

many problems from 

combinatorics were 

easily explained, you 

could get into them 

quickly but getting 

out was often very 

hand ...”
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The number of  ways of  arranging 4 objects, two of  which are the 

same, is 
  





4! 4 3 2 1

2! 2 1
12

➔ The number of  permutations of  n objects, k of  which are 

identical is: 
!

!

n

k

Alma decides to arrange only two di erent ornaments. She has 

three ornaments to choose from (snowman, bell and angel). She can 

choose her fi rst ornament in 3 ways and her second ornament in 2 

ways so there are 3 × 2 = 6 different arrangements. 

Alma changes her mind again and decides to arrange two of  the 

objects: snowman, bell, angel and candle. Now she has four distinct

objects to choose from. She can choose her fi rst ornament in four 

ways and her second in three giving 4 3
4

4 2
× =

!

( )!
= 12 different 

arrangements.

Using the same reasoning if  she had n different ornaments 

and wanted to arrange 4 ornaments in a line, she could do this in 

n × (n − 1) × (n − 2) × (n − 3) = 
 

!

4 !

n

n
ways.

➔ The number of  permutations of  r objects out of  n distinct 

objects is 
 


!

!

n

r

n

n r
P

The number of  ways of  arranging n objects in a row is simply the 

numbers of  permutations of  n objects out of  n. The formula is then 

 
  

! !

! 0!
!n

n

n n

n n
P n

Alma chooses 6 different napkins out of  the 10 patterns that she has. 

If  she wanted to arrange 6 napkins out of  10 in a line she could do it 

in 
 

10!

10 6 !
 ways, but this includes the 6! ways of  arranging the 6 

napkins in a line. Now the order is not important, so she excludes 

the equivalent arrangements by dividing by 6! 

So Alma has 
10

10 6 6

!

! !( )
 ways of  choosing the six napkins.

When the order of  arrangements is not relevant they are called 

combinations and you can generalize the result. 

2! is the number of 

ways of arranging the 

two identical objects. 

No questions will be 

asked in your exam 

about permutations of 

identical objects.

The candle is one 

of the four distinct 

objects.

We de ne 0! as 1.

n

r

⎛

⎝
⎜

⎞

⎠
⎟  and Cr

n
are two 

different notations for 

combinations. Both 

are equally correct 

but 
n

r

⎛

⎝
⎜

⎞

⎠
⎟  is used 

throughout this book.
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➔ The number of  ways of  choosing (order is not important) 

r objects from n is 

n

r
Cr

n

n r r

⎛

⎝
⎜

⎞

⎠
⎟ ( )
= =n !

! !

You can also think of  combinations as a selection. To select two 

letters from A, B, C, you can have three different selections as AB is 

the same as BA. However, you could arrange them in six ways as AB 

is a different arrangement (permutation) to BA.

Having chosen her six different napkins Alma would now like to fi nd 

out the number of  ways of  arranging them round the table. She 

realizes that the number of  ways is no longer 6! because they are to 

be arranged in a circle. 

These two arrangements are different because 

they are in a straight line.

However, arranged round a table the same 

arrangement is just rotated by one place.

In fact you could rotate an arrangement six times round the table 

without repeating positions. So the number of  distinct ways of  

arranging 6 distinct objects in a circle will be 

6!

6
5!

Hence the number of  ways of  arranging n distinct objects around a 

circle is (n – 1)! 

Example  

a  In how many ways can the letters of  the word special be arranged?

b  In how many ways can the letters be arranged taking them two 

at a time?

Answer

a   There are 7 different letters in the word special which 

can be arranged in 7! ways.

b  

Cr

r

r

r

p

p

n

n

=

Note that we 

are interested in 

arrangements of 

napkins relative to 

each other.

Another way of 

reasoning would be 

to  x the  rst napkin. 

Then you can think 

of arranging the 

remaining 5 napkins 

in a line with each end 

 nishing on either side 

of the  rst napkin. 

The number of ways 

of arranging 5 distinct 

objects in a line is 5!
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Example  

How many four-digit numbers can be made using the digits 

a  1, 2, 3 and 4

b  0, 1, 2 and 3?

Digits may be used more than once.

Answers

a   There are four ways of  

choosing each of  the four digits 

giving a total of  

44 = 256   

b   There are only 3 ways of  

choosing the fi rst digit but 

there are four ways of  

choosing each of  the other 

digits giving a total of  

3 × 43 = 192

Since we are only concerned with 

distinct numbers, digits can be used 

more than once. 

A four-digit number cannot start 

with zero.

Example 

In a Model United Nations (MUN) club at school there are 7 girls and 

8 boys. In how many ways can a delegation of  10 students be chosen 

from the 15 students if: 

a there are no gender restrictions 

b the delegation is to be made up of  5 boys and 5 girls

c at least three of  each gender are included in the delegation?

Answers

a
15

10
= = 3003

15!

10! 5!

⎛

⎝
⎜

⎞

⎠
⎟ ×

Calculate combination, as 

the order of  choosing is not 

important. Use a GDC.

b
7

5

8

5
= 1176

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟×

c   The number of  ways of  having a 

delegation with only two girls is:

7

2

8

8
= 21

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟×

It is impossible to have no girls or 

only 1 girl.

Since there are only 7 girls all 

possible combinations will include 

at least three boys.

15

10
21

⎛

⎝
⎜

⎞

⎠
⎟  = 3003 − 21 = 2982

Now we need to choose 5 girls 

out of  7 and 5 boys out of  8. 

Use a GDC.

Cannot have a delegation with 

0, 1 or 2 girls OR 0, 1, 2 boys.

All other possible delegations are 

allowed. 

Subtract the unwanted 

combinations from the total 

number of  ways.
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Exercise 1K

1  To open your school locker, you must punch in a code consisting of  

three distinct letters. There are 26 letters on the lock. 

 How many different locker codes are there? 

2 Three maths books, four science books, two geography books and 

three history books are to  be placed on a bookshelf. 

The books are all different. 

a  In how many different ways can the books be arranged on 

the shelf ?

b  In how many ways can the books be arranged so that books of  

the same subject are grouped together?

EXAM-STYLE QUESTION

3  As part of  his cross-country training Mark runs a 10 km route four 

times a week. There are eight different routes along which he can 

run. He calculates that he will just manage to run a different set of  

routes each week leading up to his next race. 

 How many weeks are there before Mark’s next race? 

4 A team of  4 students is to be selected for a mathematics 

competition. There are 8 boys and 12 girls to choose from. 

a  In how many ways can a team be chosen?

b  If  the team is to include at least one girl and one boy, in how 

many ways can a team be selected?

EXAM-STYLE QUESTION

5 a How many four-digit even numbers can be made using the digits 

0, 1, 2, 3, 4, 5 and 6?

b  How many of  these four-digit even numbers are divisible by 5?

c  How many of  these four-digit even numbers have no repeated 

digits?

6 In the UK between 1932 and 1945 car registration numbers 

contained three letters of  the alphabet followed by three digits. 

How many different number plates in this format were possible?
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 . The binomial theorem

Repeated algebraic multiplication gives

 (1 + x)0 = 1

 (1 + x)1 = 1 + x

(1 + x)2 = 1 + 2x + x2

 (1 + x)3 = 1 + 3x + 3x2 + x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

 (1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5

In these expressions for powers of  (1 + x) you can see that:

● The indices of  x form an arithmetic sequence with fi rst term 0 

and common difference 1. 

● The highest index of  x is the same as the power to which (1 + x) 

is raised.

●  The coeffi cients of  the fi rst and last term are always 1.

If  you write all the coeffi cients like this you will recognize a number 

of  patterns.

row 0: 1 

row 2: 1 2 1

row 4: 1 4 6 4 1

There is a vertical line of  symmetry. Each number in a row is 

obtained by adding the two numbers above it to either side. You 

can extend this pattern by counting or using technology.

Looking at the numbers, the two 1’s in the fi rst row can be 

written as combinations: 
1

0

⎛

⎝
⎜

⎞

⎠
⎟  = 1 and 

1

1

⎛

⎝
⎜

⎞

⎠
⎟  = 1 

In fact the fi rst and last coeffi cients of  all the rows 

can be written as 
n

0

⎛

⎝
⎜

⎞

⎠
⎟  and 

n

n

⎛

⎝
⎜

⎞

⎠
⎟  where n is the row 

number, which is the same as the power to 

which (1 + x) is raised. 

Looking at the second row 
 
 
 

 
2!

1!(2 1)!

2
2

1

so the second row is actually

2

0

2

1

2

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

These are called 

binomial expansions 

because the sum of 

two algebraic terms 

(1 + x) is known as a 

binomial.

This triangular 

pattern of numbers 

is called Pascal’s 

Triangle after the 

French mathematician 

Blaise Pascal

(1623–62). It was 

actually recorded 

as early as the 

11th century by the 

Persians and the 

Chinese.

[ This illustration is from a 

book by Chu Shih-Chieh. It 

was written in China in 1303, 

more than 300 years before 

Pascal. It shows the triangle 

in Chinese numerals.
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As each number is obtained by adding the two numbers 

immediately above it, then in the third row

3 = +⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

2

0

2

1

= +

= +

=

− −

× − × −

2

0 2 0

2

1 1

2

0 2 2 1

2

1 0 2 1

2

0 2 1

!

!( )!

!

!( )!

!

! ( )!

!

!( )!

!

!( )

2

!!

!

! ( )!

!

!( )!

1

2

1

1

3 2

1 0 2 2 1

3

1 3 1

+⎡
⎣⎢

⎤
⎦⎥

×
× × −

⎛

⎝
⎜

⎞

⎠
⎟

=

=

=
3

1

To summarise 

2 2

3 2 3

2 2 2
(1 )

0 1 2

3 3 3 3
(1 )

0 1 2 3

x x x

x x x x

     
     
     

       
       
       

   

    

This pattern leads to a conjecture for the binomial theorem which 

states that

( ) ... ...1
0 1 2

2+ = + + + + + +⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟x x x x

n n n n

r

n

n

n r ⎛⎛

⎝
⎜

⎞

⎠
⎟ x

n

A formal proof  of  the binomial theorem is beyond the scope of  this 

course.

(1 + x)n = (1 + x) × (1 + x) × (1 + x) . . . (1 + x)

When you multiply these n factors you get a polynomial of  

degree n. You can work out how to obtain the expansion by 

considering different powers of  x:

x0:  multiplying all the 1’s ⇒ C
n

n

0
0

=
⎛
⎜

⎞
⎟

x1:   choose one x from the n factors (1 + x) and multiply it by the 1’s 

in all the other factors ⇒ =
⎛
⎜

⎞
⎟C x

n
x

n

1
1

Coef cient of general 

term is 
n

r

⎛

⎝
⎜

⎞

⎠
⎟

Number of ways of 

choosing 0 x ’s out of 

n factors.

Remember, we de ne 

0! as 1

Show that 
2

1
+

2

2
=

3

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  and 

that the third row of Pascal’s triangle 

can be written as

3

0

⎛

⎝
⎜

⎞

⎠
⎟

3

1

⎛

⎝
⎜

⎞

⎠
⎟

3

2

⎛

⎝
⎜

⎞

⎠
⎟

3

3

⎛

⎝
⎜

⎞

⎠
⎟
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x2:   choose two x’s from the n factors and multiply them together 

and by the 1’s in all the other factors ⇒ =
⎛

⎝
⎜

⎞

⎠
⎟C x

n
x

n

2

2 2

2

x r:  choose r of  the x’s from the n factors, multiply them together 

and by the 1’s in all the other factors ⇒ =
⎛
⎜

⎞
⎟C x

n

r
x

r

n r r

For the expansion of  (a + x)n you can deduce the result like this:

( )a x a an

n

n

n
x

a

x

a
+ = + = +⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟1 1

= ⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟ + +a

n n n n

r

n
n x

a

x

a

x

a

r

r0 1 2

2

2
... ...

nn

x

a

n

n

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= ⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟

− − −n
a

n
a

n
a

n

r
an n n n r

x x x
0 1 2

1 2 2 ... rr n
n

n
x+ +

⎛

⎝
⎜

⎞

⎠
⎟...

➔ The binomial theorem states that: 

           
                

         

1 2 2( ) ... ...
0 1 2

n n n n n r r n
n n n n n

a x a a x a x a x x
r n

=
⎛
⎜

⎞
⎟

=
∑

n

r
a x

n r r

r

n

0

Example 

Find the values of  a, b and c in these identities.

a (1 + 2x)8
≡ 1 + ax + bx2 + cx3 + … + 256x8

b 1 1
2 2

2

10

+ = + + + +⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

x x
a

bx cx ...

c (2 – ax)6 = b – 64x + cx2 + … 

Answers

a ( ) ( ) ( )1 2
8

0

8

1
2

8

2
2

8

3

8 2+ = + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
x x x ⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ +( ) ... ( )2

8

8
23 8x x

+ × + × + × + +

+ + +

1 2 4 8 256

1 16 112 4

8

1 7

8

2 6

8

3 5

2 3 8

2

!

! !

!

! !

!

! !
...x x x x

x x 448 2563 8x x+ +...

∴ = =a b16 112,  and c = 448

Distributing an over the 

expansion.

Substituting 
x

a
for x in 

the expansion above.

Use the binomial 

theorem to write down 

the expansion. Then 

simplify and compare 

coef cients.

∴ means ‘therefore’.

{ Continued on next page
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b 1 1
2 2

2

10

+ = + + + +⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

x x
a

bx cx ...

⇒ a = 10

1 1
10

1

10

22 2 2

10 2

+ = + + +⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜

⎞
⎠
⎟

x x x
....+ ⎛

⎝
⎜

⎞
⎠
⎟

x

2

10

= + + +

= + +

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟1

1 5

10

1 9 2

10

2 8 2 2

45

2 10
!

! !

!

! !
...

x x x

x
44 2

2

10

x
x+ + ⎛

⎝
⎜

⎞
⎠
⎟...

∴ a = 10, b = 5 and c = 45

4

c ( ) ...2 2
6

1
2

6

2
26 6 5 4 2− = +

⎛

⎝
⎜

⎞

⎠
⎟ × −( ) + ⎛

⎝
⎜

⎞

⎠
⎟ × −( ) +ax ax ax

= 64 + 6 × 32 × (–ax) + 15 × 16 (– ax)2 + …

 = 64 – 192ax + 240a2x2 + …

∴ b = 64

192 64

1

3

a

a

=

⇒ =

c a= = =240 2 240

9

80

3

Example 

Use the binomial theorem to expand (a + 3x)5. 

Hence fi nd the value of  (1.03)5 correct to 5 decimal places.

Answer

(a + 3x)5 =  a5 + 5a4(3x) + 10a3(3x)2

+ 10a2 (3x)3 + 5a(3x)4 + (3x)5

=  a5 + 15a4 x + 90a3x2 + 270a2x3

+ 405ax4 + 243x5

 (1.03)5 = (1 + 3(10–2))5

=  1 + 15 × (10–2) + 90 × (10–2)2 

+ 270 × (10–2)3 + 405 × (10–2)4

+ 243 × (10–2)5

=  1 + 0.15 + 0.009 + 0.000 27 

+ 0.000 004 05 + …  

≈ 1.159 27 (5 dp)

Substituting a = 1, 

x = 0.01 = 10 2

Only consider the fi rst 4 

terms to give the answer 

correct to 5 decimal places.

(a − b)n = (a + (− b))n
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Example 

Find the term that is independent of  x in the expansion 

of  3
1

2

2

9

x
x

⎛
⎝
⎜

⎞
⎠
⎟

Answer

The general term, T
r
 of  the 

expansion is given by:

T xr
r x

r
r

= ⎛

⎝
⎜

⎞

⎠
⎟( ) ⎛

⎝
⎜

⎞
⎠
⎟

9 1

2
3 2

9

=
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

− − −× × ×
9 1

2
39 18 2

r

r r
r

rx x

x18–2r × x r = x0

18 – 3r = 0

r = 6

T6

3

6
9

6

1

2

567

16
3= × ×⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ =

For term independent of  x, index of  x 

must be 0.

Give answer as an exact fraction.

Exercise 1L

1  Show that 

a 
   

   
   

n n

r n r
b 

n

r

n

r

n

r

+⎛
⎜

⎞
⎟ =

⎛
⎜

⎞
⎟ +

−
⎛
⎜

⎞
⎟

1

1

2  Write down the fi rst four terms in the binomial expansion of:

a (1 + 2x)11 b (1 – 3x)7 c (2 + 5x)5 d 2
3

9

−⎛
⎝
⎜

⎞
⎠
⎟

x

3  Write down the required term in each of  these binomial 

expansions.

a 4th term of  (1 – 4x)7 b 3rd term of  1
2

20

−⎛
⎝
⎜

⎞
⎠
⎟

x

c 4th term of  (2a – b)8 

EXAM-STYLE QUESTION

4  Find the term independent of  x in the expansion of  2
1

2

12

x
x

+⎛
⎜

⎞
⎟

5 Use the binomial theorem to expand 2+
5

5
x⎛

⎝
⎜

⎞
⎠
⎟ . Hence fi nd the 

value of  (2.01)5 correct to 5 decimal places.

6 a Express 2 3
4( )  in the form a b+ 6  where a, b ∈

b Express 2 +
1

5

3

⎛

⎝
⎜

⎞

⎠
⎟  in the form a b2 + 5  where a, b ∈

c Express 1+ 7 1 7
5( ) − −( )5

 in the form a 7, where a ∈
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7 Let a = x + y and b = x − y

a Write a2
− b2 in terms of  x and y and hence show that 

a2
− b2 = (a − b) (a + b)

b Use the binomial theorem to write a3 and b3 in terms of  

x and y and use your results to show that 

a3
− b3 = (a − b) (a2

+ ab + b2)

c Use the binomial expansion to write a4 and b4 in terms of  x

and y and use your results to factorize a4
− b4

d Use your results to make a conjecture for the factors of  an
− bn

e Prove your conjecture using mathematical induction.

Review exercise

1  Show that there are two geometric sequences such that the second 

term is 16 and the sum of  the fi rst three terms is 84. 

2  Find the sum of  the series.

1 + 3 + 4 + 6 + 7 + 9 + 10 + 12 + … + 46

3  Three numbers a, b and c form an arithmetic sequence. 

The numbers c, a and b form a geometric sequence. 

If the sum of  the numbers is 
9

2
, fi nd the three numbers.

4  Write down the fi rst six terms of  the sequence given by:

u

u u nn n

1

1

1

2 1

=

= + ∈

⎧
⎨
⎪

⎩⎪ +
+, 

 Use mathematical induction to prove that u
n
 = 2n – 1. 

5  Prove by mathematical induction that 32n – 8n – 1, n ∈+, is a 

multiple of  64.

6  Write in factorial notation:

a the coeffi cient of  x 4 in the expansion of  (1 + x)n+1

b the coeffi cient of  x 2 in the expansion of  (1 + x)n–1

c Find n given that the coeffi cient of  x 4 in the expansion of  

(1 + x)n+1 is six times the coeffi cient of  x 2 in the expansion 

of  (1 + x)n–1

7  Evaluate these by choosing an appropriate value 

for x in the expansion of  (1 + x)n

 a 

n n n n

r

n

n0 1 2

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟... ...

 b 

n n n n

r

n

n

n n

0 1 2
1 1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ − + −

⎛

⎝
⎜

⎞

⎠
⎟ + + −( ) ⎛

⎝
... ( ) ... ⎜⎜

⎞

⎠
⎟

✗
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Review exercise

EXAM-STYLE QUESTION

1  The diagram shows a sequence of  squares. Starting with the 

largest square, the midpoints are joined to form the second 

square of  the sequence. This process can be continued infi nitely.

a  If  the sides of  the largest square have length 1, calculate the 

lengths of  the second, third and fourth squares.

A spiral is formed by joining segments shown as red 

lines in the diagram.

b Use your answers to part a to fi nd the length of  the spiral 

shown.

c What happens to the length of  the spiral if  we continue the 

process infi nitely?

 A different spiral is formed by shading triangles as shown in the 

diagram.

d Find the total area of  the shaded triangles.

e What is the total area of  the spiral formed if  the process 

of  forming squares and shading triangles is continued 

infi nitely? 

2 a In how many different ways can the letters of  the word 

characteristic be arranged?

b  How many numbers bigger than 20 000 and divisible by 

5 can be formed using the digits 0, 1, 3, 5, 7 and 9?

c  Four married couples are to be in a group photo. In how 

many different ways can they stand in a line so that each 

person is next to his or her spouse? 

3 In how many ways can a committee of  fi ve people be selected 

from six men and four women, so that there is at least one male 

and one female and there are more women than men on the 

committee?

4  Write down and simplify the term independent of  x in the 

expansion of  
 
 
 

8

3 3

x
x

EXAM-STYLE QUESTION

5  Given that the coeffi cients of  x r–1, x r, x r+1 in the expansion 

of  (1 + x)n are in arithmetic sequence, show that 

n2 + 4r2 – 2 – n(4r + 1) = 0 

 Hence fi nd three consecutive coeffi cients of  the expansion of  

(1 + x)14 which form an arithmetic sequence. 
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CHAPTER 1 SUMMARY

Sequences and series

● An arithmetic sequence, or arithmetic progression, with the fi rst term u
1

and common difference d is 

u
1
, u

1
 + d, u

1
+ 2d, … , u

1
 + (n – 1)d 

and the general term is u
n
 = u

1
 + (n – 1)d

● The sum of  n terms of  a fi nite arithmetic series is 

S u n d u u
n n

n n
= + −[ ] = +[ ]2 11 1( )

where n is the number of  terms in the series, u
1
 is the fi rst 

term and d is the common difference 

● A geometric sequence or geometric progression with fi rst term u
1

and common ratio r is 

 u
1
, u

1
r, u

1
r 2, u

1
r 3, u

1
r 4, ...

 and the general term is u
n
 = u

1
× r n–1, r ≠ –1, 0, 1

● The sum of  n terms of  a geometric series is S
r

n

n
u

r
=

−1 1

1

( )

( )
, r ≠ 1

● When –1 < r < 1, a geometric series converges to a fi nite sum S
u

r
= 1

1

Proof by mathematical induction
● Let P (n) be a statement for all values of  n, n ∈ + to be proved by induction. 

(Sometimes the statement may not be true for all positive integers, so the 

starting value may not be 1.)

 Step 1 Prove that the statement is true for a starting value, usually P (1).

 Step 2 Assume that P (k) is true, where k ∈ +

 Step 3  Use the assumption that P (k) is true to show that P (k + 1) is then also true. 

Write a fi nal statement quoting the principle of  mathematical induction.

Counting methods
● Factorial notation n! = n(n – 1)(n – 2)… × 3 × 2 × 1

● The number of  ways of  arranging n distinct objects in a row is n!

●  The number of  permutations of  n objects, k of  which are identical is
n

k

!

!
●  The number of  permutations (arrangements where order matters) of  r objects from 

n distinct objects is P
n

r

n

n r
=

!

( )!

● The number of  combinations (selections where order not important) of  r objects out 

of  n objects is: C
r n r

r

n
n

r

n
=
⎛

⎝
⎜

⎞

⎠
⎟ =

!

!( )!

The binomial theorem

( ) ...a x
n

a
n

a x
n

a x
n

r

n n n n+ =
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
− −

0 1 2

1 2 2

⎟⎟ + +
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

=
∑

a x
n

n
x

n

r
a x

n r r n

n r r

r

n

...

0
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46 Theory of knowledge: Searching for the truth

Theory of knowledge

All about primes
David Beckham plays in the number 7 shirt 

for England and number 23 shirt for Real 

Madrid and Los Angeles Galaxy – and both 

7 and 23 are prime numbers. Oxford 

Professor Marcus du Sautoy pointed out 

that the key members of Real Madrid all 

played in prime number shirts: Carlos No. 3, 

Zidane No. 5, Raul No. 7, Ronaldo No. 11.

You can read more about 

Prof du Sautoy’s theory here:  

www.plus.maths.org/content/beckham-

his-prime-number.

In 2011 Beckham named his newborn 

daughter Harper Seven.

If all the football players in the world 

decided to play with unique prime numbers, 

would we ever run out of primes? The Greek 

mathematician Euclid (c. 300BCE) provided 

us with a very neat proof that we wouldn’t. 

Euclid started by assuming that there are a 

 nite number of primes. To simulate his 

method, let us start by assuming that there 

are only three primes: 2, 3 and 5.  

Multiply these three primes together and 

add 1, to get 31.

31 is larger than any of our  rst three 

primes but is not divisible by 2, 3 or 5. 

Since any number is either prime or can be 

written as a product of primes, there must 

be a prime number bigger than 2, 3 and 5 

which is a factor of 31. 

In this case the 

31 itself, but 

this is not 

always the case.

 Use your 

GDC to show 

that (2 × 3 × 5 ×



to show that the 

number of primes 

is in nite. Start by 

p
1
, p

2
, ..., p

n

together and add 1.





last theorem? 

“ 

(1776–1831)

× 11 ×

e number. 

 a product

rs.

are 

imes,

 them all

practical for

ur country to

rime number?

rmain Primes?

rmain’s 

roof of Fermat’s 
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Axioms vs truth
An axiom is a claim which is taken to be 

true without needing any proof.  

 In the study of  probability, the fi rst 

axiom states that the probability of  an 

event happening is a number between 

0 and 1. 



number theory:

 If  a, b ∈   then: 

{ a + b ∈ 

{ a  b ∈ 

 What do we mean by axiomatic truth 

in mathematics?

 Mathematics is said to be an 

axiomatic system of  knowledge. How 

is this different from other knowledge 

systems?

 Euclid wrote his thirteen volumes of  

The Elements based on fi ve basic 

postulates (axioms). What were they?

 Do different axiomatic truths defi ne 

different worlds? Do Euclidean 

{
geometry?

Chapter 1 47

The Riemann Hypothesis 

German mathematician Bernhard Riemann (1826–66)  rst formulated 

this hypothesis in 1859. In simple words it states that there is an 

underlying order in the way that prime numbers are distributed.

It was included in David Hilbert's list of challenging problems for 20th-century 

mathematicians, and is widely believed to be true. To date no proof exists.

“If  I were to awaken after having slept for a thousand years, my fi rst 

question would be: Has the Riemann hypothesis been proven?”

David Hilbert 

 of  

a

Reasoning

Mathematicians may make insightful 

discoveries or intuitively recognize a 

mathematical truth. However this is not 

enough – they need formal veri cation or 

proof.

The Celsius temperature scale is based 

on the freezing point and boiling point of 

water. You may have carried out a simple 

experiment to show that water boils at 

100 °C. But how is this proved scienti cally? 

Does water always boil at 100 °C?

 How does reasoning in mathematics 

differ from reasoning in other areas of 

knowledge?

 Compare and contrast the meaning of 

induction in science to mathematical 

induction.

 Mathematics is a system of logical 

deductions through reasoning. Can the 

same be claimed for any other area of 

knowledge?

[ David Hilbert, 

German 

mathematician 

(1862–1943)



Mathematics 
as a language

CHAPTER OBJECTIVES:

2.1  Concept of function f : x ↦ f(x); domain, range image (value); odd and even 

functions; composite functions (f ° g); identity function; one-to-one and many-to-one 

functions; inverse function f 1 including domain restrictions; self-inverse functions

2.2  The graph of a function, its equation y = f(x); investigations of key features of 

graphs such as maximum and minimum values, intercepts, horizontal and vertical 

asymptotes, symmetry, and consideration of domain and range; the graphs of 

y = |f(x)| and y = f(|x|); the graph of y = 
1

( )f x
 given the graph of y = f(x)

2.3  Transformations of graphs; translations; stretches; re ections in the axes; the 

graph of the inverse function as a re ection in y = x;

2.4 The rational function f : x ↦ 



ax b

cx d
 and its graph

You should know how to

1 Change a quadratic function into the form

(x − h)2 +k, and identify the vertex and axis 

of  symmetry. e.g. Rewrite y = x2 + 2x − 3 

as y = (x + 1)2 − 4. The vertex is (−1, −4) 

and the axis of  symmetry is x = −1

2 Find the zeros of  linear and quadratic 

functions. e.g. Find the zero(s) of  

a y = 2x − 1 b y = 2x 2 + 5x − 3

 a 2x – 1 = 0 b 2x 2 + 5x – 3 = 0

x = 
1

2
 (2x − 1)(x + 3) = 0

x
1
 = 

1

2
 and x

2 
= −3

3 Change the subject of  a formula. e.g. 

Make x the subject of  y = 2 − 1 x

1 x  = 2 − y squaring both sides

1 – x = 4 − 4y + y2

x = −3 + 4y − y2

Skills check

1 Change y = x2 – 3x − 1 into the form 

(x − h)2 + k, and determine the vertex and 

axis of  symmetry of  the quadratic.

2 Find the zeros of  

a y = 3x + 4 

b y = 3x2 − 2x − 1

3 Make x the subject of  each formula: 

a y =3 + 2x

b y = 
2 1

3 2

x

x 

2

Before you start

Mathematics as a language48



Exploring the power of symbolic language

‘ Mathematics is the language with which God has written the universe.’ 

Galileo Galilei (1564 –1642)

You are already familiar with the expansion of  algebraic expressions, 

for example,

 (a + b)2
≡ a2 + b2 + 2ab

You would probably agree that this algebraic language is more 

concise and precise than saying, for example,

‘If  one takes a straight line and cuts it randomly into segments, then 

the area of  the square on the line is equal to the area of  the sum of  

the squares on the segments and twice the area of  the rectangle 

contained by these segments.’ (from Euclid’s Elements, 300 BCE)

This example shows that mathematical language with its symbolism, 

notation and terminology is more effective in expressing 

mathematical concepts than a cultural language is.

The language of  mathematics has spanned as many centuries as 

people have been using and studying mathematics, and it continues 

to grow and adapt to new discoveries. In this chapter we will explore 

some of  the mathematical language of  functions and transformations.

a

a

a

b

a

b

The area of this 

square is (a + b)2. This 

is the same as the 

sum of the areas of 

the a by a and b by b

squares, and the two 

a by b rectangles.
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Abu Abdallah Muhammad ibn Musa al-Khwarizmi was a Persian 

mathematician, astronomer, geographer, and scholar in the House of Wisdom 

in Baghdad. He is considered to be the ‘Father of Algebra’, since he wrote 

the  rst known recorded work on balancing equations. In addition, 12th 

century Latin translations of his work on Indian numerals introduced the 

decimal positional number system to the Western World.

Texts from al-Khwarizmi seem to be the source of three common English 

mathematical words:

● ‘algebra’, derived from al jabr, one of the two operations he used to solve 

quadratic equations

● ‘algorithm’, used to refer to a sequence of routine arithmetic operations

● ‘zero’, which seems to derive from the Arabic sifr that meant empty, 

translated into Latin as zephirum.

. Relations and functions

The positions of  the fl y are examples of  a relation. A relation is a 

set of  ordered pairs (x, y). A function is a special type of  relation. 

➔ A function is a set of  ordered pairs in which no two ordered 

pairs can have the same x-value. In other words, every x-value 

has a unique y-value. 

The set of  x-values is called the domain of  a function. A function 

assigns, or maps, to each x-value in the domain, a unique y-value. 

The set of  assigned values is called the range of  the function. Since 

the value of  y, or output of  the function, depends on the value of  x, 

or input, we call y the dependent variable, and x the independent

variable. In summary:

➔ A relation is a function, f, if  

● f acts on all elements of  the domain (x-values), and
● f is well defi ned, i.e. it pairs each element of  the domain 

with one and only one element of  the range ( y-values).

1

2

3

4

(1)

(2)

x-values

domain range

y-values

f

f (3)
f (4)

0
321

1

–1

–2

–3

–4

2

3

4

54–1–2–3–4
x

y

–5

F4(4, –2)

F1(1,1)

F2(–3,2)

F3(–2, –3)

According to legend, the invention of the 

coordinate system was due to a  y buzzing 

in René Descartes’ bedroom on a sultry 

summer day. As it landed somewhere on 

the ceiling, Descartes asked himself how 

he could uniquely describe the position of 

the  y. He imagined the ceiling divided into 

four quadrants, with the right and upward 

directions being positive, and left and 

downward being negative. Then, no matter 

where the  y landed, a unique ordered pair of 

numbers would de ne its position.

[ Rene Descartes, 
French math-
ematician 
(1596–1650)
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➔ In general, if  y is a function of  x, you can write y = f (x). You 

can also write f : x ↦ f (x), where f is the function that maps x

into f (x). The independent variable, x, is called the argument

of  the function. 

Traditionally, x and y are the variables used for ordered pairs. Any 

variables, however, can be used in defi ning a function. For example, 

the area of  a circle depends upon the size of  the radius. The variable 

for the input is r (radius), and for the output is A (area). The rule of  

the function is A = π r 2

You could also write the area function as A(r) = π r2. The domain is 

the set of all possible radii, that is, r ∈ +. Hence the range is the set of  

all possible areas, that is, A(r) ∈ +. This function maps + into +

It is important to note here that the domain of the function A (r) = π r 2

is restricted by the context of  the problem. Length and area are 

positive, hence the domain and range must be non-negative values. If  

a domain for a particular function is not restricted by its context, or 

otherwise, then the domain of  a function is assumed to be the largest 

set of  x-values for which the range will have real values. This set is 

called the natural, or implied, domain of  the function f.

Example 

Determine, with reasons, which of  these relations are functions. For 

those that are functions, write the domain and range.

a {(−1, 1), (−2, 4), (−3, 9), (1, 1)}

b {(4, −2), (1, 1), (4, 2), (9, 3)}

c y = 2x − 1

d y 2 = x

e f  maps set A to set B where both A and B are the set of  real 

numbers, and f  : x ↦
1

1x

Answers

a This relation is a function as 

no two y-values have the same 

x-value.

 Domain = {−1, −2, −3, 1} 

 Range = {1, 4, 9}

b This relation is not a function 

since both (4, −2) and (4, 2) 

have the same x-value.

c For every x-value there is 

only one y-value, hence it is a 

function.

Domain = x x| ∈{ }

Range = y y| ∈{ }

Both conditions are satisfi ed. 

Write the x-values in a set.

Write the y-values in a set.

The relation is not well-defi ned.

Both conditions are satisfi ed. All 

non-vertical lines are graphs of  

functions.

Since this is the equation of  a 

straight line, neither x nor y have any 

restrictions.

The term argument, 

used for the 

independent variable, 

stems from the 13th 

century, and it refers 

to a quantity from 

which another quantity 

can be deduced.

In this book, for any 

given function, its 

domain is assumed 

to be the natural 

or implied domain, 

unless otherwise 

stated.

x | x ∈  means the 

set of x values where

x is a real number.

{ Continued on next page

Did you know that 

Gottfried Leibniz, 

one of the  rst to 

develop calculus, was 

the  rst to use the 

mathematical term 

‘function’ in 1673? 

Almost one hundred 

years later, Leonhard

Euler was the  rst to 

write a function as 

y = f (x)
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d Not a function, since x = 1 

maps to y = 1 or y = 1

e f  is not a function since 

 1 ∈ , 1 ↦
1

0
, 

1

0
∉ 

f  is not well-defi ned. You only need 

to fi nd one counter-example.

The fi rst condition is not met because 

the number 1 is not mapped onto any 

real number.

In Example 1, part e is not a function since not all elements of  A are 

mapped onto an element of  B. In this case, in order for the relation 

to be a function, you would have to restrict the domain, 

i.e. exclude the number 1 from the domain. Hence, if  y = 
1

1x
 is a 

function, the domain is A = x x x| ,∈ ≠ 1{ }. The range of the 

function must exclude 0 since the numerator of the rational expression 

is non-zero. The range is therefore B = y y y| ,∈ ≠ 0{ }

Vertical line test

The vertical line test is a practical way of  determining if  a relation is 

a function. If  a vertical line intersects the graph of  a relation at 

more than one point, then the relation is not a function.

The graph of  the relation in 

Example 1 part b is

The graph of  the relation in the 

Example 1 part c is 

0
6

1

–1

–2

–3

–4

2

3

4

108
x

y

(4, –2)

(9, 3)

(1, 1)

(4, 2)

0
642

2

–2

–6

–8

4

6

8

108–2–4–6–8
x

y

–10

f(x) = 2x – 1

It clearly does not pass the 

vertical line test.

It passes the vertical line test.

Example 

Determine, with reasons, which of  these graphs show relations that are 

functions. For those that are functions, write the domain and range of  

the function.

a 

0 321
–2

–4

–6

4

6

8

10

4 5–1–2
x

y

f(x) = –x3 + 2x2 + 1

 b  

0 642

–2

–3

–4

2

3

4

8 10–4 x

y

y2 = x + 3

0 x

y

[ This relation (red line) 
passes the vertical line 
test (blue lines). 

{ Continued on next page
Mathematics as a language52



c 

642

2

–4

–6

4

6

–6

y

xx

 d 

3210

1

2

3

4

5

4 5–1–2–3
x

y

(1, 1)

f(x) = { x2, x < 1

x+1, x > 1

Answers

Graphs a and c pass the vertical line test, hence they are graphs of  

functions. 

Graphs b and d do not pass the vertical line test, hence they are 

not graphs of  functions.

a Both domain and range are the set of  real numbers. 

c Domain is the set of  real numbers.

 Range is the set of  integers.

Exercise 2A

1 Determine if  these relations are functions. For those that are, 

state the domain and range.

a {(0, 1), (1, 2), (2, 3), (3, −1)} 

b  {(−3, 0), (−2, 0), (−1, 0), (0, 0)}

c {(1, −3), (1, −2), (1, −1), (1, 0)} 

d {(π, π 
2), (−π, π 

3), (π, π 
π)}

2  Determine which of  these graphs represent 

a function. For those that are functions, state the 

domain and range.

a 

3210

1

2

4

4–1–2–3–4
x

y b 

0
1

1

–1

–3

–4

2

3

–1–3–4
x

y

c 

321

1

–1

–2

–3

–4

2

3

4

5

4 5–1–2–3–4
x

y

–5

d 

6420

1

2

3

4

8 10–2–4
x

y
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.  Special functions and their graphs

A quadratic function has the general form 

y = ax2 + bx + c, where a, b, and c are real numbers, 

and a ≠ 0. x and y are variables. The constants a, 

b, and c are called parameters of  the function. 

They determine the shape of  a particular quadratic 

function.

Here is the graph of  the quadratic function 

y = x2 + x − 5

0
321

2

–2

–4

–6

4

6

8

10

4 5–1–2–3–4
x

y

–5

f1(x) = x2 + x – 5

From the graph, the domain is the set of  real numbers.

The range has a minimum value.

Using the appropriate menu on your GDC you can fi nd 

the minimum.

Hence, the range = y y| ≥ −{ }5 25

Another way of  fi nding the minimum value is to write the quadratic 

y = x 2 + x − 5 in the vertex form, by completing the square, so 

y = (x + 0.5)2 − 5.25. The coordinates of  the vertex are 

(−0.5, −5.25). Since the leading coeffi cient, a, is positive, the 

quadratic will be concave up, and hence the vertex will be a 

minimum point.

circle

ellipseparabola

hyperbola

By taking slices of a cone at different 

angles you obtain different shapes 

or curves called conic sections. An 

instrument for drawing conic sections 

was  rst described in the year 1000 CE

by the Islamic mathematician 

al-Kuhi. The shape of a quadratic 

function is called a parabola. You 

will  nd the cone useful as you meet 

different functions whose shapes are 

conic sections.

From now on the 

domain will be 

from the set of real 

numbers, unless 

otherwise speci ed.

In y = x2 + x 5, 

a = 1 and b = 1. The 

axis of symmetry 

is indeed x = 
1

2
, 

and the vertex is 

− −1

2
, 5.25

⎛
⎝
⎜

⎞
⎠
⎟
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➔ For a quadratic in the form y = ax2 + bx + c, the axis of  

symmetry is x = 
a2

, hence the vertex is 
− −⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

b

a
f

b

a2 2
,

0 x

y
y = ax2 + bx + c

x = –
b

2a

b

2a(– , f          )b

2a( )

Example 

Find the domain and range of  the function y = −2x2 + 4x − 3. 

Confi rm your answers graphically.

Answer

The domain is the set of  real 

numbers. 

Vertex = (1, −1)

Range = y y| ≤ −{ }1

Use your GDC to graph the 

function. 

a = −2, b = 4

− −b

2a

4

4
= = 1

f  (1) = 2 + 4 3 = 1

Vertex =
− −⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

b

a

b

a
f

2 2
,

Since a < 0, the quadratic is 

concave down, hence the vertex is 

the maximum point or the absolute 

maximum.

Investigation – quadratic graphs

Consider quadratics of the form y = (x − h)2 + k, where h and k are 

real numbers. Graph quadratics of this form for different values of h and 

k. What effect do these parameters have on the graph of y = x 2?
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Radical functions

A function of  the type y = ax b a b+ ∈; ,  is a square root function 

whose radicand (the expression in the square root) is linear. The 

radicand must be non-negative so the domain is restricted. The 

domain is x x
b

a
| ≥⎧

⎨
⎩

⎫
⎬
⎭
 since ax + b ≥ 0 

ax ≥ − b

x ≥ 
b

a

The range is the set of  non-negative real numbers, y y| ≥ 0{ }

Example 

Determine the domain and range of  y = 4 3x  and confi rm your 

results graphically.

Answer

4x – 3 ≥ 0 ⇒ x ≥ 
3

4

Domain: x x x|
⎧
⎨
⎩

⎫
⎬
⎭

∈ ≥,
3

4

For the function to be real, 

the radicand must be non-negative.

This is the restricted 

domain.

Range: y y Y| ,∈ ≥ 0{ } The range is the set of  

non-negative real 

numbers.

Confi rmed on the GDC.

Exercise 2B

1 Explain why y2 = x is not a function, and y x  is a function.

2 Determine the domain and range of  these functions, and confi rm 

your results graphically.

a y = x2 − 4x + 2 b y = −(x + 2)2 − 3

c y = 2x  d y = 3 x

e y = –3x2 + 6x – 1 f y = 4 2x

The symbol for 

square root dates 

back to 1850 BCE

from Babylonian clay 

tablets. The Rhind 

Mathematical Papyrus 

from 1650 BCE shows 

that the Egyptians 

obtained this symbol 

from the Babylonians. 

The  rst usage of 

the same symbol in 

the western world 

appeared in 1669 

in an Introduction to 

Algebra, edited by 

John Pell. The word 

‘radical’ comes from 

the Latin radix, which 

means root.
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Absolute-value functions

For any real number a, its absolute value, denoted by 

vertical bars, is defi ned as

|a| = 






 

, 0

, 0

a a

a a

The absolute value of  a real number is non-negative.

Geometrically, the absolute value is the distance between 

the point representing a number on the real number line, 

and the origin of  the real number line. More generally, the 

absolute value of  the difference of  two real numbers is the 

distance between the points that represent them on the real line.

➔ From the defi nition of  absolute value and its geometrical 

reasoning, these useful fundamental properties follow, for a, 

any real number:

 |a| ≥ 0 

 |–a| = |a| 

 |a| = 0 ⇔ a = 0 

 |a – b| = 0 ⇔ a = b

 |ab| =|a||b|; 
a

b
 = 

a

b
, b ≠ 0

 |a + b| ≤ |a| + |b|;

 |a – b| ≥ |a| – |b|

 |a| ≤ b ⇔ – b ≤ a ≤ b; |a| ≥ b ⇔ a ≤ – b or a ≥ b

The defi nition of  an absolute-value function follows from 

the defi nition of  the absolute value of  a number. The absolute-

value function is a piecewise defi ned function, meaning 

that it has different defi nitions within disjoint subsets of  its 

domain.

f  (x) = |x| = 
x x

x x

,

,

≥

− <

⎧
⎨
⎩

0

0

Graphically, 

6420

2

4

6

8

10

8 10–2–4–6–8 x

y

–10

f(x) =|x|

The domain of  the absolute value function is the set of  real 

numbers, and its range is the set of  non-negative real numbers.

Another term for absolute value is the 

modulus of a number. It comes from 

the French word module, which means 

unit of measure, and has been used 

by mathematicians since the early 

1800s. Karl Weierstrass  rst used 

the vertical bar notation in 1841.

Compare the graphs 

of y = x and y = |x|.
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Example 

Determine the domain and range of  y = |2x + 3|, and confi rm 

graphically.

Answer

Domain = x x| ∈{ }

210

1

3

4

5

6

–1–2–3–4 x

y

–5

f(x) =|2x + 3|

Range = y y| ≥ 0{ }

Example 

Determine the domain and range of  y = |2 – 3x| – 1

Answer

The domain is the set of  real numbers. 

0 321

1

–1

–2

4

6

5

54–1–2–3 x

y
f(x) =|2 – 3x|– 1

Range = y y| ≥ −{ }1

Investigation – absolute-value functions

Consider absolute-value functions of the form y = |x – h| + k, h, k ∈ 

a Graph functions like this for different values of h and k. 

What effect do these parameters have on the graph of y = |x|? 

b Investigate how the parameter a in the general form y = a|x – h| + k

affects the shape of the graph of the function.

c Determine the coordinates of the maximum or minimum point of y = |x – h|+ k

and the condition for it being a maximum or minimum point.

Exercise 2C

Determine the domain and range of  these functions, and confi rm 

graphically.

1 y = –|x| 2 y = |2x + 1|

3 y = –|2x + 1| 4 y = 2|x – 1|

5 y = –
1

2
|3x + 2| 6 y = |x + 4| – 2 

7 y = –2|x – 1| + 1  8 y = 3|1 – 2x| – 2 

Since the least 

value of |2 – 3x| is 

0, the least value, or 

absolute minimum of 

the function, is 

y = 0 − 1 = −1

Mathematics as a language58



Rational functions

A rational function is a function consisting of a rational 

algebraic expression, for example, y = 
1

x
. Analyzing this 

function, you can see that you must restrict the domain, 

since x ≠ 0. Also, a rational expression is equal to zero 

only if  the numerator is zero. Since the numerator of this 

function is not zero, y will never assume the value of zero, 

and you must eliminate zero from the range. 

[ This shape in a conic section is 

called a hyperbola. 

f(x) =
1

x

2 4 6 8 10–2–4–6–8–10 x

y

2

–2

–4

–6

–8

4

6

8

0

Hence, the domain of  the function 
1

x
 is the set of  real 

numbers excluding 0, and the range is also the set of  

real numbers excluding 0. You can confi rm this 

graphically.

Degenerate cases of conic sections depart from the generic properties of 

a class of shapes. For example, a point is a degenerate circle – a circle with 

radius O, a circle is a degenerate ellipse, etc. A line is a degenerate parabola 

if it resides on a tangent plane. You can research other forms of degenerate 

cases of known shapes.

You can see clearly from the graph that the values of  the function 

increase or decrease rapidly as you take values close to x = 0. For 

example, when x = 
1

100
, y = 

1

1

100

 
 
 

 = 100. Similarly, when x = −0.01, 

y = −100. We say that as x gets close in value to 0, the values of  the 

function, y, grow (or shrink) without bound. The lines x = 0 and 

y = 0 i.e. x-and y-axes respectively, are called the asymptotes of  the 

graph of  the function.

The function y = 
1
x

is also called the 

reciprocal function.

The term ‘asymptote’ 

will be de ned 

carefully in Chapter 4. 

For now, think of an 

asymptote of the 

graph of a function as 

a line, such that as 

the distance between 

the graph and the line 

decreases, and gets 

closer to zero, the 

further the graph and 

the line are extended.
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Example 

Determine the domain and range of  the function y = 
1

1 2x
Confi rm your solution graphically.

Answer

1 – 2x = 0 ⇒ x = 
1

2

Domain: x x x| ,∈  ≠⎧
⎨
⎩

⎫
⎬
⎭

1

2

Range: y y y| ,∈  ≠{ }0

Since the denominator cannot 

be 0, to fi nd the value that must 

be excluded from the domain, 

set the denominator equal to 0.

The numerator is not equal to 

0, hence y ≠ 0.

f(x) =
1

1 – 2x

f(x) = 0

0 642

2

–2

–4

–6

–8

4

6

8

108–2–4–6–8 x

y

–10

The asymprotes are x = 
1

2
 and y = 0.

Draw the graph of  

f  (x) = 
1

1 2x
 on your GDC.

Make a sketch graph.

What about rational functions in which both numerator and 

denominator are linear expressions: y = 
ax b

cx d

d

c
x

+

+

, ≠

For example, the function y = 
2 1

3 3

x

x



The domain has to be restricted such that x ≠ 1, as this value of  x

makes the denominator zero. Rearange to make x the subject in 

order to see any restrictions on the values of  y, the range.

y = 
2 1

3 3

x

x



⇒ y (3x – 3) = 2x + 1

⇒ 3xy – 3y = 2x + 1

⇒ 3xy – 2x = 1 + 3y

We can see from the 

graph that the lines 

x = 
1

2

 and y = 0 are 

quite special. The 

graph gets close to 

these lines, but does 

not intersect them. 

These lines are the 

asymptotes of the 

function.

This process of 

solving for x is the 

same process that 

you will use in  nding 

the inverse of a 

function.
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Factorize the left hand side

x (3y – 2) = 1 + 3y ⇒ x = 
1 3

3 2

+ y

y

Since 3y − 2 ≠ 0, y ≠ 
2

3

Hence, the domain of  the function is x x| ≠ 1{ }

and the range is y y| ≠⎧
⎨
⎩

⎫
⎬
⎭

2

3

Confi rm graphically:

The asymptotes of  the 

function are x = 1 and y = 
2

3

Example 

Determine the domain and range of  the function y = 
1 3

2 1

x

x
 and 

confi rm your answers graphically.

Answer

2x − 1 = 0 ⇒ x = 1

2

Domain = x x|
1

2
≠

⎧
⎨
⎩

⎫
⎬
⎭

2xy − y = 1 − 3x 

⇒ 2xy + 3x = 1 + y 

⇒ x(2y + 3) = 1 + y

x = 
1

2 3

+

+

y

y

2y + 3 ≠ 0 ⇒ y ≠ −
3

2

Range: y| y ≠ −⎧
⎨
⎩

⎫
⎬
⎭

3

2

Put the denominator equal to 

zero.

Rearrange to make x the 

subject.

Find the values for which the 

denominator would be zero and 

exclude them.

f(x) =
1 – 3x

2x – 1
2

–4

–6

–8

4

6

8

x

y

The asymptotes are x = 
1

2
; y = 

3

2

Draw the graph on your GDC. 

Make a sketch graph.

State the asymplotes.

The reciprocal function 

is de ned as 

f : x ↦

1

x
. A rational 

function can be 

obtained from the 

reciprocal function 

by applying certain 

transformations. 

You will look at this 

function after you 

have studied function 

transformations. 

f(x) =
2x + 1

3x – 3

642

2

–2

–4

–6

–8

4

6

8

108–2–4–6–8 x

y

–10
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Exercise 2D

Find the domain and range of  these functions, and confi rm 

graphically.

 y = 
1

3 2x   y = − 
1

2 x
 y = 

3

3 x

4 y = − 5

6 3x 
5 y = 

1 2

1 2

x

x


6 y = −

2 3

1

x

x

Now look at functions combining the special 

functions you have just studied, for example, y = 


1

1x

For the denominator to be non-zero, x + 1 > 0, or x > −1 

Since the numerator is not zero, y ≠ 0. Furthermore, 

since the denominator is always positive, the values of  y

will always be positive. Hence, the domain is x x| > −{ }1 , 

and the range is y|y > 0{ }. You can confi rm 

this graphically.

The asymptotes are x = −1 and y = 0.

Example 

Find the domain and range of  y = 
1

|2 1|x +
, and confi rm graphically.

Answer

2x + 1 ≠ 0, x ≠ −
1

2

Domain = x x| ≠ −⎧
⎨
⎩

⎫
⎬
⎭

1

2

Range = y| y > 0

f(x) =
1

|2x + 1|

642
–2

–4

–6

–8

6

8

108–2–4–6–8 x

y

–10

The asymptotes are x = 
1

2
,  y = 0

Find value for which 

denominator = 0 and 

exclude.

Alternative notation: 

domain = 
       

  


1

2
x x

y ≠ 0 and always positive

f(x) =
1

√x + 1

0 642 108–2–4–6–8 x

y

–10
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Exercise 2E

Find the domain and range of  these functions, and confi rm 

graphically.

 y = 


1

| 1|x
 y = −

2

| 1|x
 y =

| |

x

x
  y =

2

1 x

 Let f  :x ↦
1

2
x

2 . Find

a the set of  real values of  x for which f  is real.

b the range of  f

Piecewise defi ned functions

You have seen a piecewise defi ned function already – the absolute-

value function. Now look at other piecewise defi ned functions.

Let y = 
3 3

3 3

− <

− ≥

⎧
⎨
⎩

x x

x x

,

,

For the fi rst branch of  the function, the domain is ]−∞, 3[, and for 

the second branch, the domain is [3, ∞[. The domain of  the 

function is therefore]−∞, 3[ ∪ [3, ∞[, or the set of  real numbers. 

The range is the set of  non-negative numbers.

You will probably have recognized that this function is equivalent 

to the absolute-value function y = |x − 3|. You can confi rm this 

graphically.

6420

1

2

3

5

6

7

8

8 10–2–4 x

y

f(x) = { 3 – x, x < 3
x – 3, x ≥ 3

6420

1

2

3

5

6

7

8

8 10–2–4 x

y

f(x) =|x – 3|

✗

] − ∞, 3 [ means the set 

of values from − ∞ up 

to, but not including, 3.

[3, ∞ [ means the set 

of values including 3 

and all values greater 

than 3. 
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Example 

Consider the function f  (x) = 
− − <
− ≥
( 2) , 3

4, 3

2x x

x x

⎧
⎨
⎪

⎩⎪

a Find f  (0), f  (3), f  (4). b Sketch f  (x).

c Write down the domain and range of  f

Answers

a f  (0) = −(0 − 2)2 = −4

f  (3) = 3 − 4 = −1

f  (4) = 4 − 4 = 0

Evaluate f  (0) using the fi rst branch 

since 0 < 3. Evaluate f  (3) using the 

second branch, since its domain is 

x  ≥ 3. Evaluate f  (4) using the second 

branch since 4 > 3.

b

–1–2
x

y

1

–1

–2

–3

–4

–5

2

3

0

c Domain {x : x ∈  }

  Range {y : y ∈  }

Draw the graph on your GDC.

Make a sketch

Example 

Consider the function f  (x) = 

− + ≤

< <

+

( 1), 0

2, 0 4

2 , 4

2x x

x

x x ≥

⎧

⎨
⎪

⎩
⎪

a Find f  (−1), f  (1), f  (4), f  (9). b Sketch the function.

c Write down the domain and range of  the function.

Answers

a f  (−1)  = −((−1)2 + 1) = −2

f  (1) = 2 f  (4) = 4 f  (9) = 5

b

0
321

1

–3

–4

–5

2

3

4

5

4 5 6 7–1–2–3–4
x

y

–5

c Domain = {x|x  }.

Range =

y y y y| 1, 2, 4≤ − = ≥{ }

Draw the graph on your GDC.

Make a sketch
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Exercise 2F

 Consider the function y = 






 

1, 0

1, 0

x

x

a Find f  (−3), f  (0), f  (π), f  (4).

b Sketch the function.

c Write down the domain and range of  the function.

 Consider the function y = 
2

1 , 1

2.5, 1 6

4, 6

x x

x

x x







  

  

 

a Find f  (−3), f  (0), f 6( ), f (3).

b Sketch the function.

c Write down the domain and range of  the function.

 Consider the function f  (x) = 




 

 

3 1, 0

1, 0

x x

x x

a Find f  (−1), f  (0), f  (1), f  (8).

b Sketch the function.

c Write down the domain and range of  the function.

EXAM-STYLE QUESTION

 Consider the function g(x) = 








 

   

  

2 1, 0

1
1, 0 2

2

2, 2

x x

x x

x x

a Find f  (−2), f  (1), f  (2), f  (3).

b Sketch the function.

c Write down the domain and range of  the function.

Classifi cation of functions

More than one element of  the domain of  a function can have the 

same image as shown in the diagram. For example, the constant 

function f  (x) = 2 maps all real numbers to the number 2. Hence, the 

domain is the set of  all real numbers, and the range is the set 

containing the single element 2. This function is called a 

many-to-one function.

6420

4

6

8

8 10–2–4
x

y

f(x) = 2

✗

domain range

2

x y

f(x) = 2

Chapter 2 65



Graphically, you can recognize a many-to-one function by the 

horizontal line test. If  you draw horizontal lines through the 

graph of  the function and they intersect the graph at more 

than one point, then the function is many-to-one as shown in 

the diagram.

A function that does not allow an element 

of  the range to be the image of  more than 

one element in the domain is a one-to-one 

function. Examples of  such functions are 

linear functions. Using the horizontal line 

test, if  horizontal lines are drawn through 

the graph of  a one-to-one function they 

intersect the graph in only one point.

Example 

Which of  the following functions are one-to-one and which are many-

to-one?

a {(−0.2, 0), (1, 0), (2.4, 0), (π, 0)}

b 


 
    

 

1 1

3
( 2, 0.2), ( 1, 0.1), (3,  ), ( , )

c

0
21

1

–1

–2

–3

–4

–5

2

3

4

5

3–1–3–4
x

y

–7

d

0

1

–1

–2

–3

–4

–5

2

3

4

5

3–1–2–3
x

y

Answers

a many-to-one

b one-to-one

c many-to-one

d one-to-one

a All x-values map to y = 0

b Each x-value maps to different 

y-value (its reciprocal).

c, d Use the horizontal line test.

0 x

y

Use the horizontal line 

test on the graphs of 

absolute and quadratic 

functions from 

Examples 3, 5 and 6. 

What do you notice? 

0

1

–1

–2

–3

–4

3

4

2 31–1–2–3
x

y

f (x) = x3 + 2

There are different 

meanings of the 

term ‘curve’ both in 

mathematics and 

common language. 

Explore the differences 

between algebraic and 

transcendental curves 

familes of curves (e.g. 

conics), and curves 

with special properties 

(e.g. cycloid).
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Some graphs of  many-to-one functions are symmetrical about the 

y-axis, for example, f  (x) = x2 and g (x) = |x|.

6420

2

3

4

5

6

7

8

9

10

–2–4–6 x

y

f(x) = x2

6420

2

3

4

5

6

7

8

9

10

8 10–2–4–6–8 x

y

–10

f(x) =|x|

If  you substitute either ±a for x, where a is a real number, you get 

the same result for y: f  (a) = a2 and f  (−a) = a2; g (a) = a and g (−a) = a

These functions are even functions

➔ A function is even, if  for all x in the domain, −x is in the 

domain, and f  (x) = f  (−x) for all values of  x

Even functions are symmetrical about the y-axis.

Other functions have a different kind of  symmetry, for example, 

f  (x) = x(x − 2)(x + 2). The graph of  this function has rotational 

symmetry about the origin.

0

–1

–2

–3

–4

3

4

–2–3 x

y
f(x) = x(x – 2)(x + 2)

0

2

1

–2

–3

–4

3

4

2 3–3 x

y

f(–x) = –f(x) = –x(x + 2)(x – 2)
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For any real value a

f  (−a)  = −a(−a − 2)(−a + 2)

= a (a + 2)(−1)(a − 2)

= −a (a + 2)(a − 2)

= –f  (a).

so, for the function f  (x) = x (x − 2)(x + 2), f   (−x) = −f  (x) for all 

values of  x

The graph of f  (−x) also has rotational symmetry about the origin.

➔ A function is odd if  for all x in the domain, −x is in the 

domain and f  (−x) = −f  (x) for all values of  x

The function f  (x) is many-to-one as you 

can see if  you apply the horizontal line test.

The function y = x3 has rotational symmetry 

about the origin and so it is an odd function 

but this function is also one-to-one.

Example 

Determine algebraically if  the following functions are even, odd, or 

neither. Confi rm your answers graphically.

a f  (x) = −3x2 + 5 b g (x) = 
, 0

, 0

x x

x x

 

 




   

   

c h (x) = 
2

2

( ) , 0

( ) , 0

x x

x x

 

 





   

   

Answers

a  f  (−x) = −3(−x)2 + 5

 = −3x2 + 5 

 = f  (x)

Evaluate f  (−x)

f  (−x) = f  (x) means f  is even.

Use your GDC to draw the graph

 hence f  (x) is even.

y = x3

x

y

1

–1

1–1

{ Continued on next page
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b g (−x)  = −x – π

≠ g (x) and –x – π

≠ −g (x)

hence g (x) is neither 

even nor odd.

c h (−x)  = (−x + π)2

= x2 − 2πx + π2

= (x − π)2

= −h (x),

 hence h (x) is odd.

Evaluate g (x)

Evaluate h ( x)

h ( x) = h (x) means f  is odd

Exercise 2G

Determine algebraically if  these functions are even, odd or neither. 

Confi rm your answers graphically and state if  the funtions are 

many-to-one or one-to-one.

1 f  (x) = 4 − x2 
2 g (x) = x3 + 3x

3 h (x) = −
3

2x
4 p (x) = x3 + 4x + 1

5 r (x) =

1, 0

1, 2

1, 2 3

x

x

x



 

 

  


 
  

6 q (x) = 2x3 − 4x

7 w (x) = x − 2x3 + x5 
8 t (x) = 4x4 − x

9 Find a function that is both even and odd.
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. Operations with functions

As with numbers, you can add, subtract, multiply and divide 

functions. These properties hold for operations with functions.

➔ Let f  and g be two real-valued functions in x. Then

 (  f + g)(x) = f  (x) + g (x)  (  f − g)(x) = f  (x) − g (x)

 a(  f  (x)) = af  (x), a ∈   (  fg)(x) = f  (x)g (x)

 
f

g
x

f x

g x

⎛

⎝
⎜

⎞

⎠
⎟ =

( )

( )
, g (x) ≠ 0

Let D
1 
be the domain of  f  and D

2
 the domain of  g. 

Then the domain of  the sum, difference, and product of  f and g

is D
1
∩ D

2
. 

The domain of  the quotient of  f and g is 

D
1
∩ D

2 
− x g x| ( ) ={ }0

For example, let f  (x) = 2 − x, 

and g (x) = 
1

x
. The domain of  

f  (x) is the real numbers, 

and the domain of  g (x) is the 

set of  non-zero real numbers. 

(  f + g)(x) = f  (x) + g (x) = 2 − x + 
1

x
and the domain is the set of  

non-zero real numbers. 

The domain of  (  f  + g)(x) is x x| ≠ 0{ }
The graph confi rms this.

The domain of  the difference of  f  and 

g will also be x x| ≠ 0{ }. 

The product of  f and g, is 

(  fg)(x)  = f  (x) g (x) 

= 2
1 2−( ) =x
x

x

x

From the graph, the domain 

of  (  fg)(x) is x|x 

f(x) = 2 – x +
1

x

6
–2

–4

–6

–8

4

6

8

108–2–4–6 x

y

Exclude from the 

intersection of the 

domains the element(s) 

that make the 

denominator zero.

(fg)(x) = f(x)g(x) = 
2 – x

x

0 42

2

–4

–6

–8

4

6

8

x

y
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The quotient of  f  and g is 
f

g
x

f x

g x

x

x

⎛

⎝
⎜

⎞

⎠
⎟ = = =( )

( )

( )

2

1
x(2−x) = 2x − x2

The domain of  
f

g
 is the set of  non-zero real numbers, since 

1
0

x
≠ , 

for all real values of x

Graphically 

321

1

–4

–5

–6

2

54–1–2
x

y

(x) = 
2 – x

1

x

f

g( )

If  you draw this graph on a GDC and use the ‘trace’ function, you 

will see that the GDC gives no value at x = 0. 

At x = 0 there is a ‘hole’ in the graph of  the function.

Example 

Functions f, g, and h are defi ned as

f = {(−2, 0), (1, 1), (2, 0), (3, 1)},

g = {(−2, −2), (−1, −1), (2, 2), (4, 4)), and

h = {(−3, 0), (0, 0), (1, 0), (2, 4)}. 

Find the domain of  

a f + g, b g − h c f    h d
f

h

Answers

a { 2, 2)

b {2} D
f  
∩ D

g
= { 2, 2}

c {1, 2} D
g 
∩ D

h 
= {2}

d {2} D
f  
∩ D

h 
= {1, 2}

Write the values of  f, g, and h.

Domain of  f  = D
f  
= { 2, 1, 2, 3}

Domain of  g = D
g 
= { 2, 1, 2, 4}

Domain of  h = D
h 
= { 3, 0, 1, 2}

D
f  
∩ D

h 
– {x|h (x) = 0}

= {1, 2}  {1} (h (1) = 0)

= {2}

2

1

1
= 2

= 2

− ÷
x

x

x
x

x x

( )

( )

The blue circle at x = 0

shows this function is 

not de ned at x = 0. 

Investigation – odd and even functions

By testing different examples of even and odd functions, determine 

whether the following are even, odd, or neither.

a The sum (or difference) of two even functions.

b The sum (or difference) of two odd functions.

c The sum (or difference) of an odd and an even function.

d The product of two even functions.

e The product of two odd functions.

f The product of an odd and an even function.
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Composition of functions

If  f and g are functions, then the notation for the composition of  

functions f and g is ( f  ° g) and ( f  ° g)(x) = f  ( g (x)). 

For ( f ° g) to be defi ned, the range of  g must be a subset of  the 

domain of  f. 

For ( g ° f  ) to be defi ned, the range of  f  must be a subset of  the 

domain of  g

If  f  (x) = 2x − 1 and g (x) = x2, then letting g (x) be the argument of  f, 

( f  ° g) (x) = f  (x2) = 2x2 − 1 The range of  g is the set of  non-negative 

reals and the domain of  f is the set of  real numbers, hence ( f  ° g)(x) 

is defi ned. The domain of  ( f  ° g) is the domain of  g, the set of  real 

numbers. 

g(x)g(x)

f (g(x))

Domain of

g

Range of

g and

domain of

f

A subset of

range

f

Similarly, ( g ° f  ) (x) = g(2x − 1) = (2x − 1)2

You can obtain specifi c values of  composite functions by fi rst 

fi nding the composite function, or by evaluating the inner function 

fi rst at the desired x-value, and then evaluating the outer function. 

For example, here are the two methods for fi nding f  (g (0)) for 

f  (x) = 2x − 1and g (x) = x2

Method 1

Find the composite function fi rst.

f  (g (x)) = f  (x 2) = 2x 2 − 1

f  (g (0)) = 2(02) − 1

= − 1

Method 2

Find g (0) fi rst.

g (0) = 0

  and f  (0) = −1

g is the outer function. g(f (x)) f is the inner function.

You have seen 

composite functions 

before. Example 9 can 

be written as 

( f º g)(x) = 
1

|12 +1|x
where 

f (x) = 
1

x

; 

g(x) = |2x + 1|
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Example 

Consider f  (x) = 3x2 and g (x) = 2x

a Determine the domain and range of  f and g

b Find: i g ( f  (1))   ii f  ( g (3))

c Find: i ( f  °  g)(x)  ii ( g °  f    )(x), and determine the domain and range 

of the composite functions.

Answers

a f  : Domain = real numbers 

 Range = y y| ≥ 0{ }

g:  Domain = x x| ≥ 2{ }
 Range = y y| ≥ 0{ }

b i f  (1) = 3, g (3) = 1

ii g (3) = 1, f (1) = 3

c i f  (g(x)) = 3 x 2
2

( )  = 3x − 6

 Domain = x x| ≥ 2{ }
 Range = y y| ≥ 0{ }

ii g (  f  (x)) = 3 22x( )

 = (9 2)2x

 Domain

 = x x x| ,≥ ≤ −
⎧
⎨
⎩

⎫
⎬
⎭

2

3 3

2

 Range = y y| ≥ 0{ }

On the GDC you can display the 

composite function by entering it as 

seen here.

Investigation – composite functions

a By investigating different functions, determine if the composition of 

functions is commutative, that is, does (  f°g ) = ( g° f ) for any functions f and g?

b By investigating different functions, determine if the composition of functions 

is associative, that is, does ( f° ( g°h)) = ((  f°g)°h), for any functions f g, and h?

c By investigating different functions, determine if the composition of 

i an even function with an even function 

ii an odd with an odd 

iii an even with an odd (or an odd with an even) 

is an even or an odd function, or neither.

d Determine the kind of function that results when any function is 

composed with an even function.

Attempt to justify your conclusions.

Odd and even 

functions were 

defi ned on  

page 65–66.

Composition of  functions is not limited to two functions.

For example, y
x

=
1

12
 is ( f ° ( g ° h)) when h(x) = x 2 −1, 

g x x f x
x

( ) = and ( ) =
1

. Can you create a function which is the 

composition of  four functions?
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Exercise 2H

1 If  f  (x) = 2x and g(x) = x , fi nd the domain of: 

a 2g(x) − f  (x)

b f  (x) g(x)

c 
 
 
 

( )
g

x
f

2 If  f (x) = |x + 1| and g(x) = 
2 4x , fi nd the domain of  

f

g
x

⎛

⎝
⎜

⎞

⎠
⎟( )

3 Let f  (x) = x2 + 2x − 1 and g(x) = 1 − 2x − 3x2

Find

a f  ( g (0)) b g f  (−1) c f  (  f  (0)) d g ( g (x))

4 Let f (x) = 1 − 2x, g (x) = x2 − 1 and h (x) = 2 4x

 a Find i f  ( g (x)) ii g (h (x)) iii f  (h (x)) iv h ( g (x))

 b  Find the domain and range of  the functions in a

 c Confi rm your results to a and b graphically.

 d Find f  (  g (1)), and hence h ( f  ( g (1)).

5 Find expressions for f  (x) and g (x) such that f  (g  (x)) = x2 – 2

6 Find expressions for g (x) and h (x) such that (h ° g)(x) = 2 3x

Identity function

A function f  (x) that, when composed with g (x), leaves g (x) 

unchanged is called the identity function. 

For example, consider g (x) = 2x − 1 and fi nd f  (x) such that 

(  f ° g) (x) = ( g ° f   )(x) = g (x). 

To meet this condition f  (x) must equal its argument x, 

i.e. f  (x) = x for any x ∈D
f
. 

If  f  (x) = x and g (x) = 2x − 1, then 

f  ( g(x)) = 2x − 1 = g (x), and g ( f  (x)) = 2x − 1 = g (x)

Inverse of a function

A function, h that, when composed with g, results in the identity 

function f  is called an inverse function. So 

(g ° h) (x) = (h ° g) (x) = f  (x) = x

The fi nal output is the argument x, so h(x) is a function that maps 

y-values into x-values, or elements of  the range into elements of  the 

domain.

Since the function g maps x into 2x − 1, reversing the process will map 

y into x. This reverse process is called fi nding the inverse of  a function 

(if  the inverse exists). 

You have seen this 

process on page 70.

How do you know 

if the inverse of a 

function exists?
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To fi nd the inverse function h, solve the equation y = 2x − 1 for x

x = 
y +1

2

Now swap the x and y: 

The inverse function is y = 
x +1

2

Let h (x) = 
x +1

2
, and see if  when h (x) is composed with g (x) you do 

indeed get the identity function.

g (h(x)) = 2 
 

 
 

1

2

x
 – 1 = x + 1 – 1 = x

and

h (g (x)) = 
( )2 1 1

2

2

2

x x
x

− +
= =

Hence, g and h are inverses of  each other. 

The notation for the inverse of  a function g is g−1

The inverse of  g (x) = 2x − 1 is g−1(x) = 
x +1

2

➔ Two functions g and h are inverses of each other if  their 

composition results in the identity function, f  (x) = x, i.e., 

(g °  h) (x) = (h °  g) (x) = x

The functions g and h are also said to be invertible functions.

Graphical properties of inverse functions

➔ The graphs of  a function and its inverse are refl ections of  each 

other in the line y = x

321

1

–4

–5

2

3

4

5

54–4
x

y

–5

g–1(x) = 
x + 1

2

f(x) = x

g(x) = 2x – 1

The index –1 when 

applied to functions 

means the inverse 

function; when applied 

to number it means 

the reciprocal of a 

number. 

Why is the same 

symbol used for these 

different mathematical 

objects?

What do they have 

in common to justify 

the use of the same 

symbol?

Are there other 

mathematical 

symbols that are 

used differently in a 

particular context?
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Example 

If  f  (x) = 
x

2
 + 5, fi nd f   1(x), if  it exists. 

Justify your result algebraically, and confi rm graphically.

Answer

y = 
x

2
 + 5 ⇒ x = 2(y – 5)

or

x = 
y

2
 + 5 ⇒ y = 2(x – 5) 

f  1(x) = 2(x − 5) 

f  (f  1(x)) = 
2( 5)

2

x
 + 5  

             = (x – 5) + 5 = x

f- 1( f     (x)) = 

2  5 5  2
2 2

x x
x+ − = =⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

Since f  (f  1(x)) = x = f  1( f  (x)), f and 

f  1 are inverses of  each other.

6

2

–4

–6

6

8

10

12

14

10 12 148–6
x

y
y = x

y = x

f 1(x) = 2(x – 5)

f(x) =    + 5
x

2

The graphs of  f and f  1 are 

symmetrical about the line y = x

Solve for x, and then swap the x 

and y.

Swap x and y fi rst, then solve 

for y.

Use inverse notation. 

Justify your answer by showing 

that f  (f  1(x)) = x, and f  1 (f  (x)) = x

The graph of  f  and f  1 are 

symmetrical about the line y = x.

Since the inverse of  a function is a mapping from the range to 

the domain of  the function, the range of  the function will be the 

domain of  its inverse, and the domain of  the function the range of  

its inverse. Example 16 is a linear function, and its inverse is a linear 

function. Hence the domain and range of  both functions are the real 

numbers.

You can look at the domain and range of  a function to determine 

when a function is invertible, that is, has an inverse. 

Consider f  (x) = x 2. Then f  −1(x) = ± x . The inverse is not a 

function, as each x-value maps to two values, e. g. f  –1(4) = ±2
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The part of  f  (x) which has an inverse is therefore the set of  

non-negative real numbers.

From the graphs of  the function y = x2 and the relation y = ± x , 

you can see that the relation and the function are inverses of  one 

another, but the relation is not itself  a function. 

1 2 3 4–1–2–3–4 x

y

1

–2

–3

–4

2

3

4

f(x) = x2

y = x
f –1(x) = –√x

f –1(x) = √x

The graphs of  the function and the relation are refl ections of  each 

other in the line y = x

For f  (x) = x2 to have an inverse its domain must also be restricted to 

the set of  non-negative real numbers.

When you restrict the domain of  a function, you do so to ensure 

that its inverse is also a function.

Example 

Find the inverse of  f  (x) = x2 − 2x + 2, if  it exists, and its domain and 

range. Confi rm your result graphically.

Answer

x = y2 − 2y + 3 ⇒ y2 – 2y = x – 3 

⇒ y2 – 2y + 1 = x – 3 + 1 = x – 2

⇒ (y – 1)2 = x – 2

⇒ y – 1 = x 2 ⇒ y = 1 + x 2

Slove for x then swap x and y.

Complete the square to isolate y.

Solve for y.

Domain: x ≥ 2 

Range: y ≥ 1

f  1(x) = 1 + x 2

2 4 6 8 10 12–2–4 x

y

2

–4

4

8

f(x) = x2 – 2x + 3

f(x) = x

f(x) = 1 + √x – 2

Determine the domain for the 

inverse to exist.

Use inverse notation.

Graph f  (x), f  (x) and y = x on 

your GDC. 

In order for f  to have an inverse, 

restrict its domain to 

x ≥ 1, the range of  the inverse.

➔ Only functions that are one-to-one have inverse functions.

1 2 3 4–1–2–3–4 x

y

1

–1

–2

–3

–4

2

3

4

f(x) = x2

f–1(x) = √x

y = x

You can also restrict 

the domain of f to the 

set of non-positive 

real numbers. In this 

case f –1(x) = x , and 

the graph of f and f –1

would be

Unless you are 

told otherwise, the 

convention is to 

restrict the inverse to 

the set of non-negative 

real numbers.
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Exercise 2I

Find the inverse of  each function, if  it exists. 

Justify your answer algebraically, and confi rm graphically.

1 y = 3x − 1 2 y = 
1

3

x

3 y = x2 − 2, x ≥ 0 4 y = x2 + 1, x ≤ 0.

5 y = x2 + 4x − 1, x ≥ −2

EXAM-STYLE QUESTIONS

6 Determine algebraically if  y = 1 − 2x is its own inverse.

7 Given that f  (x) = 3x and g (x) = 2x + 1, show that 

( f 1 
°  g

1) (x) = ( g ° f ) 1(x) 

8 Given f  (x) = 
2 +1

1

x

x
, x ≠ 1, fi nd the inverse function of  f, clearly 

stating its domain.

Investigation – self-inverse functions

You have met the function y = 
1

x
 before. 

It has special properties:

● it is odd

● its axes are asymptotes of its graph

● it has no x  or y intercepts.

It is also its own inverse. To prove this algebraically, 

swap y and x, to get x = 
1

y
Then solve for y: 

y =
1

x

or f  −1(x) =
1

x

f  ( f  −1(x) =
1

1

x

⎛
⎝
⎜

⎞
⎠
⎟

= x = f  −1( f  (x))

Find other such functions by graphing functions 

that are their own re ection in the line y = x. 

Is there a rule, or rules, for a function to be its 

own inverse?

f(x) = 
1

x

f(x) = x

2 4 6 8 10–2–4–6–8–10 x

y

2

–4

–6

–8

4

6

8

Use your GDC to 

 nd functions whose 

graphs are re ections 

of each other in y = x

Mathematics as a language78



. Transformations of graphs of functions

Axis symmetry

In the previous sections you looked at some of  the symmetries of  

graph of  functions. 

● The graph of  an even function is symmetrical about the y-axis, 

hence f  (−x) = f  (x).
● The graph of  an odd function has rotational symmetry about the 

origin, hence f  (−x) = −f  (x). 

Look at the graphs of  y = f  (x) and y = –f  (x). 

If  f  (x) = x2 – 2, then –f  (x) = –x2 + 2. 

● The graphs are refl ections of  each other in the x-axis.

The graph of  the cubic function f  (x) = –x3 – 3x2 + x + 2 and its 

negative produce the same result – they are refl ections of  each 

other in the x-axis,

e.g. if  f  (x) = x3 – 3x2 + x + 2 then

 –f  (x) = –x3 + 3x2 – x – 2

➔ In general, therefore, the graphs of  y = f  (x) and y = −f  (x) are 

refl ections of  each other in the x-axis.

Now look at the graph of

f  (x) = x3 − 3x2 + x + 2

and the graph of  

f  (−x)  = (−x)3 − 3(−x)2 + (−x) + 2

= −x3 − 3x2 − x + 2.

➔ In general, the graphs of  f  (x) and f  (−x) are refl ections of  each 

other in the y-axis.

Graphing y = |f (x)| from y = f(x)

Take the linear function y = 2x − 1 and form the function 

which is the absolute value of  this linear function, y = |2x – 1|. 

Since y = 2x − 1 is linear, the domain is the set of  real numbers, and 

the range of  the absolute-value function will be the non-negative real 

numbers.

1 2 3 4–2–3–4
x

y

1

–3

3

0

f(x) = x2 – 2

f –1(x) = –x2 + 2

0

2

–2

–3

–4

3

4

–2–3
x

y
f(x) = x3 – 3x2 + x + 2

–f(x) = –x3 + 3x2 – x – 2

f(x) = –(x)

0

–2

–3

–4

3

4

2 3–2–3
x

y
f(x) = x3 – 3x2 + x + 2

f(–x) = –x3 – 3x2 – x + 2
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0 642

2

–2

–6

–8

4

6

8

8–2–4–6–8 x

y

y = 2 x – 1

0 642

2

–2

–4

–6

–8

6

8

8–2–4–6–8 x

y
y = |f(x)|

From the graph you can see that the graph is unchanged for any 

positive y-values, and negative y-values are refl ected in the x-axis.

Example 

Here is the graph of  y = f  (x). 

Sketch, on the same set of  axes, 

the graph of  y = |f  (x)|

3

1

–4

2

3

4

4–1–2 x

y

Answer

3

–4

2

3

4

4–1–2 x

y

y = |f(x)|

 Wherever f  (x) < 0, refl ect those parts 

of  the graph in the x-axis.

Graphing y = f (|x|) from y = f (x)

Look again at the function f  (x) = 2x − 1. The domain 

and range is the set of  real numbers. What is the domain and 

range of  y = f  (|x|)? The domain will still be the set of  real 

numbers.

The graph is unchanged where x ≥ 0. For x < 0 the graph for 

x ≥ 0 is refl ected in the y-axis.

The range is { y|y ≥ –1}

642
–2

–6

–8

4

6

8

8–2–4–6–8 x

y

y  = 2|x| – 1 y = 2 x – 1
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Example 

Here is the graph of  y = f  (x). 

On the same set of  axes, 

sketch the graph of  y = f  |x|.

3

1

–4

2

3

4

4–1–2–3–4 x

y

Answer

3

–4

2

3

4

4–3–4 x

y

f(|x|) The graph is unchanged where x ≥ 0. 

For x < 0 the graph for x ≥ 0 is refl ected in 

the y-axis.

Exercise 2J

For each function y = f (x), draw a y = | f (x)|; b y = f (|x|). 

Draw each part on the same set of  axes as y = f (x).

EXAM-STYLE QUESTIONS

1 y = 1 − 4x 2 y = x2 − 2x 3 y = −3x2 + x − 1

4 y = x3 + 3x − 2 5 y = 3 1x  – 4

Graphing 
f (x)

1  from f (x)

Now look at the graph of  the function y = 2x2 − 1, 

whose domain is the set of  real numbers and whose 

range is y ≥ –1. What is the relationship between this 

graph and its reciprocal, y = 
2

1

2 1x
 ?

The domain is x ≠ ± 
1

2

The range is y ≤ –1 or y ≥ 0. 

The graph of  y = 2x2 – 1 crosses the x-axis at (±0.707, 0) 

and the y-axis at (0, –1).

f(x) = 2x2 – 1
y = 

1

2x2 – 1

0
321

1

–1

2

3

4–1–2–3–4
x

y

Chapter 2 81



Example 

Copy the graph of  f  (x) and 

sketch 
1

( )f x
 on the same set of  axes. 

Label any intercepts, asymptotes and 

minimum and maximum points of  

both graphs.
0

321

1

–1

–2

–3

–4

4

5

5–1–2–3
x

f(x)

y

Answer

2

–2

–4

–4–6

(4,0)

(0,0)

(2, –4)

(2, –0.25)

x

y

1

f(x)

Asymptotes

x = 0, x = 4, y = 0

➔ From the graphs

● Where they exist, the zeros of  f  (x) are the vertical 

asymptotes of  
1

( )f x
 and the zeros of  

1

( )f x
 are the vertical 

asymptotes of  f  (x).

● If  y = b is the y-intercept of  f  (x), then 
1

b
 is the y-intercept 

of  
1

( )f x

● The minimum value of  f  (x) occurs at the same value of  x

as the maximum of  
1

( )f x
, and the minimum of  

1

( )f x

occurs at the same value of  x as the maximum of  f  (x).

● When f  (x) > 0, 
1

( )f x
 > 0; when f  (x) < 0, 

1

( )f x
 < 0

● When f  (x) approaches 0, 
1

( )f x
 will approach ±∞; when 

f  (x) approaches ±∞, 
1

( )f x
 approaches 0
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Exercise 2K

For y = f  (x), sketch y = 
1

( )f x
 on the same set of  axes, including 

asymptotes, intercepts, and any maximum and minimum points.

1 y = x + 4 2 y = 1 − 3x

3 y = x2 − 4 4 y = −x(x − 2)

5 y = 1

2 3x

EXAM-STYLE QUESTION

6 Copy the graph of  y = f  (x) and sketch the graph of  
1

( )f x
 on the 

same set of  axes.

 a 

0 x

y
 b 

x

y

0

Translations

In the Investigation of  absolute-value functions on page 56 you 

noticed the effect that the parameters h and k had on the 

absolute-value function y = |x – h| + k when compared to 

y = |x|: 

k produces a vertical shift and h produces a horizontal shift on the 

graph of  y = |x|. 

Horizontal translation

●  If  h > 0, then the graph of  y = f  (x − h) is the graph of  y = f  (x) 

translated h units in the positive x-direction, or h units to the right

●  If  h < 0, then the graph of  y = f  (x − h) is the graph of  y = f  (x) 

translated h units in the negative x-direction, or h units to the left. 

This is a horizontal translation by a column vector
h

0

⎛

⎝
⎜

⎞

⎠
⎟

Translations are some-

times referred to as 

rigid transformations 

as the shape of the 

graph of the function 

is unchanged.

In a chapter 11, you 

will explore column 

vectors more. In the 

meantime you need 

to know that the top 

number represents a 

horizontal translation 

and the bottom 

number represents a 

vertical translation.
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Vertical translation

●  If  k > 0, then the graph of  f  (x) + k is the graph of  f  (x) translated 

k units in the positive y-direction, or k units upwards. 

●  If  k < 0, then the graph of  f  (x) − k is the graph of f  (x) translated 

k units in the negative y-direction, or k units downwards. 

This as a vertical translation with column vector 
0

k

⎛

⎝
⎜

⎞

⎠
⎟

You can combine the horizontal and vertical translations using the 

column vector 
 
 
 

h

k

Example  

Describe the transformations necessary to obtain the graph 

of  y = (x − 3)2 + 1 from the graph of  y = x2, and state the coordinates 

of  the image of  the vertex under this translation. 

Sketch both graphs on the same set of  axes.

Answer

The graph of  y = x 2 is translated 3 units to the 

right and 1 unit upward, represented by the 

column vector 
3

1

⎛

⎝
⎜

⎞

⎠
⎟

The image of  the vertex is (3, 1)

2

1

3

5

4

6

x

f(x) = (x – 3)2 + 1

f (x) = x2

y

10–1–3–4–5 2 3 4 5–2

If  unsure as to 

the order in which 

to perform the 

transformations, begin 

with the argument 

and work your way 

outward. 

Dilations

A dilation of  a graph occurs when x (horizontal dilation) or y

(vertical dilation) is multiplied by a constant a. 

A dilation can be a stretch or compression of  the graph, depending 

on the value of  a.
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Vertical dilation

Here is the graph of  y = ax2 for different values of  a, a > 0.

The graph is stretched or compressed by a factor of  a, parallel 

to the y-axis. 

➔ For y = af  (x), a > 0, the graph is vertically stretched or 

compressed by a factor of  a

● If  a > 1 the graph is stretched vertically by a factor 

of  a, i.e., it moves further from the x-axis.

● If  0 < a < 1 the graph is compressed vertically 

by a factor of  a, i.e., it moves close to the x-axis.

Horizontal dilation

Here is the graph of  y = (ax)2 for different values of  a, 

a > 0. 

20

x

f(x) = (2x)2

f(x) = (x)2

f(x) = (0.5x)2

f(x) = (0.25x)2

f(x) = (0.1x)2

f(x) = (10x)2

y

20–2–6–8–10 4 6 8 10–4

The graph is stretched or compressed by a factor of  
1

a
, parallel to the 

x-axis.

➔ For y = f  (ax), a > 0, the graph is horizontally stretched or 

compressed.

● If a > 1 the graph is compressed by a factor of 
1

a
, i.e., the 

graph moves closer to the y-axis.

● If  0 < a < 1 the graph is stretched by a factor of  
1

a
, i.e., 

the graph moves further from the y-axis.

20

x

y

f(x) = x2

f(x) = 0.5x2

f(x) = 10x2

f(x) =    x21

3

20–2–4–6–8 4 6 8

Dilations are 

sometimes referred 

to as non-rigid 

transformations as 

they change the shape 

of the graph of the 

function.
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Example 

Consider the graph of  y = 

− − − ≤ < −

+ − ≤ < −

− − ≤ <

≤ <

⎧

⎨

⎪
⎪

⎩

⎪
⎪

2 8 4 3

2 4 3 1

2 1 0

0 4

x x

x x

x x

x x

,

,

,

,

a Sketch the graph on your GDC, and fi nd the coordinates of any 

maximum, minimum, and zeros of the function.

b Find the coordinates of  the points in a under these transformations, 

and confi rm your answers using your GDC.

i y = 2f  (x)  ii y = f  (2x) iii y = 
1

2
( )f x

iv y = ( 0.5 )f  x

Answers

a Graph of  y = f  (x) 

zeros: (−4, 0), (−2,0), (0, 0)

minimum: (−3, −2) 

maximum: (−1, 2), (4, 4)

b i Graph of  y = 2f  (x)

zeros: (−4, 0), (−2, 0), (0, 0)

minimum: (−3, −4) 

  maximum: (−1, 4), (4, 8) 

y = 2f(x) stretches 

f  (x) vertically by a 

factor of  2, hence 

all y-coordinates are 

multiplied by 2, and 

x-coordinates are 

unchanged.

Mathematics has 

a rich and evolving 

culture of language. 

How do the symbols 

relate to the concepts 

and analytical skills 

they represent, and 

how has evolution 

in mathematical 

concepts and skills 

affected changes in 

its language?

GDC tip! Enter 

f 2(x) = 2f1(x)

{ Continued on next page
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ii Graph of  y = f  (2x) 

  zeros: (−2, 0), (−1, 0), (0, 0)

 minimum: (−1.5, −2)

 maximum: (−0.5, 2), (2, 4)

y = f  (2x) compresses the 

graph horizontally by a 

factor of  
1

2
, hence each 

x-coordinate is 
1

2
 the 

x-coordinate of  y = f(x), 

and the y-coordinates 

are unchanged.

iii Graph of  y = 
1

2
( )f x

  zeros: ( 4, 0), ( 2, 0), (0, 0)

  minimum: ( 1, 1), (4, 2)

  maximum: ( 3, 1)

y = 
1

2
  f  (x) is a 

refl ection in the x-axis 

and compression of  

y = f  (x) parallel to the 

y-axis by a factor of  
1

2

iv Graph of  y = f  (−0.5x)

zeros: (0, 0), (4, 0), (8, 0)

  minimum: (6, 2)

  maximum: ( 8, 4), (2, 2)

y = f  (−0.5x) is a 

refl ection in the y-axis 

of  y = f  (x) and a stretch 

parallel to the x-axis by 

a factor of  2. Hence each 

x-coordinate of  f  (x) is 

multiplied by a factor of  

−2, and the y-coordinate 

remains unchanged.

You can get a rational function by performing certain 

transformations on the reciprocal function y = 
1

x
. For example, if

you fi rst perform a horizontal stretch of  factor 
1

3
  followed by a 

vertical stretch of  factor 2, then a translation of  
2

1

⎛

⎝
⎜

⎞

⎠
⎟ , what will be 

 GDC tip! Enter 

f 2(x) = f  1(2x)

GDC tip! Enter 

f 2(x) =
1

2
1( )f x

 GDC tip! Enter 

f 2(x) = f1(−0.5x)

Remember: if, when 

performing multiple 

translations you are 

not sure of their 

order, start with the 

argument and work 

your way outward.
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the resulting function? A horizontal stretch factor of  
1

3
 becomes 

1

3x
, 

then a vertical stretch of  2 becomes 2
 
 
 

1

3x
, and the translation 

results in

y
x

= −

2

3 2
1

( )

Hence, y = 
2

3 2
1

( )x
 = 

8 3

3 2

-

-

x

x( )

As seen above, the rational function you fi rst saw on page 58 

of  the form y x
ax b

cx d

d

c
= ≠ −

+

+
,  can be written in the form 

y k, x h
A

B x h
= + ≠

( )
 where A is the vertical stretch factor, 

B is the reciprocal of  the horizontal stretch factor, and 
h

k

⎛

⎝
⎜

⎞

⎠
⎟  is 

the translation.

Exercise 2L

 Describe each transformation from f  (x) to g(x) in terms of  x. 

 a 

–8

4

–2–6 x

y

g(x)f(x)

(–1.63, 0)

(–1.5, –6.25)

(–4.5, –8.25)

 b

1

–1

–2

–3

–4

4

5

–1–3 0 x

y

f(x)g(x)

(–4, –1)

(–2,0)

 c 

0 x

y

g(x)

f(x)

1

–1

–2

–4

3

4

5

–1–2–3

 d 

1

–1

–2

–3

–4

4

5

–1–2–3
0 x

y

(–2,0)

(–1, 0)

(0.333,4.74)

(0.667,4.74)

f(x) g(x)

2

3( 2)

2 3( 2)

3( 2)

2 3 + 6

3( 2)

8 3

3( 2)

1=

=

=

x

x

x

x

x

x

x

− −
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e

1

–2

–3

–4

2

4

5

–2 0 x

y

(0, –2)

(0,4)
f(x)

g(x)

f

–2

–4

2

–2 0 x

y

(–2,0) (2,0)

(–1,0)

(1,0)

(–0.333,4.74) (0.667,4.74)

f(x)

g(x)

 Using the graph of  h (x), (red graph), and its transformation (blue

 graph), fi nd an expression for the transformation in terms of  h (x).

EXAM-STYLE QUESTION

 Given the graph of g (x), make separate sketches of the 

following transformations of g (x). In each sketch include g (x). Label 

the coordinates of the image points under the transformation.

 a g (x + 1) − 2 b −2g (x) c g (2x)

 d 
1

2
g x( ) e g

1

2
x

⎛
⎝
⎜

⎞
⎠
⎟  + 1

4 On a separate diagram for each pair, sketch the graphs of:

 a f  (x) = x 2, y = 
⎛
⎝
⎜

⎞
⎠
⎟−1

2 3
1f

x
 + 2

 b f  (x) = |x|, y = 2|2x + 3| − 2

 c f  (x) = x (x − 1)(x + 1), y = f  (|x|) + 25

EXAM-STYLE QUESTIONS

5  Find the rational function when y = 
1

x
 is transformed by a 

vertical stretch of 2, then stretched horizontally by a factor of 
1

3
, 

followed by a translation of  
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

3
. Find the domain and range 

of  the new function.

6 Consider f x
x

x
( )

4 5

2 1
= +

+
a Find the asymptotes of  y = f  (x)

b Find the intercepts

c Sketch the graph

d Describe the transformation that changes y = 
1

x
 to y = f  (x)

0 x

y

(2, –1)

(–1,1)

(1, –1)

(0,1) (3,1)

(4,1)

(5,2)

–1

–2

–3

2

3

4

–1–2

(–2,2)

0 x

y

(–4,0)

(–5, –1)

(0,2)

(2,1)1

–1

–2

2

3

4

–1–2–3–4

g(x)
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Review exercise

1 Determine which of  the following is a graph of  a function. For 

those that are functions, determine the domain and range.

 a 

0 x

y

(3, 2)

1

–1

–2

2

3

–1

 b 

x

y

1

2

3

4

4

5

–1–2 10 2 3 4 5 6

 c 

1

–2

2

3

4

0 x

y  d 

(1,0)(–1,0)

(0, –0.25)

x

y

2 If  f (2) = 3, g (4) = 2, and h (3) = 4, fi nd f  ( g(h(3))). Assume the 

inverses of  f, g, and h exist, and fi nd h−1( g−1(  f-  −1(3))).

3 If  f  (x) = 
1

1x
, fi nd (  f  °  f  ) (x), and (  f  °   f ) −1(x). 

EXAM-STYLE QUESTIONS

4 Given the graph of  f  (x), fi nd the images of  the given points 

under the transformation y = –2f  (x + 1) − 3

5 The graph of  y = f  (x) is shown below.

f(x) = –
1

x

5–1–2–3–4–6 –5
x

y

1

–1

–2

–3

–5

–4

3

5

4

0

(1, –1)

(–1, 1)

Using this graph, sketch the graphs of  the following, indicating 

the image of  the given points in each sketch.

a y = f  (x + 1) b y = f  (x – 1) – 2

c y = 1 – f  (x) d y = 1 + f  (–x)

e y = 2f  (2x)

✗

–4

4

x

y

(–3,2)

(3, –3)

(–1, –1)

(8, 2)

(–4, 0)

(–5, –2)
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EXAM-STYLE QUESTION

6 The graphs show the functions y = f  (x) (red line) and a 

transformed graph y = g(x) (green line). Express g in terms of  f

a 

1

–1

–2

–5

2

3

5

–1–3 0 x

y b

0 x

y

1

–1

–2

–3

–4

2

3

4

–1–2–3–4 1 2 3 4

c y

1

–2

–3

–4

2

3

4

–1

d

1

–1

2

3

4

5

–1–2
x

y

e 

1

–1

–2

–3

–4

2

3

4

–1–2 0 x

y f

1

–1

–2

–3

–5

4

5

–2–3–4 0 x

y

g 

1

–1

–2

–3

3

4

5

6

7

–1–2–3–4 0 x

y

7 The domain of  an odd function f is the set of  real numbers. 

Prove that the graph passes through the origin.
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Review exercise

1 f  (x) = 3x − 1, g (x) = x2, h (x) = 


1

( 2)x

 Find these composite functions. 

 a f  ( g(x)) b h ( g(x)) c g−1(  f  (x)) d f  (h−1(x))

2 Find two functions, f and g, such that g (  f  (x)) = 
 
 

 

2
1

3

x

x

3 If  f  (x) = |x| and g (x) = 4x2 + 2x − 5, sketch the graphs of  g (f (x)) 

and f  ( g (x)).

4 The function C =
5

9
(F − 32) describes degrees in Centigrade as a 

function of  degrees in Fahrenheit. Describe the transformations 

necessary on this function to arrive at a function of  F in terms of  

C, and fi nd the values for which the two functions are the same.

EXAM-STYLE QUESTION

5 Find the rational function y = f  (x) which is the result of  

transforming the reciprocal function f : x
1

x
 by a vertical 

stretch factor of  3, followed by a horizontal stretch factor of  
1

2
, 

followed by a translation of  
 
 
 

1

2

CHAPTER 2 SUMMARY

● A function is a set of  ordered pairs in which no two ordered 

pairs can have the same x-value. In other words, every x-value 

has a unique y-value. 

● A relation is a function, f, if  

■ f acts on all elements of  the domain (x-values), and

■ f is well defi ned, i.e. it pairs each element of  the domain with 

one and only one element of  the range (y-values).

● In general, if  y is a function of  x, you can write y = f (x). You can 

also write f : x ↦ f (x), where f is the function that maps x into f (x). 

The independent variable, x, is called the argument of  the function.

● In the form y = ax2 + bx + c, the axis of  symmetry is x = 
2 

b

a
, 

hence the vertex is 
− −⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

b

a
f

b

a2 2
, . 

● A function is even if, for all x in the domain, −x is in the domain 

and f (x) = f (−x) for all values of  x

Continued on next page
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● A function is odd if, for all x in the domain, −x is in the domain 

and f (−x) = −f (x) for all values of  x

● Let f  and g be two real-valued functions. Then

■ (f + g)(x) = f  (x) + g (x)

■ (f − g)(x) = f  (x) − g (x)

■ a(f  (x)) = af  (x), a ∈ 

■ (fg)(x) = f  (x)g (x)

■ 

 
  

 

( )
, ( ) 0

( )

f f x
x g x

g g x

● Two functions g and h are inverses of  each other if  their composition 

results in the identity function, f  (x) = x, i.e., (g ° h) (x) = (h ° g) (x) = x. 

The functions g and h are also said to be invertible functions.

● The graph of  a function and its inverse are refl ections in the line y = x

● Only functions that are one-to-one have inverse functions.

● In general, the graphs of  f  (x) and –f  (x) are symmetrical 

about the x-axis.

● In general, the graphs of  f  (x) and f  (−x) are symmetrical 

about the y-axis.

● Where they exist, the zeros of  f  (x) are the vertical asymptotes of  
1

( )f x
, and the zeros of  

1

( )f x
 are the vertical asymptotes of  f  (x).

● If  y = b is the y-intercept of  f  (x), then 1

b
 is the y-intercept of  

1

( )f x

● The minimum of  f  (x) occurs at the same x-value as the maximum 

of  
1

( )f x
, and the minimum of  

1

( )f x
 occurs at the same x-value as 

the maximum of  f  (x).

● When f  (x) > 0, 
1

( )f x
 > 0; when f  (x) < 0, 

1

( )f x
 < 0

● When f  (x) approaches 0, 
1

( )f x
 will approach ± ∞; when 

f  (x) approaches ± ∞, 
1

( )f x
 approaches 0.

● For y = af  (x), a > 0, the graph is vertically stretched or compressed 

by a factor of  a

 ■  If  a > 1 the graph is stretched vertically by a factor of  a, 

i.e., it moves further from the x-axis.

 ■  If  0 < a < 1 the graph is compressed vertically by a factor 

of  a, i.e., it moves closer to the x-axis.

●  For y = f  (ax), a > 0, the graph is horizontally stretched or compressed.

 ■  If  a > 1 the graph is compressed by a factor of  1

a
, i.e., the graph 

moves closer to the y-axis.

 ■  If  0 < a < 1 the graph is stretched by a factor of  1

a
, i.e., the graph 

moves further from the y-axis.
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 Does the language of mathematics have 

its own grammar, vocabulary and 

structure?

 Is it truly a ‘language’, or simply the 

manipulation of symbols following a set 

of rules?

Language: 
a systematic means of 
communicating ideas using 
conventionalized signs or marks 
having understood meanings.

Theory of knowledge: The language of mathematics94

The language of mathematics

Theory of knowledge

A universal language?
In the science fi ction movie Contact, the 

heroine played by Jodie Foster explains that 

aliens would use sequences of  prime 

numbers as their initial attempt at 

communication because “Mathematics is 

the only truly universal language”. 

The language of  mathematics is certainly 

one of  the oldest, and has been the 

international language of  scientists for 

many centuries.

It is unique in that it describes not only the 

real world, but also abstract structures, and 

the mathematics itself.

“The miracle of  the appropriateness of  the language of  mathematics for the formulation 

of  the laws of  physics is a wonderful gift which we neither understand nor deserve.”

E.P. Wigner, Hungarian American physicist and mathematician (1902 9)

Evolving language

new words – such as ‘app’ and ‘blog’. Some are old words 

with a new meaning – such as ‘tweet’ or ‘scroll’.

Languages evolve over time.

 How have new discoveries in mathematics, or new 

applications of mathematics, changed the language of mathematics?

e 



95Chapter 2

Using language to convey knowledge 

In The Chicken From Minsk, by Y. Chernyak and R. Rose, the 

hears. The customer buys the parrot, but returns 

have heard a single word from the ‘stupid’ parrot. 

never lies (a true claim).

 What if  the bird is deaf ? 



had heard?

 Is the customer telling the truth? 

decides not to repeat such boring conversation.

 In the possible explanations you have considered:

{ Which would a physicist describe as ‘no initial 

condition’? 

{

along the t (time) axis?



Is mathematics a precise language?





languages? And how is it different?

You saw this quotation at the start of  this chapter:

“Mathematics is the language with which God has written the universe.”   Galileo Galilei

 Is the universe mathematical? 

 Has the language of  mathematics been invented or discovered?

o get across a real feeling as to 

nt to learn about nature, to 

nguage that she speaks in.”  

 (1918 88).

ord it

 to 

 he

 what it 

er, and 

slation 

se? 

ecision

ledge.

ral



The long 
journey of 
mathematics

CHAPTER OBJECTIVES:

1.5  Complex numbers: the number i = 1 ; the terms real part, imaginary 

part, conjugate, modulus and argument; cartesian form z = a + ib; 

sums, products and quotients of complex numbers

1.6  The complex plane

1.7 Powers of complex numbers; nth roots of a complex number

1.8 Conjugate roots of polynomial equations with real coef cients

1.9  Solutions of systems of linear equations (a maximum of three equations in 

three unknowns), including cases where there is a unique solution, an in nity of 

solutions or no solution

2.5  Polynomial functions and their graphs; the factor and remainder theorems; 

the fundamental theorem of algebra

2.6 Solving quadratic equations using the quadratic formula;

use of the discriminant Δ = b2 – 4ac to determine the nature of the roots; 

solving polynomial equations both graphically and algebraically; sum 

and product of the roots of polynomial equations

2.7  Solutions of g (x) ≥ f (x): graphical or algebraic methods, for simple 

polynomials up to degree 3; use of technology for these and other functions

3

You should know how to:

1 Solve quadratic equations by factorization.

 e.g.  x 2 – 3x – 4 = 0

⇒ (x – 4) (x + 1) = 0

⇒ x = 4 or x = –1

2 Find a linear combination of  two 

polynomials.

 e.g.  f (x) = x 2 – 3x + 1 and 

g (x) = x 3 + 7x – 3 

 5f (x) + 2g(x) =  5(x 2 – 3x + 1) + 2(x 3 + 7x – 3)

 = 2x 3 + 5x 2 – x – 1 

Skills check

1 Solve these quadratic equations:

a x 2 + 2x – 3 = 0 b x 2 – 11x + 10 = 0

c 2x 2 + x – 3 = 0

2 Given the polynomials f (x) = x 2 – 3x + 1, 

g (x) = 2x 3 – x 2 + 3x – 4 and 

h (x) = 3x 4 – 2x 2 – 5, fi nd:

a f (x) + g (x)

b 2h (x) – 4g (x) + 5f (x)

c
1

2
h (x) – 

2

5
g (x)

Before you start
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Important problems that challenged great minds

The Italian mathematician Leonardo of  Pisa, best known as Fibonacci, 

most important contribution to mathematics was spreading the use of  

the Hindu-Arabic numeral system throughout Europe. In the next 

centuries, fi rst in Italy, and then in other parts of  Europe, bursts of  

mathematical creativity lead to incredible developments and 

discoveries in mathematics and science in general.

Over the centuries generations of  mathematicians have helped the 

scientifi c community to achieve great insight into nature, moving us 

forward in our understanding of  the world and allowing the remarkable 

development of  science and technology. Throughout this history, 

scientifi c progress has always been related to revolutions in 

mathematical thought.

In this chapter we are going to take a close look at the evolution of  the 

most fundamental mathematical concept – the concept of  number. Using 

modern methods we are going to discover and explore the properties of  

a new set of  numbers. These are the set of  complex numbers.

.  Introduction to complex numbers

Solving quadratic equations using the 
quadratic formula

Zero is in many ways a mysterious number. Medieval mathematicians 

could not decide whether or not it really was a number! Nowadays, 

however, zero has high status in mathematics due to its algebraic 

properties. One is the zero factor property, that can be used to solve 

some polynomial equations.
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➔ Zero factor property: a  b = 0 ⇒ a = 0 or b = 0

A quadratic equation has the form, ax 2 + bx + c = 0, where a, b, c ∈ ,

and a ≠ 0. When one of the coeffi cients is zero there is a special case 

that you can solve without using the general quadratic formula. 

Special cases:

i b = 0, c ≠ 0 ⇒ ax 2 + c = 0

⇒ x 2 = – 
c

a

⇒ x = ±
c

a
⇒ x = – 

c

a
 or x = 

c

a

The solutions are real and opposite if – 
c

a

 > 0.

When 
c

a

 < 0 the solutions are not real.

ii b ≠ 0, c = 0 ⇒ ax 2 + bx = 0

⇒ x (ax + b) = 0

⇒ = = −x x
b

a
0 or

Factorize and apply the zero product 

property.

The solutions are always real and distinct and one is always zero.

iii b = 0, c = 0 ⇒ ax 2 = 0 

 ⇒ x 2 = 0

 ⇒ x = 0 or x = 0

This is the only case where there is only one (double) real solution – 

which is zero.

The method for fi nding a general formula for the solutions of a 

quadratic equation is called ‘completing the square’. This method 

can be used directly as in case i, or again by factorization.

Method I: Completing the square

ax 2 + bx + c = 0

⇒ + + =x x
b

a

c

a

2 0

Divide the equation by a.

⇒ + ⋅ ⋅ + = −⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟x x

b

a

c

a

b

a

b

a

2

2 2

2
2 2 2

Add 
b

a2

⎛
⎝
⎜

⎞
⎠
⎟

2

 to both sides in 

order to apply the formula 

(A ± B) 2 = A2 ± 2AB + B2

⇒ + = −⎛
⎝
⎜

⎞
⎠
⎟x

b

a

b

a

c

a2 4

2 2

2
Factorize and simplify.

If a function vanishes 

for a particular value 

of its argument, 

f  (x) = 0, then x is 

called a zero or root 

of f  (x).

See Chapter 14, 

section 2.2
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⇒ + = ±x
b

a

b ac

a2

4

4

2

2

⇒ = − ±x
b

a

b ac

a2

4

2

2

Take the square root of  both 

sides and simplify.

⇒ = − ± −
x

b b ac

a

2
4

2

⇒ = − − −
x

b b ac

a

2
4

2
 or x

b b ac

a
= − + −2

4

2

Method II: Completing the square and factorization

ax 2 + bx + c = 0

⇒ a 2x 2 + abx + ac = 0

Multiply the equation 

by a.

⇒ + ⋅ ⋅ + −( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟a a

b b b

perfect square

x x
2

2 2

2
2 2 2

  

++ =ac 0

⇒ + − =⎛
⎝
⎜

⎞
⎠
⎟a

b b ac
x

2

4

4

2 2

0

Add and subtract 

b

2

2

⎛
⎝
⎜

⎞
⎠
⎟  in order to apply 

the formula 

(A ± B)2

= A2 ± 2AB + B2 

⇒ + − =⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ax
b b ac

2

4

2

2 2
2

0

⇒ + − + + =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ax ax
b b ac b b ac

2

4

2 2

4

2

2 2

0

Apply A2 – B2

= (A – B) (A + B).

Apply the zero product 

property.

either ax
b b ac+ − =
2

4

2

2

0

⇒ = − +ax
b b ac

2

4

2

2

⇒ =
− + −

x
b b ac

a

2
4

2

Solve for x and 

simplify.

or ax
b b ac+ + =
2

4

2

2

0

⇒ = − −ax
b b ac

2

4

2

2

⇒ = − − −
x

b b ac

a

2
4

2

Solve for x and 

simplify.
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➔ You can use the quadratic formula x
b b ac

a
=

− ± −
2 4

2
  to fi nd 

the solutions or roots of  a quadratic equation.

Example 

Use the quadratic formula to solve these equations. Check your answers

with a GDC.

a 3x 2 + 11x + 6 = 0 

b 5x 2 − 9x − 3 = 0 

c 3px 2 + (p − 6)x − 2 = 0 

Answers

a 3 11 6 02

a b c

x x
  

+ + = ⇒ =
− ± − ⋅ ⋅

x
11 11 4 3 6

2 3

2

=
− ± −11 121 72

6

=
− ±11 49

6

=

⇒ = = − = = −

− ±

− − − +

11 7

6

11 7

6

11 7

6

2

3
3x xor

b 5 9 3 02

a b c

x x


 

− − =
⇒ =

− −( ) ± −( ) − ⋅ ⋅ −( )
x

9 9 4 5 3

2 5

2

=
± +9 81 60

10

=

⇒ = =

±

− +

9 141

10

9 141

10

9 141

10
x xor

The Babylonians 

(2000–1600 BCE) 

knew how to solve a 

quadratic equation 

by using a quadratic 

formula in a slightly 

different form from 

the one we use 

today. They were 

essentially using the 

standard formula in 

two different types of 

quadratic equation 

x2 + bx = c and 

x2 + bx = c, where b

and c were positive 

but not necessarily 

integers.

Why did the 

Babylonians need to 

consider two different 

types of quadratic 

equations? You may 

wish to explore their 

methods for solving 

these equations and 

their contributions 

to the progress of 

mathematics.

{ Continued on next page
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c 3 6 2 02p x p x
a b c
   

+ − − =( )

⇒ =
− −( ) ± −( ) − ⋅ ⋅ −( )

x
p p p

p

6 6 4 3 2

2 3

2

=
− −( ) ± − + +p p p p

p

6 12 36 24

6

2

=
− −( ) ± + +p p p

p

6 12 36

6

2

= =
− −( ) ± +( ) − −( ) ± +( )p p

p

p p

p

6 6

6

6 6

6

2

⇒ = = − = =
− + − − − + + +

x x
p p

p

p p

p p

6 6

6

1

3

6 6

6

2
or

Exercise 3A

1 Solve these quadratic equations, giving your answers in exact 

form.

a 2x 2 – 3x = 0 b 3x 2 – 75 = 0

c 5x 2 – 4x = 0 d 7 + 28x 2 = 0

e 242x 2 + 2x = 0 f 2 8 02x − =

g πx 2 – 11x = 0 h ex 2 3 0− =

2 Use the quadratic formula to solve these equations. Check your 

answers with a GDC.

a 2x 2 + 5x + 2 = 0 b 3x 2 – 10x + 3 = 0

c 5x 2 + 3x – 2 = 0  d 21x 2 + 5x – 6 = 0

e 9x 2 – 6x + 35 = 0 f 122x = 143x 2 + 24

3 Solve these equations and write the solutions in exact form. 

Check your answers with a GDC.

a x 2 + 4x + 2 = 0 b 5x 2 – 6x – 1 = 0

c 3x 2 – x – 3 = 0 d 2x 2 + 11x + 13 = 0

e 11x 2 =  23x – 7 f 29x = 5x2 – 41 

4 Solve for x:

a x 2 + px – 2p 2 = 0 b kx 2 + (k + 2) x + 2 = 0

c 2ax 2 + 6 = ax + 12x d x 2 – 2a 2 = b 2 – ax – 3ab

This problem cannot 

be solved by a GDC 

because it requires 

a Computer Algebra 

System.
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Discriminant of a quadratic equation

A quadratic equation can have:

● two real roots

● one repeated real root

● no real roots.

Example 

Solve these equations.

a 3x 2 + 5x − 2 = 0

b 4x 2 + 12x + 9 = 0

c 5x 2 + x + 4 = 0

Answers

a 3 5 2 02

2
5 5 4 3 2

2 3

5 25 24

6

5 49

6
x x x+ − = ⇒ = = =

− ± ( ) − ⋅ ⋅ −( ) − ± + − ±

⇒ = = − = =
− − − +

x x
5 7

6

5 7

6

1

3
2 or

b 4 12 9 02

2
12 12 4 4 9

2 4
x x x+ + = ⇒ =

± −( ) − ⋅ ⋅

= = =
− ± − − ±12 144 144

8

12 0

8

3

2

c 5 4 02
21 1 4 5 4

2 5

1 1 80

10
x x x+ + = ⇒ = =

− ± − ⋅ ⋅ − ± −

⇒ = ∉
− ± −

x
1 79

10


Investigation –  the general quadratic 
function

A general quadratic function can be written y = ax2 + bx + c, with 

a, b, c ∈, a ≠ 0. By using completing the square  nd the location of 

the minimum (a > 0) or maximum (a < 0) point on this curve. Hence, or 

otherwise,  nd the conditions on the coef cients a, b, c which determine 

how many solutions there are to the equation ax2 + bx + c = 0

The nature of  the roots in Example 2 depends on the expression 

under the square root, that is, b2 – 4ac. The expression Δ = b2 – 4ac is 

called the discriminant because it acts to discriminate between the 

three different types of  solutions.

The symbol used for 

the discriminant 

b2 − 4ac is the Greek 

letter Δ (delta).
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➔ i Δ = b 2 − 4ac > 0 

If  the discriminant is positive, you can add b ac2 4−  to –b 

and subtract  b ac2 4−  from –b. In this case, you obtain two 

different numbers so there are two distinct real roots

ii Δ = b 2 − 4ac = 0

If  the discriminant is equal to zero, adding zero to –b and 

subtracting zero from –b gives the same solution so there is 

one repeated real root

iii Δ = b 2 − 4ac < 0

If  the discriminant is less than zero, the expression under 

the square root is negative, and therefore the square root is 

not a real number. There are no real roots

Example 

Without solving the equations, determine the nature of  their roots.

a x 2 − x + 1 = 0

b 3x 2 + 30x − 75 = 0

c 5x 2 + 4x − 1 = 0

Answers

a x 2 − x + 1 = 0 ⇒

Δ = (−1)2 − 4 · 1 · 1 = 1 − 4 = −3 < 0

 No real roots. 

b 3x 2 + 30x + 75 = 0 ⇒

Δ = 302 − 4 · 3 · 75 = 900 − 900 = 0

 One real root.

c 5x 2 + 4x − 1 = 0 ⇒

Δ = 42 − 4 · 5 · (−1) = 16 + 20 = 36 > 0

 Two real roots.

Find the discriminant

Δ < 0

Find the discriminant

Δ = 0

Find the discriminant

Δ > 0

Example 

Find the value(s) of  the real parameter m so that: 

a x 2 − 6x + m = 0 has two real roots

b x 2 − mx + m − 1 = 0 has one repeated real root

c mx 2 + (2m − 1) x + 1 = 0 has no real roots

Answers

a x 2 − 6x + m = 0 ⇒

Δ = (−6)2 − 4 · 1 · m

Δ = 36 − 4m 

 36 − 4m > 0

 36 > 4m ⇒ m < 9

Find the discriminant

Simplify Δ and set Δ > 0

Solve the inequality for m

Why do we use Greek 

letters to represent 

so many quantaties 

in mathematics. You 

may wish to explore 

the ancient Greeks’ 

contributions to 

number, geometry 

or algebra. 

{ Continued on next page

Chapter 3 103



b x 2 − mx + m − 1 = 0 ⇒

Δ = (−m)2 − 4 · 1 · (m − 1)

Δ = m 2 − 4m + 4 

m 2 − 4m + 4 = 0

 (m − 2)2 = 0 ⇒ m = 2

c mx 2 − (2m − 1)x + m = 0 ⇒

Δ = (2m − 1)2 − 4 · m · m

Δ = 4m 2 − 4m + 1 − 4m 2 ⇒

1 − 4m < 0

1 4
1

4
< ⇒ >m m

Find the discriminant

Set  = 0

Solve the equation for m

Find the discriminant

Simplify  and set  < 0

Solve the inequality for m

Exercise 3B

1 Without solving the equations, determine the nature of  the roots.

a x 2 – 2x – 3 = 0  b x 2 + 10x + 25 = 0 

c 4x 2 – 3x + 2 = 0 d 5x 2 – 11x + 6 = 0 

e 3

5

4

7

2

3

2 0x x− + =
f 2 2 26 13 02x x+ + =

2 Find the value(s) of  the real parameter k so that:

a x 2 – 2x – k = 0  has one real root

b kx 2 + 3x – 2 = 0  has two real roots

c 3x 2 + 5x + 2k – 1 = 0  has no real roots

d x 2 – (3k + 2)x + k 2 = 0 has one real root

e kx 2 + 2kx + k – 2 = 0  has two real roots

f 2kx 2 + (4k + 3)x + k – 3 = 0 has no real roots

Sum and product of roots of a quadratic equation

Investigation – Viète’s theorem

A general quadratic equation ax2 + bx + c = 0, with a, b, c ∈ a ≠ 0 

has two solutions, x
1
 and x

2
. By using the quadratic formula  nd 

expressions for the sum, x
1
 + x

2
, and product, x

1
x

2
, of the two roots 

in terms of the coef cients a, b, c

The expressions you found in the investigation are known as Viète’s 

theorem.

➔ For a quadratic equation ax 2 + bx + c = 0, a, b, c ∈ , a ≠ 0 

and solutions x
1
 and x

2
, then the sum of  the roots, 

x x x x
a

c

a
1 2 1 2+ = − ⋅ =and the product of the roots, 

François Viète

(1540–1603) 

discovered a 

relationship between 

the parameters a, b

and c of a quadratic 

equation and the 

solutions x
1
 and x

2
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Example 

The roots of  a quadratic equation 3x 2 – 5x + 2 = 0 are x
1
 and x

2
. 

Without solving the equation, fi nd:

a 
1 1

1 2x x
+ b x x1

2

2

2+ c
2 2

1

3

2

3x x
+

Answers

a 
1 1

1 2

2 1

1 2x x

x x

x x
+ = +

= =

5

3

2

3

5

2

b x x x x x x1

2

2

2

1 2

2

1 22+ = + −( )

= −

= =

⎛
⎝
⎜

⎞
⎠
⎟

5

3

2

3

25

9

4

3

13

9

2

2

c 
2 2

1

3

2

3

2

3

1

3

1

3

2

3
2

x x

x x

x x

+

= +

=
+( ) − +( )

( )
2 1 2

3

1 2 1 2

1 2

3

3x x x x x x

x x

= ⋅

⎛
⎝
⎜

⎞
⎠
⎟ ⋅ ⋅

⎛
⎝
⎜

⎞
⎠
⎟

2

5

3
3

2

3

5

3

2

3

3

3

= ⋅ = ⋅ =2 2

125

27

10

3
8

27

35

27
8

27

35

4

Apply the theorem: 

x x x x1 2 1 2

5

3

2

3
and+ = ⋅ =

Use the binomial formula 

(A + B) 2  A 2 + 2AB + B 2

Use the binomial formula 

(A + B) 3  A3 + 3A2B + 3AB 2 + B 3

The binomial formula 

is discussed in 

Section 1.8

Exercise 3C

 Given a quadratic equation whose roots are x
1
 and x

2
, fi nd the 

indicated expression without solving the equation.

 a x x
x x

2

1 2

3 2 0
2 2− + = +, b 3 5 1 0 3 32

1

2

2

2x x x x− + = +,

 c 5 3 02

1

2

2

2

1 1
x x

x x
+ + = +, d x x x x2

1 2

2
2 4 0− + = −( ),

 e 2 4 3 02

1

3

2

3x x x x− + = +, f x x
x x

2

1

4

2

4
3 1 0

1 1+ + = +,

 g 4 7 1 02

1

3

2

2

1

2

2

3x x x x x x− + = +, h 7 4 5 02

1 2

4
x x x x+ − = −( ),
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Algebraic vs. geometric introduction to 
complex numbers

Algebraic approach

Historically, complex numbers were fi rst encountered when solving 

cubic equations. However, in modern mathematics, these numbers 

appear naturally as solutions of  quadratic equations as we shall see 

in this section.

Since the square of a real number is always a non-negative number, a 

quadratic equation of the form x 2 = c, c ∈  has no real solution. If  

you say that the simplest such equation x 2 = –1 has solutions you can 

develop a whole new algebra starting from x = ± −1

In medieval Italy, mathematical tournaments were very popular and solving 

cubic equations distinguished the winners. These mathematicians discovered 

the formula for solutions of cubic equations and basically introduced complex 

numbers.

Scipione dal Ferro (1465–1526) solved a cubic equation with no quadratic 

term which helped Niccolò Fontana Tartaglia (1499–1557) to discover the 

formula. He shared his knowledge with Gerolamo Cardano (1501–1576) 

who published it in his algebra book Ars Magna. Cardano introduced complex 

numbers of the form a b a b+ − ∈ ∈
+, ,  . Mathematicians realised that 

the two parts could not be combined and the second part was called an 

imaginary or even impossible part. 

René Descartes (1596–1650) was the  rst person to establish the term 

imaginary part and John Wallis (1616–1703) made huge progress in giving 

a geometric interpretation to 1

Leonhard Euler (1707–1783) was the  rst mathematician to use the 

symbol i = −1 and he called it an ‘imaginary unit’. 

Dose the terminology 

‘complex’ and 

‘imaginary’ make 

these numbers seem 

unnatural? Are they 

simply the inventions 

of mathematical 

minds?

Today complex numbers are used in many real world applications.

You can write all the solutions of  the equation x 2 = c, c ∈  as 

x i c id= ± − = ± , d ∈ +. Numbers like  id are purely imaginary 

number. 

Complex numbers have the form z = a + ib, a, b ∈ , where a is called 

a real part, Re(z) = a, and b is called an imaginary part, Im(z) = b, 

of  the complex number z. 

➔ When b = 0, z = a + i · 0 = a. Since the complex number does 

not have a part containing i, it reduces to a real number. 

Similarly, when a = 0, z = 0 + ib = ib. Since the complex 

number has only a part containing the imaginary unit i, it is 

called a purely imaginary number.

The  rst person to 

mention the square 

root of a negative 

number was Heron 

of Alexandria

(c.10–c.60. CE) 

when discussing the 

volume of frustum 

of a pyramid whose 

side lengths were 

impossible.

c c

c c

ci

= − × −

= − × −

= ± −

1

1

c is negative so c

is positive and has a 

real square root.

± − = ±c d  where 

d ∈+
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Example 

Find the real and imaginary parts of  these complex numbers.

a z = 3 + 2i b z = 5i – 4

c z i= − +
2

3
3 d

3 11 11i
z




Answers

a z i
z

z
= +

=
=

⇒
( )
( )

⎧
⎨
⎪

⎩⎪
3 2

3

2

Re

Im

b z i
z

z
= −

= −

=
⇒

( )
( )

⎧
⎨
⎪

⎩⎪
5 4

4

5

Re

Im

c z i
z

z

= − + ⇒
= −

=

( )

( )

⎧

⎨
⎪

⎩
⎪

2

3

2

33

3

Re

Im

d
 

 

3

3

23

11 23

11

Re

Im

i
z

z

z







 





 



Geometric approach

Real numbers can be visualised on the number line that 

was introduced by John Wallis. Each point on the line 

represents one real number. In order to have numbers 

other than real numbers, we need to expand the 

line into the second dimension, which results in 

the complex plane. 

x

y

0

2

–2

The complex plane is a two-dimensional coordinate plane where the 

usual coordinate axes x and y are now called the real and imaginary 

axes respectively. Each complex number z = x + iy is represented by 

a point P(x, y) in the plane where the coordinates are the real and 

imaginary parts of  the complex number itself.

The  rst person to set up the plane 

model of complex numbers was 

Jean-Robert Argand (1768–1822). 

Carl Friedrich Gauss (1777–1855) 

independently developed and re ned 

the plane model and therefore the 

geometrical visualization of complex 

numbers in a plane is known as an 

Argand diagram or Gaussian 

plane
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Example 

Plot these complex numbers in the Argand diagram.

3 + 2i, 2 – i, –3 – 3i, – 4 + i, 3i and – 2.

Answer

1 2 3 4–1–2–4 –3 x

iy

–4 + i

–3 – 3i

2 – i

3 + 2i

3i

–2

2

3

–1

–2

–3

–4

4

1

0

Modulus of a complex number

You saw in Chapter 2 that the modulus, or absolute value, of  a real 

number was algebraically defi ned as x
x x

x x
=

≥

− <

⎧
⎨
⎩

,

,

0

0
. Geometrically 

it represents the distance from the number x on the number line to 

the origin 0. You can extend this idea to complex numbers: the 

modulus of  a complex number |z| is the distance from the point 

P(x, y) (which represents the complex number z = x + iy) to the 

origin (0, 0) in the complex plane.

To fi nd the distance between two points in a coordinate 

plane use Pythagoras theorem.

imaginary axis

real axis

z = x + iy

0

z x y x y z z= −( ) + −( ) = + = ( ) + ( )0 0
2 2 2 2 2 2Re Im

The geometric interpretation will be discussed further in Chapter 12.

➔ z x iy x y= + = +
2 2

The real part is 

measured along the 

real axis (horizontal 

axis) and the 

imagniary part along 

the imaginary axis 

(vertical axis).
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Example 

Find the modulus of  these complex numbers.

a 3 – 4i b − +7 11i c
− −5 12

13

i

Answers

a 3 4 3 42 2
− = + −( )i = + = =9 16 25 5

b − + = −( ) + ( )7 11 7 11
2 2

i = + = =49 11 60 2 15

c
− −

= −⎛
⎝
⎜

⎞
⎠
⎟ + −⎛

⎝
⎜

⎞
⎠
⎟

5 12

13

5

13

12

13

2 2
i =

+
= =25 144

169

169

169
1

Exercise 3D

1 Find the real and imaginary parts of  these complex numbers.

a z = 3i b z = –7 c z
i= 18 12

8

d z i= +11

4

7

5
e




2

4 2

3

i
z

2  Find the modulus of  these complex numbers.

a 12 + 5i b –24 – 7i c 2 2 5+ i

d 
− +21 20

29

i
e



 3 4i

. Operations with complex numbers

Two complex numbers are equal if, and only if, their real and imaginary 

parts are equal

So given that z
1

= a
1
 + ib

1
, z

2
= a

2
+ ib

2
 and a

1
, b

1
, a

2
, b

2
∈ 

(z
1

= z
2
) ⇔ (a

1
= a

2
 and b

1
= b

2
)

or

(z
1

= z
2
) ⇔ (Re(z

1
) = Re(z

2
) and Im(z

1
) = Im(z

2
))

Why is it not possible 

to de ne inequality 

relations (<, >) on 

complex numbers? 

Find reasons to 

declare the following 

statements false:

• i > 0 

• i < 0

Addition and subtraction of complex numbers

The addition of  complex numbers is defi ned in a very natural way:

➔ z
1
 + z

2
 = (a

1
 + ib

1
) + (a

2
 + ib

2
) = (a

1
 + a

2
) + i (b

1
 + b

2
)

Likewise,

➔ z
1
 – z

2
 = (a

1
 + ib

1
) – (a

2
 + ib

2
) = (a

1
 – a

2
) + i (b

1
 – b

2
)
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Multiplication of complex numbers by a 
real number

To multiply a complex number by a real number use the distributive 

property.

➔ λz = λ(a + ib) = (λa) + i (λb), a, b, λ ∈ 

Example 

If  z
1
 = 2 + 3i and z

2
 = 3 – 4i, calculate these and check your answers 

with a GDC.

a z
1
 + z

2
b 5 1 2

1

2
z z

Answers

a z
1
 + z

2
 = 2 + 3i + 3 – 4i

 = (2 + 3) + (3 – 4)i = 5 – i

b 5z
1
 – 

1

2
z

2
 = 5(2 + 3i) – 

1

2
(3 – 4i)

= 10 + 15i – 
3

2
 + 2i

= 
17

2
 + 17i

Multiplication of complex numbers

Use the distributive property and the fact that i 2 = –1 to multiply 

two complex numbers.

➔ z z a ib a ib a a ib a a ib i b b1 2 1 1 2 2 1 2 1 2 1 2

2

1

1 2⋅ = +( ) ⋅ +( ) = + + +


sdf

 = (a
1
a

2
 – b

1
b

2
) + i (a

1
b

2
 + a

2
b

1
)

Example 

Given that z
1
 = 2 + 3i, z

2
 = 3 – 4i and z

3
 = 1 – i, calculate these and 

check your answers with a GDC.

a z
1
 · z

2

b z
1
 · z

3
 – 3z

2

Answers

a z
1
 · z

2
 = (2 + 3i) · (3 – 4i) 

 = 6 + 9i – 8i – 12i 2 = 6 + i –12 · –1

 = 18 + i

This formula is not 

simple to memorize. 

In practice it is 

easier to apply the 

distributive property 

each time when 

multiplying complex 

numbers

{ Continued on next page
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b z
1
 · z

3
 – 3z

2
 = (2 + 3i ) · (1 – i) – 3(3 – 4i )

 = 2 – 2i + 3i – 3i – 9 + 12i = – 7 + 13i – 3 · – 1 = – 4 + 13i

Exercise 3E

1 Given that z i z i z i z
i

1 2 3 42 3 4 1 5
3

2

3 4

5
= + = − = − =

+
, and, , 

calculate these and check your answers with a GDC.

a z
1
 + z

3
b z

1
 – 2z

2
c z

2
 + z

4
d 5z

4
 – 2z

2

e 3 4 51 2 3 4z z z z+ − − f z
1

z
2
 – z

3
z

4
g  

2

3 2 4

2

3
z z z

Example 

Find a complex number z that satisfi es (4 – 2i) · z = 3z + 2 – 5i.

Answer

Let z = a + ib

⇒  (4 – 2i) · (a + ib) = 3(a + ib) + 2 – 5i Expand.

⇒ 4a – 2ai + 4bi + 2b = 3a + 3bi + 2 – 5i Collect the real and 

imaginary parts.

⇒ (4a + 2b) + (– 2a + 4b) i  = (3a + 2) + (3b – 5)i The real and 

imaginary parts 

are equal so set up a 

pair of  simultaneous 

equations.

⇒
⎧
⎨
⎪

⎩⎪

4 2 =3 2

2 4 =3 5

a b a

a b b

+ +
− + −

⇒
⎧
⎨
⎪

⎩⎪

a b

a b

+
− + −

2 = 2

2 = 5

Solve the 

simultaneous 

equations. 

⇒
( )

⎧
⎨
⎪

⎩⎪

a b

b b

= −
− − + −

2 2

2 2 2 = 5
Apply the method 

of  substitution.

⇒
⎧
⎨
⎪

⎩⎪

a b

b b

= −
− + + −

2 2

4 4 = 5
⇒

⎧
⎨
⎩

a b

b

= −
= −

2 2

5 1

⇒

⎛
⎝
⎜

⎞
⎠
⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

a

b

= − ⋅

= −

2 2
1

5

1

5

⇒

⎧

⎨
⎪⎪

⎩
⎪
⎪

⇒
a

b

z i

=

= −
= −

12

5

1

5

12

5

1

5

a b= −

= + =

2 2

2
2

5

12

5

Solve this problem by 

using the equality of 

two complex numbers.

Remember to write 

down the  nal answer 

in the form asked 

for in the question, 

especially when 

solving long questions 

involving many 

different parts.
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Conjugate complex numbers

Two complex numbers are said to be a conjugate pair if  they have 

equal real parts and opposite sign imaginary parts.

If z = a + ib then its conjugate is z∗ = a – ib

Example 

Given the complex number z = a + ib, fi nd:

a z + z* b z – z* c z · z*

Answers

a z + z* = a + ib + a – ib = 2a

b z – z*   = (a + ib) – (a – ib) 

= a + ib – a + ib = 2ib

c z · z*   = (a + ib) · (a – ib)

 = (a)2 – (ib)2

= − = +a i b a b2 2 2 2 2

1


Apply the formula

(A + B) · (A – B) = A2 – B 2

Conjugate complex numbers have these properties:

i (z ∗)∗ = z

ii (z
1
 + z

2
)∗ = z

1
∗ + z

2
∗

iii (z
1
 · z

2
)∗ = z

1
∗ · z

2
∗

iv z · z∗ = |z|2

v (z n)∗ = (z∗)n, n ∈ 

Division of complex numbers

You can divide complex numbers using several of  the properties that 

you have learnt so far. 

z

z

a ib

a ib

a ib

a ib

1

2

1 1

2 2

2 2

2 2

=
+

+

Multiply the numerator and 

denominator by the conjugate of  the 

denominator.

=
+ − −

+

a a ib a a ib i b b

a b

1 2 1 2 1 2

2

1

1 2

2

2

2

2



Multiply the numerators and notice 

that the denominator becomes a 

positive real number.

=
+( ) + −( )

+

a a b b i a b a b

a b

1 2 1 2 2 1 1 2

2

2

2

2
Separate the real and imaginary parts. 

=
+

+
+

+

a a b b

a b
i

a b a b

a b

1 2 1 2

2

2

2

2

2 1 1 2

2

2

2

2
Collect like parts in the numerator.

Again notice that this formula is not very simple. In practise it is easier 

to apply this method each time when dividing complex numbers.

➔ The division formula can be written in the form 
z

z

z z

z

1

2

1 2

2

2
=

∗

The conjugate of the 

number z is denoted 

by z*.

z + z* = 2a∈ and 

z z* ∈, a2 + b2 ≥ 0

The  rst four properties can be easily 

proved. You are asked to do this in 

Exercise 3F. The  fth property can be 

proved using repeated application of 

property iii. In Chapter 12 you will 

see a simpler way of  nding powers of 

complex numbers.
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Example 

Given that z
1
 = 5 + 5i, z

2
 = 1 + 2i and z

3
 = 3 – 2i, calculate these 

and check your answers with a GDC.

a 1

2

z

z
b

z

z z

1

2

2 3
∗

Answers

a 1

2

5 5 1 2

1 2 1 2

z i i

z i i

 


 

2

2 2

5 5 10 10

1 2

i i i  




15 5

5

i
 = 3 – i

b 
z

z z

i

i i

1

2

2 2

2
5 5

1 2 3 2
=

+

+ +
*

( )

( ) ( )
2

2

25 50 25

3 2 6 4

i i

i i i

 


  

50 1 8

1 8 1 8

i i

i i
 
   

 
 

2

2 2

50 8

1 8

i i 


 

   50 8 10 8

65 13

i i 
 

80 10

13 13
i 

Multiply the numerator and 

denominator by the conjugate of  the 

denominator.

Expand the numerator. Expand the 

denominator by using the difference 

of  two squares.

Simplify.

Expand the numerator and 

denominator.

Multiply the numerator and 

denominator by the conjugate of  the 

denominator.

Expand the numerator and 

denominator.

Simplify.

Once you know how to divide two complex numbers you can solve 

linear equations in complex numbers.

Example 

Find the complex number z that satisfi es 
z

i

z i

i

+

+
=

1

3

5

2 1

Answer

z

i

z

i
z zi i i

+

+
= + +⇒ − = −

1

3

5i

2 1
1 2 1 5 3( )( ) ( )( )

⇒ z(2i – 1) + (2i – 1) = z(3 + i) – 5i(3 + i)

⇒ z(2i – 1) – z(3 + i) = –2i + 1 – 15i + 5

⇒ z(2i – 1 – 3 – i) = –17i + 6 

⇒ z(–4 + i) = 6 – 17i

z
i

i

i

i
=

- +

- -

- -

6 17 4

4 4

24 68 6 17 41 62

16 1 17

i i i
z

    
 




+
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Exercise 3F

1 Given that z i i z i
i

1 2 3 41 4 2
1

2

5

2

2 1

3
= + = - = - =, andz z, , 

Calculate these quotients and check your answers with a GDC.

 a 
z

z

1

2

b
z

z

1

1

∗

c
z z

z

2 4

3

d
3 2

3

1 3

2 4

z z

z z+
e

z

z

1

2

2

2
∗( )

2 Find the real numbers a and b that satisfy these equations.

 a (2 + i) (a + ib) = 11 – 2i b
a ib

i
i

+
= − +

2 5
3 2

 c (3i – 2) (a + ib) = 3 + 28i d
1

2

3

4
3 2+⎛

⎝
⎜

⎞
⎠
⎟ +( ) = − +i a ib i

3 Find the real and imaginary parts of  these numbers.

 a 
3 2

4

i
b

5 2

3

i

i
c

1

3

2

1i i
+

+
d

2 3

2 3

2 3

2 3+
+i

i

i

i

4 Given the numbers z
1
 = 1 + 3i and z

2
 = 3 – i, fi nd:

 a z
1

z
2 
+ z

1
z

2
∗ b z

1
z

2 
– z

1
∗ z

2
c z

1
z

2 
+ (z

1
z

2
)∗

5 Find the complex number z that satisfi es these equations.

 a (z + 1)i = (z + 2i )(3 + 2i ) b (2z – 1) (1 + i ) = (z – 1) (2 + 3i )

 c 
z i

i

z

i

− +
+

=
+

3 2

4 3

1

1
d

3 2

2

2 5

10 15

z i

i

z

i+
=

+
+

6  What conditions must the real and imaginary parts of  a complex 

number z satisfy so that 
z

i2 7
∈?

7  What conditions must the real and imaginary parts of  a complex 

number z satisfy so that 
3 5i

z
*

 is purely imaginary?

8 Solve for z ∈:

 a |z| – z = 4 + 3i b |z| + iz = 2 – i c z 2 – z∗ = 0

9 Prove these properties of  the modulus of  a complex number.

 a |z
1

z
2
| = |z

1
|  |z

2
|  b 

11

2 2

zz

z z

 c |z n| = |z|n
d |z

1
 + z

2
| ≤ |z

1
| + |z

2
|

10 Prove these properties of  conjugate complex numbers.

 a (z ∗)∗ = z b (z
1
 + z

2 
)∗ = z

1
∗ + z

2
∗ c (z

1 · z
2 
)∗ = z

1
∗ · z

2
∗

 d z · z ∗ = |z|2
e |z| = |z ∗|
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This table lists the fundamental properties or axioms of  the 

operations on complex numbers. Other properties can be derived 

from these properties. The fi rst four axioms refer to addition and the 

next four to multiplication, while the fi nal axiom refers to both 

operations. 0 and 1 are real numbers but can be seen as complex, 

that is; 0 = 0 + 0i and 1 = 1 + 0i.

➔ Axioms of complex numbers

A For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 is a complex number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 = z

2
 + z

1
 (Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then (z

1
 + z

2
) + z

3
 = z

1
 + (z

2
 + z

3
) 

(Associativity)

A  There exists a complex number 0 = 0 +0i such that for every complex number z, 

0 + z = z + 0 = z (Additive identity)

A  For every complex number z there exists a complex number –z such that 

z + –z = –z + z = 0 (Additive inverse)

A  For every complex numbers z
1
 and z

2
 then z

1
 · z

2
 is a complex number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
z

2
 = z

2
z

1
 (Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then (z

1
z

2
) z

3
 = z

1
 (z

2
z

3
) 

(Associativity)

A  There exists a complex numbers 1 = 1 +0i such that for every complex numbers z, 

1 z = z · 1 = z (Multiplicative identity)

A  For every complex numbers z, z ≠ 0, there exists a complex numbers z–1 such that 

z · z–1 = z–1 · z = 0 (Multiplicative inverse)

A  For every complex numbers z
1
, z

2
 and z

3
 then z

1
 (z

2
 + z

3
) = z

1
z

2
 + z

1
z

3

(Distributivity of  multiplication over addition)

A structure in which addition and multiplication are de ned and satisfy 

certain rules (shown left) is called the fi eld of complex numbers. Since 

all real numbers can also be seen as complex and they satisfy the axioms, 

there is also a structure called the fi eld of real numbers

Investigation – axioms of a fi eld

Decide if these sets of numbers satisfy the axioms of a  eld A–A given above.

a The integers, 

b The rational fractions, 

c The reals, 

d Numbers of the form p + q 2 where p and q are rational fractions.
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Investigation –  further properties of 
complex numbers

Starting from the axioms of a  eld show these results.

a The additive and multiplicative identities 0 and 1 are unique. 

b –(–z) = z and (z–1)–1 = z for any complex number z

c 0 · z = z · 0 = 0 for any complex number z (Hint: consider z · (1 + 0)

d (–z
1
) · z

2
 = –(z

1
 · z

2
) for any complex numbers z

1
 and z

2

e z
1
 · –z

2
 = z

1
 · z

2
 for any complex numbers z

1
 and z

2

suppose they are not

consider 

(z
1
 + –z

1
) · z

2

Powers and roots of complex numbers

To fi nd powers and roots of  complex numbers, you use the 

binomial theorem and powers of  the imaginary unit, i

Investigation –  sum of powers of 
complex numbers

Calculate i n, n = 0, 1, 2, 3, ...

Find a general rule for i n, n ∈ . Use your general rule to  nd i 2012. 

Use the properties of negative powers to  nd a general rule 

for i n, n ∈ 

Use the results you found to investigate the these:

a i n kk

k

n

=1

,∑ > b i n kk

k

n

=1

,∑ >

c i n kk

k

n

=1

,∑ > d i n kk

k

n

=1

,∑ >

Use the Σ -notation for 

a sum. Similarly, there 

is a product notation.

1 2

1

n
k n

k

i i i i  
=

= ...

For veri cation of the 

general rule for i n, 

refer to the summary 

at the end of the 

chapter. 

Example 

Given the complex number z = 1 – 2i, fi nd: a z3 b z
5( )

*

c z
*( )

5

Check your answers using a GDC.

Answers

a z 3 = (1 – 2i )3

 = 13 – 3 · 12 · 2i + 3 · 1 · (2i )2 – (2i )3

 = 1 – 6i – 12 + 8i

 = – 11 + 2i

Use the binomial 

theorem.

Use i 2 = 1 and i 3

= 1

The binomial theorem 

states that (a + x)n


0

n
n r r

r

n
a x

r

 
 
 



{ Continued on next page
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b z 5 = z 2 · z 3

 = (1 – 2i)2 · (–11 + 2i)

 = (1 – 4i – 4) · (–11 + 2i ) 

 = (–3 – 4i) · (–11 + 2i)

 = 33 – 6i + 44i + 8 = 41 + 38i

⇒ (z 5 )∗ = 41 – 38i

c (z ∗)5 = (1 + 2i)5

=  15 + 5 · 14 · 2i + 10 · 13 · (2i )2 + 

10 · 13 · (2i)3 + 5 · 1 · (2i)4 + (2i )5

 = 1 + 10i – 40 – 80i + 80 + 32i

 = 41 – 38i

Simplify the 

calculation by fi nding 

z5 using the answer 

to part a and then 

fi nding its conjugate.

Use the square of  a 

difference.

Use the binomial 

theorem.

Use i 2 = –1, i 3 = – i, 

i 4 = 1 and i 5 = i

You can fi nd the square roots of  a complex number, z, by fi rst 

squaring z so that you can work with the real and complex parts of  

z  separately.

Example 

Evaluate 8 6i

Answer

Let z = x + yi, x, y ∈  such that 

    28 6 8 6z i z i

  (x + yi)2 = 8 − 6i

     x2 + 2xyi − y2 = 8 − 6i

2

2
2 2

3

3

8
8

2 6

x

x

x
x y

xy
y

  
      

 


  


 
 

  
 
 

   
 

  

2 4 2

2

9

3
3

8 9 8
x

x
x

x x x

y
y

  
 
 
  

    
 

   

2 24 2

3 3

9 1 08 9 0 x xx x

y y
x x

3

3

3
3

1

x
x

yy




 
 

   
 

  

⇒ z
1
 = 3 − i and z

2 
= −3 + i

Expand z and use 

i 2 = −1

Equate the real and 

imaginary parts.

Solve the simultaneous 

equations by using 

substitution.

Factorize the equation 

and apply the zero 

product property.

Notice that ±3 are the 

only real solutions for x.

Notice that the results 

in b and c are equal, 

that is, (z*)n = (z n),

n ∈  as stated in the 

properties of conjugate 

complex numbers, that 

is, (z*)n = (zn)*, n ∈ 

A GDC will always give 

just one solution, but 

you need to be aware 

is that there another 

solution which is 

the negative of the 

number on the GDC.
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The method shown in Example 16 for square roots is not an easy one and, 

for higher roots, algebraic skills are needed. In Chapter 12 you will learn a 

different method for  nding roots of complex numbers.

Exercise 3G

1 Calculate:

a i 5 + i 8 + i14 + i19 b i 123 + i 172 + i 256 + i 375

c (2 – i 53)  (3 + 2i 89) d
4 3

2 5

2010 2011

2012 2013

i i

i i+

e i i i i

i i i i

+ + + +

⋅ ⋅ ⋅ ⋅

2 3 2011

2 3 2011

...

...
f i i i i

i i i i

2 4 6 2010

2 4 6 2010

+ + + +

⋅ ⋅ ⋅ ⋅

...

...

2 Calculate these and check your answers with a GDC.

a (2 + 3i )2 + (1 – 4i )2 b (3 + 2i )2 + (3 – 2i )2 

c (3 + 2i )3 + (3 – 2i )3 d (1 + i )4 + (1 – i )4 

3 Evaluate these and check your answers with a GDC.

a 3 4+ i b 12 5i − c
5

4
3+ i

d 
55

144

1

3
− i e i f −i

4 Show that:

a (1 + i )2n = (2i )n, n ∈  b (1 + i )2n+1 = (1 + i )(2i )n, n ∈ 

5 Given that z = 1– i, fi nd the values of  n ∈  such that:

a z n is real b z n is purely imaginary.

.  Polynomial functions: graphs and operations

Historically, complex numbers appeared as roots of  polynomial 

equations which means that they can be seen as zeros of  polynomial 

functions. In this section we are going to study polynomial functions, 

their graphs and operations with the expressions that defi ne them.

Polynomial functions and their graphs

The diagrams show the graphs of  f  (x) = x n, n = 0, 1, 2, 3, ... where n

is a natural number.

1 2 3 4–1–2–4 –3 x

y

f(x) = x0
2

3

–1

–2

–3

–4

4

0 1 2 3 4–1–2–4 –3 x

y

f(x) = x
2

3

–2

–3

–4

4

1

For question 5, it may 

help to plot z, z2, z3, ... 

on an Argand diagram 

and look for a pattern.
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1 2 3 4–1–2–4 –3 x

y

f(x) = x2

2

3

–1

–2

–3

–4

4

1

0 1 2 3 4–2–4 –3 x

y

f(x) = x3

2

3

–1

–2

–3

–4

4

1

0

1 2 3 4–1–2–4 –3 x

y

f(x) = x4

2

3

–1

–2

–3

–4

4

1

0 1 2 3 4–2–4 –3 x

y

f(x) = x5

2

3

–1

–2

–3

–4

4

1

0

1 2 3 4–1–2–4 –3 x

y

f(x) = x6

2

3

–1

–2

–3

–4

4

1

0 1 2 3 4–2–4 –3 x

y

f(x) = x7

2

3

–1

–2

–3

–4

4

1

0

Apart from the fi rst two powers of  n, n = 0 and n = 1, notice that for:

 even powers n = 2, 4, 6 ... the graphs a ‘U’ shape

 odd powers n = 3, 5, 7 ... the graphs have a ‘fl ex’ shape.

The ‘U’ shape graph has a local minimum or maximum, while the 

‘fl ex’ shape graph has a horizontal infl exion

A linear combination of  powers of  x, for example 

3 x 5 – 2 x 2 + 8x – 11, is called a polynomial

➔ A linear combination of  two functions f and g is an expression 

of  the form a f  (x) + b g (x), where a and b are real numbers. 

A linear combination of  n functions is an expression of  the 

form a f xk k

k

n

(
=

∑
1

, where f
k
 are functions and a

k
∈ .
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In general, polynomials can be seen as a linear

combination of  the power functions 

{1, x, x 2, x 3, x 4, x 5, ...}

Polynomials are real functions of  the real variable 

f  :  →  of  the form f  (x) = a
n
x n + a

n–1
x n–1 + ...+ a

1
x + a

0
, 

where a
k
∈ , k = 0, ... , n are called the coeffi cients. 

The highest power of  the variable x n is called the 

degree of  the polynomial, deg( f  ) = n

Polynomials of degree 0, 1, 2 and 3

 Constant function f  (x) = c, c ∈ . The graph is a 

horizontal line. The degree of  a constant polynomial is zero.

1 2 3 4–1–2–4 –3 x

y

f(x) = 2
3

–1

–2

–3

–4

4

1

0 1 2 3 4–1–2–4 –3 x

y

i(x) = 0

2

3

–1

–2

–3

–4

4

1

0

 Zero polynomial θ (x) = 0. The graph is again a horizontal 

line but this time it is the x-axis itself.

 Linear function f  (x) = mx + c, m ≠ 0. This is a polynomial of  the 

fi rst degree. The graph is a straight line. By changing the parameters 

m and c, you change the steepness and the position of  the line.

–1–2–4 –3 x

y

2

3

–2

–3

–4

4

1

0

f(x x – 1
1

2

–1–2–4 –3 x

y

2

3

–1

–2

–3

–4

4

1

0

f(x x + 1
3

2

 Quadratic function f  (x) = ax2 + bx + c, a ≠ 0. This is a polynomial 

of  the second degree. The graph is a parabola, ‘U’ shaped, whose 

axis of  symmetry is a vertical line. By changing the parameters a, b

and c, you change the shape (wide or narrow), concavity (opens 

upwards or downwards) and position of  the parabola.

The word ‘polynomial’ means ‘many 

terms’. A polynomial of one term is 

called a monomial, of two terms a 

binomial, and of three terms a trinomial.

You use the notation (x) = 0 for the 

zero polynomial to distinguish it from 

other polynomials. The zero polynomial 

also has an important property as 

an additive identity element for 

polynomials, that is, 

f  (x) + (x) = 

(x) + f  (x) = f  (x)

for all polynomials f  
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10 2 3 4–1–2–7 –6 –5 –4 –3 x

y

4

6

8

2

f(x x2 + x + 1
1

3

1 2 3–1–4 –3 x

y

4

–8

–6

–4

–2

2

0

f(x) = –3x2 – 4x + 2

Investigation – parameters of parabolas

Given a quadratic function f (x) + ax2 + b(x) + c, a ≠ 0, investigate the 

effect of the parameters a, b and c on the shape and the position 

of the parabola in the coordinate system. In Chapter 2 you were 

investigating the form f (x) + a (x – h)2 + k, a ≠ 0, where h and k were 

horizontal and vertical translations, respectively. Use this to  nd the 

effect of the parameter b

  Cubic function, f  (x) = ax 3 + bx 2 + cx + d, a ≠ 0. This is a 

polynomial of  the third degree. 

1 2 3 4–1–2 x

y
f(x) = x3 + 6x2 + 12x + 8

2

–1

–2

–3

–4

1

0 –1–2–4 –3 x

y
f(x) = –x3 + 3x2 – 3x + 2

2

3

–1

–2

–3

–4

4

1

0

2 4 6–2–8 –6 x

y

4

6

8

–2

2

f(x x3 + 2x2 – x – 2
1

2

–2–4 –3 x

y

6

10

8

–4

–2

2

0

f(x) = –2x3 – 4x2 + 5x + 7

Cubic graphs have two different shapes. One shape looks like a 

‘fl ex’ shape. The second shape is a combination of  two ‘U’ shapes 

opening in opposite directions.
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Investigation – parameters of cubics

Given a cubic function f  (x) = ax 3 + bx2 + cx + d, a ≠ 0, investigate the 

effect of the parameters a, b, c and d on the shape and the position 

of the graphs. Start your investigation by taking two parameters 

at a time, for example a and b, c and c, a and d

One interesting feature of polynomials of the same degree and with the same 

leading coef cient is that even though locally the graphs look very different 

if you change the scale on the axes they look very similar. For example, for a 

polynomial in x 3, f  (x) increases rapidly for large values of x

–4 –3 x

y
f(x) = x3 – 3x2 + 3x – 2

f(x) = x3 + 2x2 – x – 2

2

3

–2

4

1

0 10 20–10–20 x

y
f(x) = x3 – 3x2 + 3x – 2

f(x) = x3 + 2x2 – x – 2

1000

–1000

–2000

2000

0

The functions f  (x) = x3 – 3x 2 + 3x – 2 and f (x) = x 3 + 2x 2 – x – 2 behave 

like polynomials that have only the leading term, x 3, since for extremely large 

values of x, both positive and negative, the other terms are insigni cant to 

the total value and can be neglected. This is the so-called ‘end behavior’ 

property of polynomials.

The end behavior of 

a polynomial function 

is determined by its 

degree and by the 

sign of its leading 

coef cients. 

Polynomials are continuous functions, which means that 

you can draw their graphs without lifting the pen from the paper. 

You have to proceed in one direction (usually from left to right). 

Their graphs are also smooth curves with no sharp points.

Polynomials of  degree 4 are called quartic functions and 

polynomials of  degree 5 are called quintic functions. 

Special names are not usually used for polynomials of  

degree greater than 5.

In a graph of  a polynomial of  a higher degree you can 

see different types of  ‘U’ and ‘fl ex’ shapes. 

The graph shows a quintic polynomial.

x

y

0

‘U’ shape

‘U’ shape

‘Flex’ shape
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Investigation – high–degree polynnomials

1 Describe all the possible shapes of the graphs of polynomials of 

fourth degree. How many of each of the shapes of lower 

degree (2 and 3) can you have in those polynomials?

2 Describe all the possible shapes of the graphs of polynomials of 

 fth degree. How many of each of the shapes of lower 

degree (2, 3 and 4) can you have in those polynomials?

3 How many of each of the shapes of lower degree can you have 

in the polynomials of nth degree? 

Operations with polynomials

Two polynomials f  (x) = a
n
x n + a

n–1
x n–1 + ... + a

2
x 2 + a

1
x + a

0
 and 

g (x) = b
m
x m + b

m–1
x m–1 + ... + b

2
x 2 + b

1
x + b

0
 are equal if  

and only if:

i they have the same degree, n = m

ii  all the corresponding coe  cients are equal a
k
 = b

k

for all k = 0, 1,..., n. 

Addition and multiplication of  polynomials and multiplication by a 

real number follow the same rules for algebraic expressions that you 

met in the “Before you start” section.

➔ The degree of  a linear combination of  two polynomials is not 

larger than the maximum of  the degrees of  either polynomial.

deg(λ f  (x) + μ g (x)) ≤ max{deg(f  (x)), deg(g (x))}

Example 

Given the polynomials f  (x) = 4x 4 + 3x 3 − 2x 2 + 6x − 2 and 

g(x) = 2x 3 − 5x 2 + x − 3, fi nd f  (x) g(x).

Answer

The standard algebraic method is diffi cult to follow because so many 

terms arise. It is usually easier to use the ‘grid method’.

4x 4 3x 3 –2x 2  6x –2

2x 3 8x 7 6x 6 – 4x 5 12x 4 – 4x 5

–5x 2 –20x 6 –15x 5 10x 4 –30x 3 10x 2

x 4x 5 3x 4 –2x 3 6x 2 –2x

–3 –12x 4 –9x 3 6x 2 –18x 6

The ‘grid method’ makes it easier to simplify the like terms.

f  (x) g(x) = 8x7 – 14x 6 – 15x 5 + 13x4 – 45x 3 + 22x 2 – 20x + 6

The grid method for 

multiplication is also 

knwon as the ‘box 

method’.
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➔ The degree of  the product of  two polynomials is 

the sum of  the degrees of  the factor polynomials: 

deg (f  (x) g (x)) = deg(f  (x)) + deg(g (x))

Example 

Given the polynomials f  (x) = x2 + ax − 3 and g(x) = x2 − 4x + b,

fi nd the values of  the real parameters a and b such that 

f  (x) ⋅ g(x) = x4 − 22x2 + 9

Answer

f  (x) ⋅ g (x) = (x2 + ax − 3) ⋅ (x2 − 4x + b)

=  x4 + (a − 4)x3 + (a + 12 + b) x2

+ (ab − 12)x − 3b

= x4 − 22x2  + 9

⇒

− =

− − + = −

− =

− =

⎧

⎨

⎪
⎪

⎩

⎪
⎪

a

a b

ab

b

4 0

4 3 22

12 0

3 9

⇒
=

= −

⎧
⎨
⎩

a

b

4

3

Use distribution.

Simplify.

Make the corresponding 

coeffi cients equal.

Check that the values 

of  a and b satisfy all the 

equations.

Exercise 3H

1 The polynomials f  (x) = 2x 2 + 3x + 1 and g (x) = 3x 2 – 2x – 5 are 

given. Find the real parameters λ and μ such that:

a λ ⋅ f  (x) + μ ⋅ g (x) = 13x + 13

b λ ⋅ f  (x) + μ ⋅ g (x) = 26x 2 + 26x

2 Use the ‘grid method’ to fi nd the product of  the polynomials f

and g given that:

a f  (x) = x 3 – 2x and g (x) = x 2 + 2 

b f  (x) = 27x 3 – 36x 2 + 48x – 64 and g (x) = 3x 2 + 7x + 4 

3 Given the polynomials f  (x) = ax 2 – 3x + 5 and g (x) = 7x 2 + bx – 3, 

fi nd the values of  the real parameters a and b such that 

f  (x) ⋅ g (x) = 14x 4 – 17x 3 + 23x 2 + 19x –15

4 Given the polynomials f  (x) = x 3 + ax 2 – x + 2 and g (x) = 2x 2 + bx + c,

fi nd the values of  the real parameters a, b and c such that  

f  (x) ⋅ g (x) = 2x 5 – 5x 4 + 3x 3 + 5x 2 – 8x + 4

5 Given that a polynomial f  (x) = x 4 + 6x 3 + ax 2 + bx + 4 can be 

written in the form f  (x) = (x 2 + px + q)2, fi nd the values of  a and b

and the polynomial in the required form.
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6 Find the polynomial g such that g(x) = f  (x – 2), where 

f  (x) = x 3 + 12x 2 + 6x + 3

7 Find the polynomial f such that f  (2x – 1) = 16x 4 – 32x 3 + 12x 2

8 All the coeffi cients of the polynomial f  (x) = ax 4 + bx 3 + cx 2 + dx + 

e are positive integers smaller than 10. Find the polynomial given 

that f  (0) = 4 and f  (10) = 32 584

Division of polynomials

You divide two polynomials using long division.

Example 

Use long division to divide 

2x 4 + 4x 3 + 3x 2 + 2x – 7 

by 

x 2 + x + 2 

Answer

x x x x x x

x x x

x x x

x

x x
2 4 3 2

4 3 2

3 2

3

2

2 2 4 3 2 7

2 2 4

2 2

2

2 2 3
+ + + + + −

+ −

− + +

− +

( )

22 4

3 2 7

3 3 6

1

2

2

2

x x

x x

x x

x

+

− − −

− − −

( )

( )

Divide x 2 into 2x 4

Multiply divisor 2x 2

Divide x 2 into 2x 3

Multiply divisor by 2x

Divide x 2 into 3x 3

Multiply divisor by 3

Remainder is x − 1

2 4 3 2 7

2 2 2 3 1

4 3 2

2 2

x x x x

x x x x x

+ + + −

= + + + − + −( ) ( ) ( )

Stop when the degree of  

the remainder is smaller 

than the degree of  the 

divisor.

➔ Theorem

For any two polynomials f  and g there are unique polynomials 

q and r such that f  (x) = g (x) q (x) + r (x), for all real values of  x

The polynomial q is called the quotient and the polynomial r is 

called the remainder. The degree of  the polynomial r is smaller than 

the degree of  the polynomial g. 

The same algorithm 

is used to divide 

numbers. Consider 

657 ÷ 21

21 657
31

63

27
21

6

So 657 = 21.31 + 6

The proof of this 

theorem uses the 

Euclidian algorithm 

that is part of the 

Discrete option.

dividend = divisior 

quotient + remainder
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Example 
Use long division to fi nd the quotient and remainder when dividing 

f  (x) = 2x 4 − 7x 3 − 7x 2 + 14x + 5 by g(x) = 2x + 3 

Answer

)2 3 2 7 14 5
4 1

4 3 2

3 2

7

5

x x x x x

x x x

+ − + +

+ +

−(2x 4 +3x 3)

−10x 3 − 7x 2 + 14x + 5

− ( 10x 3 − 15x 2)

8x 2 + 14x + 5

 −(8x 2 + 12x)

2x + 5

 −(2x + 3)

2 ← remainder 

So the quotient is q (x) = x 3 − 5x 2 + 4x + 1 and the remainder is r (x) = 2

Therefore, 

2x 4 − 7x 3 − 7x 2 + 14x + 5 = (2x + 3)  (x 3 – 5x 2 + 4x + 1) + 2  

Exercise 3I

1 Use long division to divide f  by g if:

a f  (x) = x 4 + 5x 3 + 8x 2 + 3x – 2 and g (x) = x + 2

b f  (x) = x 5 + 3x 4 + x 3 – 4x 2 –2x + 1 and g (x) = x 2 – 1

c f (x) = 2x 5 – 3x 4  + x 3 – 2x 2 + 3x  – 1 and g (x) = x 2 + x + 1

2 Use long division to fi nd the quotient and remainder when 

f is divided by g given that:

a f  (x) = 2x 4 + 5x 3 + 4x 2 + 4x + 3 and g (x) = x + 1

b f  (x) = 3x 4 + 4x 3 + 6x 2 – 2x + 6 and g (x) = x 2 + 2x + 3

c f  (x) = x 6 + x – 1 and g (x) = x 2 + x + 1

Polynomial remainder theorem

➔ Given a polynomial 

f x a x a x a x a x a a k n an

n

n

n

k n( ) ... , , , , ... , ,= + + + + + ∈ = ≠1

1

2

2

1 0 0 1 0

and a real number p, then the remainder when f  (x) is divided by a 

linear expression (x – p) is f  (p).

Proof:
In the unique decomposition of the polynomial f  (x) = (x – p) q (x) + r, 

where the remainder r is a constant (one degree less than the 

divisor) we input x p f p p p q p r f p r= ⇒ = −( ) + ⇒ =( ) ( ) ( )

0



 QED

The polynomial 

remainder theorem 

is also known 

as ‘Bézout’s 

little theorem’. 

Étienne Bézout
(1730–1837) was 

inspired by the work 

of Euler and so 

decided to become 

a mathematician. 

In 1763 he was 

appointed examiner 

of the Gardes de 

la Marine (French 

Naval Academy) 

with the special 

task of composing 

a textbook 

for teaching 

mathematics to 

the students.
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Factor theorem 

➔ A polynomial 

f x a x a x a x a x a a k n an

n

n

n

k n( ) ... , , , , , ... , ,= + + + + + ∈ = ≠1

1

2

2

1 0 0 1 2 0

has a factor (x – p), p ∈  if  and only if  f ( p) = 0.

This theorem is a direct consequence of  the remainder theorem. 

Its proof  is left as an exercise for you.

To evaluate a polynomial for a certain value of  the variable x,

William George Horner (1786–1837) discovered an algorithm that 

can be used in many different cases.

If  you want to fi nd the value of  f  (x) = 3x 3 –2x 2 –5x – 1 when x = 2, 

select the coeffi cients of  all terms, including missing terms, and 

organizethem in a tabular form:

3

6

+ + +

–2 –5 –1

3 4

8

3 5

f   (x) = ((3 · x – 2) · x – 5) · x – 1

 f (2) = (( 3 · 2 – 2) · 2 – 5) · 2 – 1

 = ((6 – 2) · 2 – 5) · 2 – 1

 = (4 · 2 – 5) · 2 – 1

 = (8 – 5) · 2 – 1

 = 3 · 2 – 1

 = 6 – 1

 = 5

Example 

Use Horner’s algorithm to fi nd the remainder when dividing 

f  (x) = 5x3 + 13x2 − 11x + 7 by g (x) = x + 3

Answer

x + 3 = x − (−3) ⇒ r = f  (−3)

5

–15

+ + +

13 –11 7

6

225 –2 –5

r = f  (−3) = 22

Use the remainder theorem.

Use Horner’s algorithm.

f   (–3) = (( 5 · –3 + 13) · –3 – 11) · 

–3 + 7

 = ((–15 + 13) · –3 – 11) · –3 + 7

 = (–2 · –3 – 11) · –3 + 7

 = (6 – 11) · –3 + 7

 = –5 · –3 + 7

 = 15 + 7

 = 22

Since the algorithm also gives the quotient you can use successive 

division to search for factors of  a polynomial.

When you use 

Horner’s algorithm, 

apart from getting the 

remainder (in the last 

row) you also obtain 

the coef cients of the 

quotient polynomial, 

q(x) = 5x 2 – 2x – 5

This is the reason why 

this algorithm is also 

known as synthetic 

division. 

Investigate Horner’s 

algorithm. Prove the 

general form of the 

algorithm and  nd in 

which other cases it 

can be used.
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Example 

Show that (x − 2) and (x + 5) are factors of  the polynomial 

f  (x) = 2x3 + 13x2 + x − 70

Answer

x − 2 ⇒ r = f  (2) Use the remainder theorem and note 

that the remainders must be zeros 

forfactors.

x + 5 = x − (−5) ⇒ r = q (−5)

2

4

+ + +

13 1 –70

2 17

34

35 0

–5 •

+ +

2 7 0

–10 –35

Use Horner’s algorithm.

f  (2 ) = ((2 · 2 + 13) · 2 + 1) · 2 − 70

= ((4 + 13) · 2 + 1) · 2 − 70

= (17 · 2 + 1) · 2 − 70

= (34 + 1) · 2 − 70

= 35 · 2 − 70

= 70 − 70

Use Horner’s algorithm.

q (x ) = 2x 2 + 17x + 35

q (–5 ) = (2 · –5 + 17) · –5 + 35

= (–10 + 17) · –5 + 35

= 7 · –5 + 35

= –35 + 35

= 0

Exercise 3J

1 Use synthetic division to fi nd the quotient and remainder when 

polynomial f is divided by g given that:

a f  (x) = x 3 – x 2 – 4x – 5 and g (x) = x – 3 

b f  (x) = 2x 3 + 5x 2 + 4x + 3  and g (x) = x + 1 

c f  (x) = x 5 – 3x 3 – 2x + 1 and g (x) = x + 2

d f  (x) = 3x 6 – 2x 4 + 5x 2 – 2  and g (x) = x – 1

2  Show that (x – 2) and (x + 3) are factors of  

f  (x) = 4x 4 – 27x 2 + 25x – 6.

Since the remainders 

are zeros you could 

proceed with the 

quotient polynomial 

as the quotient 

polynomial contains 

x + 5 as a factor. 

Notice that the last 

factor is 2x + 7. 
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Corollary

Given a polynomial 

f x a x a x a x a x a a i n an

n

n

n

i n( ) ... , , , , ... , ,= + + + + + ∈ = ≠1

1

2

2

1 0 0 1 0

and real numbers a and b, a ≠ 0, then the remainder when f  (x) is 

divided by a linear expression (ax – b) is f
b

a

⎛
⎝
⎜

⎞
⎠
⎟

The proof  can be conducted in a similar way to that of  the theorem 

proof. The proof  is left as an exercise for you.

In order to use synthetic division when dividing by a linear 

expression (ax – b) you have to modify the algorithm. 

f  (x) = (ax – b) q (x) + r

⇒ = − +⎛
⎝
⎜

⎞
⎠
⎟ ( )f x a x q x r

b

a
( )

⇒ = − +⎛
⎝
⎜

⎞
⎠
⎟ ( )( )f x x a q x r

b

a
( ) ⋅ ⋅

Example 

Use the synthetic division to fi nd the quotient and remainder when 

dividing f  (x) = 2x 4 − 7x 3 − 7x 2 + 14x + 5 by g(x) = 2x + 3

Answer

g x x x( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= + = −2 3 2

3

2

2

–3 –12 –3

+ + + +

–7 –7 14 5

2 –10

15

8 2 2

3

2
–    •

So the quotient is q (x) = x 3 − 5x 2 + 4x + 1 

and the remainder is r (x) = 2. 

Use the remainder theorem.

Use synthetic division.

Example 

When polynomial f  (x) = x 3 − 2x 2 + ax + 11 is divided by (x − 2) the 

remainder is 1. Find the value of  a

Answer

1

2 a

+ + +

–2 a 11

1 0

0

a 11 + 2a

11 + 2a = 1 ⇒ 2a = −10 ⇒ a = −5

Use synthetic division.

Use the remainder r = 1 

A theorem easily 

derived from another 

theorem is a corollary 

of that theorem.

The coef cients of the 

quotient polynomial 

were multiplied by 

2, so you need to 

divide them by 2 to 

obtain the quotient 

polynomial.
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Example 

Find the remainder when polynomial f  (x) = x2011 − 3x 2 + 2x − 2 is divided by x 2 − 1. 

Answer

f x x q x ax b
r x

( ) ( ) ( )= − ⋅ + +
( )

2 1


                        x = 1 ⇒ f  (1) = 12011 − 3  12 + 2  1 − 2 = −2

      x = –1 ⇒ f  (–1) = (–1) 2011 − 3  (–1) 2 + 2  –1 − 2 = −8

f q a b

f q a b

1 1 1 1 1 2

1 1 1 1 1 8

2

2

( ) ( ) ( )

( ) ( )( ) ( ) ( )

= − + + = −

− = − − − + − + = −

⎧⎧
⎨
⎪

⎩⎪

Use the theorem on unique decomposition. Note that 

the remainder is linear.

Calculate the value of  the polynomial at the zeros 

ofthe divisor.

Substitute f  (1) = −2 and f  (–1) = –8 in the unique 

decomposition.

a b

a b

+ = −
− + = −

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
+

2

8

2b = −10 ⇒ b = −5  

a − 5 = −2 ⇒ a = 3 

Therefore, the remainder is r (x)= 3x − 5

Solve the simultaneous equations by elimination.

Exercise 3K

1 Use synthetic division to fi nd the quotient and remainder when 

polynomial f is divided by g given that:

a f  (x) = 2x 5 – 3x 4 + 3x 3 + 3x 2 – 3 and g (x) = 2x – 1  

b f  (x) = 3x 4 + 4x 3 + 4x 2 – 2x + 6 and g (x) = 3x + 1 

2 When you divide the polynomial f  by the polynomial 

g (x) = x 2 + 2x – 1 you obtain the quotient q (x) = 3x – 4 and the 

remainder q (x) = x + 2. Find the polynomial f

3 Polynomial f  (x) = x 5 – 4x 4 + 3x 3 + 2x 2 – 3x + a is divisible 

by (x – 3). Find the value of  a

4 Polynomial f  (x) = x5 – 2x4 + 2x3 + bx – 1 is divisible by (x – 1). 

Find the value of  b

EXAM-STYLE QUESTIONS

5 Polynomial f  (x) = 4x 3 + 5x 2 + ax + b is divisible by (x + 2), and 

when divided by (x – 1) there is a remainder of  6. Find the 

values of  a and b

6 When polynomial f is divided by (x – 3) the remainder is 2, and 

when divided by (x + 1) the remainder is –4. Find the remainder 

when polynomial f is divided by (x 2 – 2x – 3).

7 Find the remainder when f  (x) = x 2011 + x 2010 + ... + x + 1 

is divided by (x + 1).
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8 Show that the polynomial f  (x) = (x + 1)2n + (x + 2)n – 1 is 

divisible by (x 2 + 3x + 2)  for all n ∈ +. 

9 Given a polynomial 

f x a x a x a x a x a a i n an

n

n

n

i n( ) ... , , , , ..., ,= + + + + + ∈ = ≠1

1

2

2

1 0 1 2 0

and real numbers a and b, a ≠ 0, show that when f  (x) is divided 

by a linear expression (ax – b) the remainder is f
b

a

⎛
⎝
⎜

⎞
⎠
⎟

.  Polynomial functions: zeros, sum 
and product

The fundamental theorem of algebra

The fundamental theorem of  algebra is one of  the most important 

theorems in mathematics. It establishes the existence of  the complex 

zeros of  a polynomial (points at which the value of  the function is 

zero). There are many theorems and corollaries that derive from this 

theorem which help in algebraic manipulation of  equations and 

polynomial functions. 

➔ The fundamental theorem of algebra (FTA)

A polynomial f  (x) = a
n
x n + a

n – 1
x n–1 + ... + a

2
x 2 + a

1
x + a

0
with 

real or complex coeffi cients (a
n

≠ 0) has at least one zero. 

There is an ω ∈ such that f  (ω) = 0

➔ Corollary

Each polynomial f  (x) = a
n
x n + a

n – 1
x n–1 + ... + a

2
x 2 + a

1
x + a

0

with real or complex coeffi cients can be written in a factored 

form f  (x) = a
n

(x − ω
1
 ) (x − ω

2
  ) ... (x − ω

n
 ) such that 

ω
k

∈ , k = 1, ..., n

These examples highlight the usefulness of  the theorems above.

If  a certain factor appears more than once, we say that the factor has 

a multiplicity. So, if  there are fewer than n different zeros of  the 

given polynomial, the sum of  their multiplicities will add up to n

f x a x x x k n p nn

p p

k

p

r

r

k
k( ) ( ) ( ) ( )− − − < =

=

∑= ...w w w1 2

1

1 2 , ,

This theorem was 

proved by Gauss, but 

is beyond the scope of 

this textbook.

Extension material on CD: 

See the proof of this 
theorem on the CD.
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Example 

Factorize the polynomial f  (x) = x4  6x3 + 11x 2  6x, and check your 

answer with a GDC.

Answer

f  (x) = x4  6x3 + 11x 2  6x

 = x (x3  6x2 + 11x  6)

1

1

+ + +

–6 11 –6

1 –5

–5

6 0

= x (x  1) (x2  5x + 6)

= x (x  1) (x  2) (x  3)

Apply Horner’s algorithm for 

x = 1 since the sum of  the 

coeffi cients is equal to zero. 

Apply the FTA to factorize the 

polynomial.

Factorize the quadratic expression.

Example 

Given that 2 is a zero of  the polynomial 

f  (x) = x5  4x4  3x3 + 34x 2  52x + 24 

and has a multiplicity of  3, factorize f  (x) fully and check your answer 

with a GDC.

Answer

22 •

2 •

2 •

–14

+ + +

40

+

–24

+

+ +

1 –2

–4

–7

1 0 –7 6 0

20 –12 0

1 –4 –3 34 –52 24

2 0

+

–14

+

12

+ +

1 2 –3 0

2 4

+

6

Successively apply Horner’s algorithm 

with respect to the multiplicity of  the 

given zero.

f  (x) = (x  2)3 (x2 + 2x 3)

= (x  2)3 (x + 1) (x + 3)

Apply the FTA to factorize the 

polynomial. 

Factorize the quadratic expression.

On a GDC you obtain 

zeros, but for the 

factor form of the 

polynomial you need 

to use the FTA.

Due to the 

imperfection of the 

calculator’s algorithm 

you obtain the 

approximation of the 

multiple zero (2), 

without its multiplicity. 

When using a complex 

roots  nder you will 

 nd which zero has 

multiplicity, but an 

approximated value is 

given.
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Exercise 3L

1 Given that k is a zero of  multiplicity n of  the polynomial f, 

factorize it fully and check your answers with a GDC.

a k = −2, n = 2, f  (x) = 2x 4 + 3x 3 
− 10x2 

− 12x + 8

b k =
1

2
, n = 2, f  (x) = 12x 3 – 32x 2 

+ 23x − 5

2 Find a polynomial of  the smallest degree, with integer 

coeffi cients, whose zeros are:

a 1, 3 and 5

b −2, −1, 0 and 1 

c 
2

3
1 2 3, ,  and 

3 Find a polynomial of  the smallest degree, with integer 

coeffi cients, whose zeros are:

a 2 3 and 

b 
1

2

3

4
5,  and 

c − −

3

5
1 2 33,  and 

4 Factorize these polynomials and check your answers with a GDC.

a f  (x) = x 3 – 2x 2 – 5x + 6 

b f  (x) = 2x 3 – x 2 – 7x + 6 

c f  (x) = 5x 4 – 12x 3 – 14x 2 + 12x + 9 

Conjugate root theorem
Given a polynomial

f  (x) = a
n
x n + a

n – 1
x n–1 + ... + a

2 
x 2 + a

1
x + a

0
, a

k
∈ , k = 0, 1, ..., n, 

and a
n
≠ 0, that has a complex zero z, then its conjugate z* is also a 

zero of  the polynomial f.

Proof:

Using the properties of  conjugate numbers, see page 110:

f  (z) = 0 ⇒ f  (z∗) = a
n
(z∗ )n + a

n – 1
(z∗ )n–1 + ... + a

2
(z∗ )2 + a

1
(z∗ ) + a

0

 = a
n
(z  n)∗+ a

n – 1
(z  n–1)∗+ ... + a

2
(z 2)∗+ a

1
(z∗ ) + a

0

 = (a
n
z  n)∗+ (a

n – 1
z n –1)∗+ ... + (a

2
z 2)∗+ (a

1
z)∗ + (a

0
)∗

 = (a
n
z  n + a

n – 1
z n –1 + ... + a

2
z 2 + a

1
z + a

0
)∗

 = (f  (z))∗ = 0∗ = 0  QED

Conjugate of  a product.

Conjugate of  a power.

Conjugate of  a sum.
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Example 

Given that 4 + 5i is a complex zero of  the polynomial 

f  (x) = x3 – 6x2 + 25x + 82, fi nd all the remaining zeros and check your 

answers with a GDC.

Answer

x
1
 = 4 + 5i ⇒ x

2
 = 4 – 5i

Method 1

(x – (4 + 5i )) (x – (4 – 5i )) = x2 – 8x + 41

2 3 2

2

8 41 6 25 82

x

x x x x x



    

– (x3 – 8x2 + 41x)

2x2 – 16x + 82

– (2x2 –16x + 82)

0

f  (x) = (x – (4 + 5i )) (x – (4 – 5i )) (x + 2)

x – 2 = 0

⇒ x
3
 = 2

Method 2

1

4 + 5i(4 + 5i) •

(4 – 5i) •

–82

+ + +

+ +

–6 25 82

1 –2 + 5i

–33 + 10i

–8 + 10i

1 2 0

0

4 – 5i 8 – 10i

Use the conjugate zero 

theorem.

Find the quadratic factor.

Use long division to fi nd the 

last linear factor.

Successively apply Horner’s 

algorithm to.

f  (x) = (x – (4 + 5i )) (x – (4 – 5i )) (x + 2)

x + 2 = 0

⇒ x
3
 = –2

Fully factorize the 

polynomial.

Find the last remaining zero.

the complex numbers 

4–5i and 4 + 5i

To check with a GDC 

use the feature called 

‘Complex Roots of 

Polynomials’ within 

the polynomial tools.
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Example 

Given that i is a complex zero of  the polynomial f  (x) = x4 – 2x3 + 6x2 + 

ax + 5, a ∈ , fi nd the value of  a. Hence, fi nd all the remaining zeros 

and check your answers with a GDC.

Answer

1

ii i + ai – 5

+ + +

1 –2 + i

–2i – 1

5 – 2i

+

a

5i + 2

2 + a + 5i (2 + a) i

f  (i) = 0 ⇒ (2 + a) i = 0 

⇒ 2 + a = 0 ⇒ a = – 2

x
1
 = i ⇒ x

2
 = – i

1

i–i •

+ +

–2 5

0

1

–2 + i

2i

5 – 2i

+

5i

–5i

0

x2 – 2x + 5 = 0

2 ± 4 20 2 ± 4

2 2
= = = 1±2

i
x i

x
3
 = 1 + 2i, x

4
 = 1 – 2i

Apply Horner’s 

algorithm for x
1 
= i

Apply the remainder 

theorem.

Use the conjugate zero 

theorem.

Use a = – 2 and 

continue to apply 

Horner’s algorithm for 

x
2 
= −i to obtain the 

quotient.

Find the zeros of  the 

quotient polynomial.

Apply the quadratic 

formula.

Exercise 3M

1 Given a polynomial f and the zero z, fi nd all the remaining zeros.

a f  (x) = x 3 + 3x 2 + 4x + 12, z = 2i

b f  (x) = x 3 – 6x 2 + 13x – 20, z = 1 – 2i 

c f x x x x z i( ) += + + + = −5 17 21 63 2 3

2

3

2
,

d f  (x) = x 4 – 4x 3 + 5x 2 – 4x + 4, z = i 

e f  (x) = 2x 4 + 3x 3 + 17x 2 – 12x – 10, z = –1 – 3i 

f f  (x) = 2x 4 + 9x 3 + 11x 2 – 7x – 15, z = –2 + i 

g f x x x x x z i( ) += + + + + = −6 26 35 36 94 3 2 1

2

5

2
,

h f x x x x x z i( ) += − + − + =3 2 4 2 14 3 2 1

3

2

3
,

2 Given that z is a complex zero of  the polynomial f, fi nd the missing 

coeffi cients. Hence, fi nd all the remaining zeros and check your 

answers with a GDC.

a z = –1, f  (x) = x 3 – 13x + a, a ∈ 

b z = 3, f  (x) = x 3 – 7x 2 + ax – 15, a ∈ 

c z = –1 – i, f  (x) = x 4 + 2x 3 – 2x 2 – 8x + a, a ∈ 

d z = –2i, f  (x) = x 4 – 4x 3 + 9x 2 + ax + b, a, b ∈ 
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Sum and product of polynomial roots

François Viète developed formulae that connect the zeros and the 

coeffi cients of  a polynomial. Viète was the fi rst to investigate this 

connection for positive real zeros. Albert Girard was the fi rst to 

extend that to complex zeros.

Polynomials of the third degree

➔ Theorem

Given a cubic equation ax3 + bx2 + cx + d = 0, a, b, c, d ∈ , a ≠ ο

and solutions x
1
, x

2
 and x

3
 then 

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3

+ + = −

⋅ + ⋅ + ⋅ =

⋅ ⋅ = −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Proof

Using the previous results factorize the cubic polynomial 

f  (x) = ax 3 + bx 2 + cx + d = a(x – x
1
)(x – x

2
)(x – x

3
) 

⇒ + + + = − − −( )( )( )x x x x x x x x x
b

a

c

a

d

a

3 2

1 2 3

Expand the right-hand side of  the equation and equate the 

corresponding coeffi cients:

(x – x
1
)(x – x

2
)(x – x

3
) 

= (x 2 – (x
1

+ x
2
) x + x

1
x

2
) (x – x

3
) 

= x 3 – (x
1

+ x
2
) x 2 + x

1
x

2
 · x – x 2 x

3
+ (x

1
+ x

2
) x · x

3
 – x

1 
x

2 
x

3

= x 3 – (x
1

+ x
2 
+ x

3
) x 2 + (x

1
x

2
 + x

1
x

3 
+ x

2
x

3
) x – x

1 
x

2 
x

3

⇒

− + +( ) =

⋅ + ⋅ + ⋅ =

− ⋅ ⋅( ) =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3⎪⎪

⇒

+ + = −

⋅ + ⋅ + ⋅ =

⋅ ⋅ = −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3

Investigation –  Coe  cients of a quartic 
polynomial

Viéte’s formulae connect the zeros and the coef cients of a cubic 

polynomial. 

Find similar formulae that satisfy the relationship between the 

zeros and the coef cients of a quartic polynomial

f  (x) = ax 4 + bx 3 + cx 2 + dx + e, a, b, c, d, e ∈ , a ≠ 0

Albert Girard

(1595–1632) 

introduced the 

abbreviations sin, 

cos and tan for 

trigonometric functions. 

He enrolled at the 

University of Leiden 

at the age of 22. 

Before that he was a 

professional musician, 

playing the lute.

These are Viète’s 

formulae for cubic 

equations.
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Example 

Given that the roots of  a cubic equation 2x3 + 4x2 –7x + 5 = 0 are 

x
1
, x

2
 and x

3
, without solving the equation, fi nd:

a x
1
 + x

2
 + x

3
b x

1
 · x

2
 · x

3
c x

1
 · x

2
 + x

1
 · x

3
 + x

2
 · x

3

d
1

+
1

+
1

1 2 3x x x
e x

1
2 + x

2
2 + x

3
2

Answers

a = 2, b = 4, c = –7, d = 5

a x x x1 2 3
2

2+ + = - = -

b 2 3

5

2
=x x x 

1

Identify the coeffi cients of  the cubic polynomial.

Use x
1
 + x

2
 + x

3
 = – 

b

a

Use x x x1 2 3

d

a
⋅ ⋅ = −

c x x x x x x1 2 1 3 2 3

7

2
⋅ ⋅ ⋅+ + = −

d
1 1 1

=
+

1 2 3

2 3 1 3 1 2

1 2 3x x x

x x x x x x

x x x
+ +

+

= =

7

2
5

2

7

5

e x
1
2 + x

2
2 + x

3
2

 =  (x
1
 + x

2
 + x

3
)2 – 2x

1
x

2
 – 2x

1
x

3
 –2x

2
x

3

= − = + =− −2
7

2
4 11

2
2 7( ) ⎛
⎝⎜

⎞
⎠⎟

Use 1 2 1 3 2 3

c

a
x x x x x x     

Use the results found in parts a and b

Use the formula (x + y + z) 2

= x 2 + y 2 + z 2 + 2xy + 2xz + 2yz.

Use the results found in parts a and c

Theorem

Given a polynomial f  (x) = a
n
x n + a

n – 1 
x n–1 + ... + a

2 
x 2 + a

1 
x + a

0

with real or complex coeffi cients (a
n
≠ 0) and zeros x

1
, x

2
, ...,x

n
 then

x x x x

x x x x x x x x x x x

n
n

n

n

a

a
1 2 3

1

1 2 1 3 1 2 3 2 4 2

+ + + + = −

+ + + + + + +

...

... ... xx x x

x x x x

n n n
n

n

n

n

n

a

a

a

a

+ + =

⋅ ⋅ = −( )

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

...

...

1
2

1 2 3
01



➔ As a general system: 

x x x k ni i i

i i i n

k n k

n
k

k

a

a1 2

1 21

1 1⋅ ⋅ ⋅( ) = −( ) ≤ ≤
≤ < < < ≤

∑ ... ,

These are Viéte’s 

formulae for an 

‘equation’ of the n th

degree.
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Proof

The proof  is a direct consequence of  the ability to write polynomials 

in factorized form: 

f  (x) = a
n
(x – x

1
) (x – x

2
) . . . (x – x

n 
).

By expanding the right hand side and comparing coeffecients you 

obtain the given formulae.

Example 

Find the sum and product of  the zeros of  these polynomials.

a f  (x) = x4 – 3x3 + 11x2 + 17x – 4 b f  (x) = 3x5 + 11x4 – 4x3 + 5x2 – 13x + 9 

c f  (x) = 17x13 + 4x12 + 122x2 – 14x – 17 d f  (x) = 3x2012 + 7x370 – 4x25 – 15x + 2

Answers

a f  (x) = x4 – 3x3 + 11x2 + 17x – 4

n = 4, a
4
 = 1, a

3
 = –3, a

2
 = 11, a

1
 = 17, a

0
= –4

x x x x x x x x
a

a
1 2 3 4

3

4

1 2 3 4

3

1
3+ + + = − ⇒ + + + = − =

x x x x x x x x
a

a
1 2 3 4

4 0

4

1 2 3 41 4
4

1
= − ⇒ = = −( )

Identify n and the coeffi cients of  the polynomial.

Use x
1
 + x

2 
+...+ x

n
= − 

a

a

n

n

1

Use x
1 
x

2 
x

3
 ·... · x

n
= ( 1)n 

a

a

o

n

b f  (x) = 3x5 + 11x4 – 4x3 + 5x2 – 13x + 9

n = 5, a
5
 = 3, a

4
 = 11, a

0
 = 9

5 5
4

=1 =15

11

3
=r r

r r

a

a
x x    

   
5 5

5 5

1 15

9

3
1 = 1 3r r

r r

a

a
x x

 

      

c f  (x) = 17x13 + 4x12 + 122x2 – 14x – 17

n = 13, a
13

 = 17, a
12

 = 4, a
0
 = –17

13 5
12

1 =113

4

17
r r

r r

a

a
x x



    

   
13 13

5 170

1 113

17

17
1 1 1r r

r r

a

a
x x

 

      

d f  (x) = 3x2012 + 7x370 – 4x25 – 15x + 2

n = 2012, a
2012

 = 3, a
2011

 = 0, a
0
 = 2

2012 2012
2011

1 12012

0

3
x 0r r

r r

a

a
x

 

     

   
2012 2012

2012 20120

=1 =12012

2 2

3 3
1 = 1r r

r r

a

a
x x     

For a polynomial of  degree 5 

you need a
5 
, a

4
 and a

o

For a polynomial of  degree 13 

you need a
13 

, a
12 

and a
0

In part a all the 

coeffi cients were 

listed but they are 

not all needed for the 

formulae. 

For a polynomial of 

degreen you need 

a
n 
, a

n − 1
 and a

0
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Note: You can check the results for Example 31 using a GDC.

a b

c d 

In part c you have to adjust the accuracy when converting to a decimal, 

while in part d the degree of  the polynomial was too large for the algorithm 

for fi nding complex zeros. Note that for the sum and product of  the solutions 

given in the form of  a list you use the Math List menu.

Exercise 3N

1 The roots of a cubic equation 3x 
3 – 2x 

2 – 5x – 4 = 0 are x
1
, x

2

and x
3
. Without solving the equation, fi nd:

a x
1 
+ x

2
 + x

3

b x
1 
· x

2
 · x

3

c x
1
 · x

2
 + x

1
 · x

3 
+ x

2
 · x

3

d 
6 6 6

1 2 3x x x

+ +

e 9 9 91

2

2

2

3

2
x x x+ +

 Check your results using a GDC.

2 The roots of  a quartic equation 

x 
4 – 3x 

3 + 2x 
2 – 4x – 6 = 0 are x

1
, x

2
, x

3 
and x

4
. 

Without solving the equation, fi nd:

a x
1 
+ x

2
 + x

3 
+ x

4

b x
1 
· x

2
 · x

3 
x

4

c x
1 
· x

2
 + x

1 
· x

3
 + x

1 
· x

4
 + x

2
 · x

3 
+ x

2 
· x

4 
+ x

3 
· x

4

d x
1 
· x

2
 · x

3 
+ x

1
 · x

2 
· x

4
 + x

1
 · x

3 
· x

4 
+ x

2 
· x

3 
· x

4

e 
3 3 3 3

1 2 3 4x x x x

+ + +

f 
x x x x1

2

2

2

3

2

4

2

5 5 5 5
+ + +

 Check your results using a GDC.
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3 Find the sum and product of  the zeros of  these polynomials.

a f  (x) = x 4 + 2x 3 – 3x 2 + 4 x + 5

b f  (x) = 4x 6 + x 5 + 7x 4 – 3x 3 + 2x

c      
10 7 33

7
( ) 11 5 22f x x x x x

d f  (x) = 5x7007 – 4x7006 + 2x231 + 10x + 8

. Polynomial equations and inequalities

Some useful theorems

Factorization is a common method used to solve polynomial 

equations. Descartes’ rule of  sign, the integer zero theorem and the 

rational zero theorem are valid for polynomials of  all degrees and 

are an aid to fi nding factors. 

Before factorizing, it is useful to know how many real zeros to 

expect for a given polynomial. René Descartes (1596–1650), in his 

work La Géométrie, noticed the following property.

Descartes’ rule of signs

The number of  positive real roots of  a polynomial f is equal to the 

number of  sign changes (from + to − or from − to +) of  its 

coeffi cients, or an even number less. Also the number of  negative 

real roots of  a polynomial f is equal to the number of  sign changes 

of  the coeffi cients of  f  (–x), or an even number less.

For example, the polynomial f  (x) = x 3 – 7x 2 – 9x + 18 has the following 

sequence of signs: +, −, −, +. Here there are two sign changes so there 

are two or zero (an even number less) positive real roots. Now look at 

f  (–x) = (– x)3 – 7(– x)2 – 9(– x) + 18 = –x 3 – 7x 2 + 9x + 18, 

which has the sequence of signs −, −, +, +. In this sequence there is only 

one sign change, so the polynomial f can have only one negative real root.

The following theorems are valid for polynomials with integer coeffi cients.

Integer zero theorem

➔ Given a polynomial 

f  (x) = a
n

x n + a
n – 1

x n –1 + ... + a
2
x 2 + a

1
x + a

0
, a

k
∈ , a

n
≠ 0 

and an integer p such that f  (p) = 0, then p is a factor of  a
0

Proof

f  (p) = a
n 
p n + a

n –1 
p n–1 + ... + a

2 
p2 + a

1 
p + a

0 
= 0

⇒ a
n  
p n + a

n –1 
p n–1 + ... + a

2 
p 2 + a

1 
p = − a

0

⇒ p (a
n 
pn –1 + a

n–1 
p n–2 + ...+ a

2 
p + a

1
) = – a

0

Therefore, p is a factor of  a
0
.  QED

Some cases of cubic 

equations were solved 

by the Babylonians 

(2000–1600 BCE). 

They used tables 

with perfect squares, 

perfect cubes and 

their sums. They 

were able to solve 

equations of the form 

ax3
+ bx = c

Later, in the 13th 

and 14th centuries, 

a group of Italian 

mathematicians, dal 

Ferro, Tartaglia and 

Cardano, developed 

a formula for solving 

a general cubic 

equation. 
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Sometimes, when the coeffi cient a
0
 is not prime there are many 

possible factors. For example, if  a
0
 = 18 ⇒ p ∈ {±1, ±2, ±3, ±6, ±9, 

±18}.

In these cases the search for all possible zeros would take a long 

time. To speed up the process there is a corollary that reduces the set 

of  possible zeros.

Corollary 

Given a polynomial 

f  (x) = a
n

x n + a
n – 1

x n–1 + ... + a
2 
x 2 + a

1
x + a

0
, a

k
∈ , a

n
≠ 0 

and an integer value p such that f  (p) = 0, then for any integer value 

q, p – q is a factor of  f  (q). 

Proof

f  (p) = a
n
p n + a

n – 1
p n–1 + ... + a

2 
p 2 + a

1 
p + a

0 
= 0 (1)

f  (q) = a
n
q n + a

n – 1
q n–1 + ... + a

2 
q 2 + a

1
q + a

0  
(2)

Equation (1) – equation (2)

f p f q a p q a p q a p q a p qn

n n

n

n n( ) − = −( ) + −( ) + + −( ) + −(− −

0

1

1 1

2

2 2

1


( ) ... ))

The terms on the right-hand side of  the equation are grouped in 

such a way that every term containing ( p r – q r), 

r = 1, 2, . . ., n, has a factor of  p – q, so p – q is a factor of  f  (q). QED

This corollary is useful when there are many possible factors for 

integer zeros as you can eliminate some and simplify the search.

Example 

Find all the possible integer zeros of  the polynomial 

f  (x) = x3 – 7x2 – 9x + 18

Answer

p ∈ {± 1, ± 2, ± 3, ± 6, ± 9, ± 18}

f  (1) = 13 – 7 × 12 – 9 × 1 + 18 = 3

p – 1 ∈ {±1, ±3}

⇒ p ∈ {–2, 0, 2, 4}

p ∈ {–2, 2}

List all the possible zeros, i.e. factors 

of  18, by using the integer zero 

theorem.

Use q = 1 to reduce the set of  possible 

factors by using the corollary.

p – 1 is a factor of  3.

This is the intersection of  both sets. 

an b n is divisible by 

a b for all positive 

integers n. The formula 

an b n = (a b)

(an 1 + an 2 b + . . . 

+ abn 2 + bn 1) was 

proved in Chapter 1.
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Note: By using the corollary 1 in Example 32, you only need to 

inspect two values (instead of  all twelve possible values).

By using Descartes’ rule of  signs you can eliminate the positive 

solution (+2) since there must either be two or no positive roots 

(there cannot be only one).

Apply synthetic division for both values (2 and −2) to check this 

conclusion.

1

2

2 •

–38

+ + +

–7 –9 18

1 –5

–10

–19 –20

1

–2

–2 •

–18

+ + +

–7 –9 18

1 –9

18

9 0

Since the remainder when f  (x) is divided by (x – 2) is −20, the 

polynomial is not divisible by (x – 2), so Descartes’ rule works well. 

The remainder when divided by (x + 2) is zero.

x 3 – 7x 2 – 9x + 18 = (x + 2) (x 2 – 9x + 9)

Notice that by examining both possible integer zeros you can 

conclude that the only integer zero is −2, and you did not need to 

factorize the quadratic quotient.

The next theorem is a generalization from integers to rational zeros 

and the proof  is similar.

Rational zero theorem

➔ Given a polynomial 

f  (x) = a
n

x n + a
n–1

x n–1 + ... + a
2
x 2 + a

1
x+ a

0
, a

i 
∈, a

n
≠ 0 and a 

rational number 
p

q
, gcd( , )where p q = 1 that is 

p

q

⎛

⎝
⎜

⎞

⎠
⎟ is in its 

simplest form, such that f
p

q

⎛

⎝
⎜

⎞

⎠
⎟ = 0, then p is a factor of a

0
 and q

is a factor of a
n

Proof

f a a a a
p

q

p

q

p

q

p

q

p

q
n

n

n

n

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= + + + +1

1

2

2

1... ++ =a0 0 (1)

Multiply equation (1) by q n

a
n 
p n + a

n–1
pn–1 q + ... + a

2 
p 2 q n–2 + a

1 
p qn–1 + a

0
 q n = 0   (2)

Rearrange the equation (2)

p(a
n 
pn–1 + a

n–1
pn–2 q + ... + a

2
p qn–2 + a

1
 qn–1) = –a

0
 qn (3)

Since the left-hand side of  the equation (3) has a factor p and 

gcd (p, q) = 1, then p must be a factor of  a
0
. 

gcd( p, q) means 

greatest common 

divisor of p and q

You can also say that 

p and q are co-prime.

See the proof of this 
theorem on the CD
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In a similar way, we can rearrange equation (2) to obtain 

a
n 
pn = –q (a

n–1
p n–1 + ... + a

2 
p2 q n–3 + a

1 
p q n–2 + a

0
 q n–1) (4)

Again, since the right-hand side of  the equation (4) has a factor q

and gcd (p, q) = 1, 

we can conclude that q is a factor of  a
n
.  QED

Corollary 

Given a polynomial f  (x) = a
n

x n + a
n–1

x n–1 + . . . + a
2
x 2 + a

1
x + a

0
, 

a
i
∈ Z, a

n
≠ 0 and a rational number , where gcd( , ) 1

p

q
p q   such 

that f
p

q

⎛

⎝
⎜

⎞

⎠
⎟ = 0, then for any real value k, (p – qk) is a factor of f  (k).

Example 

Given that the polynomial f  (x) = 2x3 − 11x2 − 11x + 15 has no integer 

zeros, fi nd its only rational zero.

Answer

p

q
∈ ± ± ± ±{ }1

2

3

2

5

2

15

2
, , ,

f  (1)  = 2 × 13 – 11 × 12 – 11 × 1 + 15 

= –5

p – q ∈ {±1, ±5}

3 1 3

2 2 2
, ,

p

q

 
 
 

 

Sequence of signs for f  (x): +, , , +

⇒ 2 or 0 positive roots

Sequence of  signs for f  (−x): 

, , +, +

⇒ only 1 negative root

2

–3 –15

+ + +

–11 –11 15

2 –14

21

10 0

3

2
–    •

List all the possible rational 

(non-integer) zeros by using the 

rational zero theorem.

Use corollary 2 with k=1 to reduce 

the set of  possible zeros.

p – 1  q is a factor of  5.

This is the intersection of  both sets.

Apply Descartes’ rule of  signs.

Since there is only one rational 

zero it can only be the negative one 

 
 
 

3

2
,as complex zeros come in 

conjugate pairs.

Use synthetic division. 

2 11 11 15

2 14 10

3 2

2

2 7 5

3

2
2

x x x

x x x
x x

− − +

= + − +⎛
⎝
⎜

⎞
⎠
⎟( )

− +( )

  

= (2x + 3) (x2 – 7x + 5)

So again, the only rational 

zero is 
3

2

Factorize the quotient to simplify 

the divisor.

The quotient is a quadratic 

expression x2 – 7x + 5 whose 

discriminant is 29. Therefore, 

the remaining two solutions are 

irrational.

See the proof of this 
corollary on the CD

Using corollary 2 in 

Example 33, you only 

need to inspect three 

values (instead of all 

eight possible rational 

zeros).
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Exercise 3O

1 Solve these equations in the set of  real numbers and check your 

answers with a GDC.

a x3 – 6x2 + 11x – 6 = 0 b x3 + 2x2 – 7x + 4 = 0

c x3 + 3x2 – 4x – 12 = 0 d 2x3 – 5x2 – 18x + 45 = 0

Solving polynomial equations

In this section you will solve polynomial equations using an 

algebraic method and then use a GDC to verify the solutions 

(graphical method). 

To solve a polynomial equation by a graphical method you need to 

fi nd the points of  intersection of  the graph with the x-axis. At these 

points the value of  the function is zero (y = 0), so these points are 

called the zeros of  the function or the roots

Example 

Solve these equations and check your answers by using a graphical method.

a x3 + 2x2 − 5x − 6 = 0

b 6x4 + 17x3 + 10x2 − 7x − 6 = 0

Answers

a Algebraic method:

x x x xx x x3 2 3 22 6 2 65 6+ − = + −− + −
  

  

= x(x2 + 2x + 1) − 6(x + 1)

= x(x + 1)2 − 6(x + 1)

= (x + 1)(x (x + 1) − 6)

= (x + 1) (x2 + x − 6)

= (x + 1)(x − 2)(x + 3)

⇒ (x + 1)(x − 2)(x + 3) = 0

⇒ x
1
 = −1, x

2
 = 2, x

3
 = −3

Split the linear term (5x) for a common factor.

Notice the perfect square (x + 1)2

Use distribution with the common factor (x + 1).

Factorize the quadratic factor x2 + x – 6

Use the zero product theorem.

Graphical method:

x3 + 2x2 − 5x − 6 = 0 ⇒ f  (x) = x3 + 2x2 − 5x − 6 

The solutions are x
1
 = −3, x

2
 = −1 and x

3
 = 2 

b 6x4 + 17x3 + 10x2 − 7x − 6 = 0 

Algebraic method:

1 1 2 1

2 3 3 6
1, 2, 3, 6, , , ,

p

q

 
 
 

        

List all the possible rational zeros by using the 

rational zero theorem.

{ Continued on next page
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6

–6

1 •

–1 •

1

+ + +

+ + +

17 10 –7

6 11

–11

–1

6 5 –6

–6

6

+

–6

0

–6 –5

0

6

6x4 + 17x3 + 10x2 − 7x − 6 

= (x + 1)2 (6x2 + 5x − 6)

 = (x + 1)2 (2x + 3) (3x − 2)

⇒ (x + 1)2 (2x + 3) (3x − 2) = 0

⇒ = − = − =x x x1 2 3 41
3

2

2

3
, ,

Use synthetic division. 

Factorize the quadratic expression.

Use the zero product theorem.

Graphical method:

 The solutions are 

x x x1 2 3 4

3

2

2

3
1= − = − =,  and 

Note that at the point ( 1, 0) the graph is just 

touching, that is tangent to, the x-axis. In this 

case ( 1, 0) is a double, or repeated, zero of  the 

function.

 A polynomial of  degree n can have up to n roots on the real number 

line. It is useful to be able to restrict any search for roots to a fi nite 

window. The next theorem provides such a search window.

Theorem

➔ All the possible zeros of  the polynomial

f  (x) = a
n
x n + a

n–1 
x n–1 + ... + a

1
x + a

0
 are in the interval 

− + +⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

M

a

M

an n

1 1,  where M = max {|a
n
|, |a

n–1
|, . . . |a

1
|, |a

0
|}

For the equations in Example 34:

a M a= = ⇒ − + + = −⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

[ ]6 1 1 1 7 73

6

1

6

1
, , ,

b M a= = ⇒ − + + = −⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

17 6 1 13

17

6

17

6

23

6

23

6
, , ,

Notice that the zeros satisfy the conditions of  the theorem.

See the proof of this 
theorem on the CD
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You could solve both equations on a GDC using the Polynomial tools

feature.

Notice that in the solution to part b the GDC writes the multiplicity 

of  the zero by repeating the value of  the zero (–1) twice.

Exercise 3P

1 Solve these equations in the set of  real numbers and check your 

answers with a GDC.

a 12x 3 + 17x 2 + 2x – 3 = 0 b x 3 – 4x 2 – 5x + 14 = 0

c 3x 3 – 13x 2 + 11x + 14 = 0 d x 4 – x 3 – 11x 2 + 9x + 18 = 0

2 One of the the roots of the equation x 3 + ax 2 – x – 3 = 0 is equal 

to −3.

a Find the value of  a

b Find the other two roots.

3 The equation ax3 – 7x2 + bx + 4 = 0 has one double root which is 

equal to 2.

a Find the values of  a and b

b Find the remaining root.

4 Show that the polynomial f  (x) = x3 + 5x + p does not have an 

integer zero when p is a prime number.

5 Two of  the zeros of  the polynomial f  (x) = x 3 + ax 2 + bx + c, 

a, b, c ∈  are opposite numbers.

a Show that ab = c. 

b Find the third zero.

Solving polynomial inequalities

To solve polynomial inequalities by an algebraic method you 

factorize the polynomial and investigate the signs of  the factors in 

a sign table. Then you fi nd the values of  x for which the inequality 

is true.

To solve polynomial inequalities by a graphical method use a GDC 

to graph the polynomial and identify the values of  x for which the 

inequality is true.

You will graph more 

polynomials in 

Chapter 4.

Quadratic in equalities 

are discussed in 

Chapter 14, section 

2.12.
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{ Continued on next page

Example 

Solve these inequalities.

a x 3 − x 2 −10x − 8 ≥ 0

b 2x 3 − 5x 2 − 6x + 4 < 0 

c 1 − 4x 2 < 5x 3 + 4x

Verify your solutions by using a graphical method.

Answers

a Algebraic method:

x3 − x2 − 10x − 8 = 0

p ∈ {±1, ±2, ±4, ±8}

1

–1

–1 •

–2 •

8

+ + +

+ +

–1 –10 –8

1 –2

2

–8

1 –4 0

0

–2 8

x3 – x2 – 10x – 8 = (x + 2)(x + 1) (x − 4)

x ]−∞, −2[ −2 ]−2, −1[ −1 ]−1 4[ 4 ]4 ∞[

x + 2 − 0 + + + + +

x + 1 − − − 0 + + +

x − 4 − − − − − 0 +

x x x
3 2

10 8− − −
− 0 + 0 − 0 +

x ∈ [−2, −1] ∪ [4, ∞[

Graphical method:

f  (x) = x3 – x2 – 10x – 8

x ∈ [–2, –1] ∪ [4, ∞[

List all the possible zeros.

Use synthetic division.

Fully factorize the polynomial. 

Construct the sign table.

Find the product of  the signs and 

zeros.

Use a GDC to draw the graph of  

the polynomial and identify the 

parts of  the graph that are above 

the x-axis.

Identify the values of  x that 

satisfy the inequality.

Include zeros since it is not a 

strict inequality.
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b Algebraic method:

 2x3 – 5x2 – 6x + 4 = 0 

1

2
1, 2, 4,

p

q

 
 
 

    

k = −1 ⇒ f  (−1) = 3

p + q ∈ {±1, ±3}

1

2
2, 4,

p

q

 
 
 

  

2

1 –4

+ + +

–5 –6 4

2 –4

–2

–8 0

1

2

 
 2

3 2 2

2 2 4

1

2
2 5 6 4 2 4 8

x x

x x x x x x

 

 
 
 

      


 = (2x − 1)(x2 − 2x − 4)

x x x2 2 4 0
2 4 16

2
− − = ⇒ =

± +

= = ±
±2 2 5

2
1 5

2 5 6 4 2 1 1 5 1 53 2x x x x x x− − + = − − + − −( )( )( )

x ] ∞, 1, – 5 [ 1 – 5 ]1 −  5, 
1

2
[

1

2
]
1

2
5[ 5 ]1 + 5, ∞[

x − +1 5 0 + + + + +

2x − 1 − − − 0 + + +

x − −1 5 − − − − − 0 +

Result 0 + 0 0 +

x ∈ −∞ − ∪ +⎤⎦ ⎡⎣
⎤
⎦⎥

⎡
⎣⎢

, ,1 5 1 5
1

2

List all the possible rational zeros.

Use k = –1 to reduce the set of  

possible zeros.

p – (–1) ⋅ q must be a factor of  3.

Find the intersection of  the two 

conditions. 

Use synthetic division. 

Solve the quadratic equation.

Construct the sign table.

Do not include the zeros since the 

inequality was strict.

{ Continued on next page
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 Graphical method:

  3 22 5 6 4f x x x x   

   , 1.24 0.5, 3.24x    

c Algebraic method:

 1 − 4x2 < 5x3 + 4x

 0 < 5x3 + 4x2 + 4x − 1

 5x3 + 4x2 + 4x − 1 = 0

1

5
1,

p

q

 
 
 

  

5

1 1

+ + +

4 4 –1

5 5

1

5 0

0

1

5

 
 2

3 2 2

5 1

1

5
5 4 4 1 5 5 5

x x

x x x x x x

 

 
 
 

      


 = (5x − 1) (x2 + x + 1)

2 1 1 4

2
1 0x x x

       

 So, the only real zero is: x =

1

5

x −∞
⎤

⎦⎥
⎡

⎣⎢
,

1

5

1

5

1

5
, ∞

⎤

⎦⎥
⎡

⎣⎢

5x − 1 − 0 +

x 2 + x + 1 + + +

5x 4 + 39x 3 + 32x 2 + 27x − 7 − 0 +

x ∈ ∞⎤

⎦⎥
⎡

⎣⎢
1

5
,

Use a GDC to draw the graph of  

the polynomial and identify the 

parts of  the graph that are below 

the x-axis.

Identify the values of  x that 

satisfy the inequality. 

Rewrite the inequality so that the 

leading coeffi cient is positive.

List all the possible rational zeros.

Use synthetic division. 

Solve the quadratic equation.

The quadratic equation has no 

real solution so the quadratic 

expression is irreducible on the set 

of  real numbers.

Construct the sign table. Do 

not include the zeros since the 

inequality was strict.

1 5  = −1.24 (3 sf     ) and 

1 5  = 3.24 (3 sf    ).
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Graphical method:

f  (x) = 5x3 + 4x2 + 4x − 1

x ]0.2, ∞[

Use a GDC to draw the graph of  

the polynomial and identify the 

parts of  the graph that are above 

the x-axis.

Identify the values of  x that satisfy 

the inequality.

Example 

Given the polynomials f  (x) = 4x3 − 17x2 + 30x + 5 and g(x) = −2x3 + 8x2 + 9x − 5 

fi nd all the values of  x such that f  (x) ≤ g(x). 

Verify your solution by using a graphical method on a GDC.

Answer

Algebraic method:

4x3 − 17x2 + 30x + 5 ≤ −2x3 + 8x2 + 9x − 5

6x3 − 25x2 + 21x + 10 ≤ 0 

1 5 1 2 5 1 5

2 2 3 3 3 6 6
1, 2, 5, 10, , , , , , ,

p

q

 
 
 

           

k = 1 ⇒ f  (1) = 12

p – q ∈ {±1, ±2, ±3, ±4, ±6, ±12}

1 5 1 2 5 5

2 2 3 3 3 6
1, 2, 5, , , , , ,

p

q

 
 
 

     

Let h(x) = 6x3 – 25x2 + 21x + 10.

Sequence of  signs for h(x): +, , +, +

Sequence of  signs for h( x): , , , +

There can be only one negative root and two or zero positive real roots.

6

15

+ +

–13 –5 0

6 2

5

0

5

2

6

122 • –10

+ + +

–25 21 10

–26

Rewrite the inequality.

List all the possible 

rational zeros.

Use k = 1 to reduce the set 

of  possible zeros.

p – 1 · q must be a factor 

of  12.

Find the intersection of  

both conditions.

Apply Descartes’ rule of  

signs. 

Use synthetic division. 
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3 2

2 3 1

5

2
6 25 21 10 2 6 2

x

x x x x x x



 
 
 

      


6x3 − 25x2 + 21x + 10 = (x − 2)(2x − 5)(3x + 1) 

x −∞ −
⎤

⎦⎥
⎡

⎣⎢
,

1

3

1

3

⎤

⎦⎥
⎡

⎣⎢
1

3
2, 2 2

5

2
,

⎤

⎦⎥
⎡

⎣⎢
5

2

5

2
, ∞

⎤

⎦⎥
⎡

⎣⎢

x − 2 − − − 0 + + +

2x − 5 − − − − − 0 +

3x + 1 − 0 + + + + +

6x 3 − 25x 2 + 21x + 10 − 0 + 0 − 0 +

x ∈ −∞ −
⎤

⎦⎥
⎤

⎦⎥
∪

⎡

⎣⎢
⎤

⎦⎥
, ,

1

3
2

5

2

Fully factorize the 

polynomial.

Construct the sign table. 

Graphical method 1:

f  (x) = 4x3 − 17x2 + 30x + 5 

g (x) = −2x3 + 8x2 + 9x − 5 

x ∈]–∞, –0.333] ∪ [2, 2.5] 

Use a GDC to draw 

the graphs of  both 

polynomials and identify 

where the graph of  f  is 

below the graph of  g.

Identify the values of  x 

that satisfy the inequality.

Graphical method 2:

Let h(x) = f x g x( ) ( )− ≤ 0

x ∈ ]–∞, –0.333] ∪ [2, 2.5]

Rewrite the inequality 

and call the new function 

h(x).

Use a GDC to draw 

the graphs of  the new 

polynomial and identify 

the parts where the graph 

is below the x-axis.

Identify the values of  x 

that satisfy the inequality.
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In Example 36 we used two different graphical methods. 

When using method I you may need to examine different windows 

to fi nd the points of  intersection between the graphs. Moreover, it 

can be diffi cult to read which function is upper and which is lower, 

particulary on calculators with poor resolution. Method II is more 

suitable because you don’t need to think about the size of  the window 

since the zeros appear along the x-axis. This saves having to explore 

the different windows if  the intersections between the graphs are 

not visible in the original window.

Example 

Use a GDC to solve the inequality x11 – 3x7 + 2 ≤ 0

Answer

f(x) = x11 – 3x7 + 2

x ∈ ]–∞, –0.906] ∪ [1,1.18]

Use a GDC to draw the graph of  the 

polynomial and identify the parts of  

the graph that are below the x-axis.

Check that the window shows 

all the  possible zeros by fi nding 

the suitable range of  x-values: 

 3 3

1 1
+ 1 + 1 = 4, 4, 

  
      

Identify the values of  x that satisfy 

the inequality.

Sometimes, when equations or inequalities can be easily split into simpler 

polynomial curves, you can sketch these and fi nd the solution by inspection.

Example 

Use simple polynomial graphs to solve the inequality x3 – 3x + 2 ≤ 0

Answer

x x
x x

3

f g

+ 2 3
( ) ( )

 
≤

1 2

(–2, –6)

(1, 3)

3–1–2–4 –3 x

y

y = x3 
+ 2

y = 3x

5

4

3

–3

–8

–7

–6

–5

–4

1

x ∈ ]–∞, –6] ∪ {3}

Split the inequality into a cubic and linear function.

Sketch the graphs of  both the cubic and linear 

functions. Identify the values of  x for which the cubic 

graph is below the linear graph.

Note: You could split the inequality: x 3x 2
f x g x

3

( ) ( )

 
≤ −

In this case the graphs would be exactly the same 

shape but shifted 2 units down.

For the algebraic 

solution of g(x) ≥ f  (x)

the syllabus restricts 

polynomials to degree 

3 or below. However, 

graphical methods on 

a GDC can be used 

for solving polynomial 

equations and 

inequalities of degree 

4 or higher.
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Exercise 3Q

1 Solve these inequalities in the set of  real numbers and check 

your answers with a GDC.

a x 3 – 6x 2 + 11x – 6 ≥ 0 b x 3 + 2x 2 – 7x + 4 ≤ 0

c x 3 + 3x 2 – 4x – 12 < 0  d 2x 3 – 5x 2 – 18x + 45 > 0 

e 12x 3 + 17x 2 + 2x – 3 ≤ 0 f x 3 – 4x 2 – 5x + 14 > 0

g 3x 3 – 13x 2 + 11x + 14 < 0 h x 4 – x3 – 11x 2 + 9x + 18 ≥ 0

2 Given the polynomials f  (x) = 4x 3 – 17x 2 + 30x + 5 and 

g (x) = –2x 3 + 8x 2 + 9x – 5, fi nd all the values of  x such that 

f  (x) > g(x). 

 Verify your solution by using a graphical method on a GDC.

3 Use a GDC to solve these inequalities.

a x7 – 2x 3 – 1 ≥ 0 b x 9 – 2x 8 + 2x 5 + x ≤ 0

4 Use simple polynomial graphs to fi nd the solutions of  these 

inequalities.

a x3 + x – 2 > 0 b –2x 3 + 3x + 1 ≥ 0  c x 4 + 2x + 1 ≤ 0

. Solving systems of equations

Systems of two linear equations with two 
unknowns with complex coe  cients

When solving simultaneous equations with complex coeffi cients the 

methods of  elimination and substitution can be very demanding. 

The method shown here will lead to general formulae for the 

solutions.

ax by e

cx dy f

+ =
+ =

⎧
⎨
⎩

Multiply fi rst equation by d and 

second equation by b to obtain equal 

coeffi cients for the variable y.

⇒
+ =
+ =

⎧
⎨
⎩

⎞

⎠
⎟

adx bdy ed

bcx bdy fb

Subtract the equations to eliminate the 

variable y.

⇒ − = −adx bcx ed fb

⇒ −( ) = −x ad bc ed fb Factorize the left hand side.

⇒ = − ≠x ad bc
ed fb

ad bc
, 0

a by e
ed fb

ad bc
× + = Substitute the value of  x in the fi rst 

equation to fi nd the value of  y.

⇒ = − ×by e a
ed fb

ad bc

For more on solving 

systems of two linear 

equations with two 

unknowns with 

real coef cients, 

see Chapter 14 

section 2.5.
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⇒ = − − −
by

e ad bc a ed fb

ad bc

( ) ( )

= − − +ead ebc aed afb

ad bc

= afb ebc

ad bc
⇒ = ×y

b af ec

ad bc b

( ) 1

= − ≠af ec

ad bc
ad bc, 0

So the general form of  the solution is 

x y ad bc
ed fb

ad bc

af ec

ad bc
, , ,( ) ⎛

⎝
⎜

⎞
⎠
⎟= − ≠ 0

Example 

Solve the simultaneous equations 

2 3 3

1 2 2

x i y

ix i y i

+ −( ) =
+ +( ) =

⎧
⎨
⎩

Answers

a b i c i d i e f i= = − = = + = =2 3 1 2 3 2, , , , ,

2 1 2 3 2 4 3 1 1× + − − × = + − − = +( ) ( )i i i i i i

3 1 2 3 2 3 6 6 2 1× + − − × = + − − =( ) ( )i i i i i

2 2 3 4 3× − × = − =i i i i i

x i
i

i

i

i
= × = = −

+

1

1

1

1

1

2

1

2

1

2

y i
i

i

i

i

i
= × = = +

+

+

1

1

1

1

2

1

2

1

2

x y i i, ,( ) = − +⎛
⎝
⎜

⎞
⎠
⎟

1

2

1

2

1

2

1

2

The same result can be obtained on a GDC, 

using Solve Systems of  Linear Equations.

Identify the coeffi cients.

Find the denominator 

ad – bc

Find ed – fb, the 

numerator for x

Find af  – ec, the 

numerator for y

Apply the formulae for 

x and y.

These formulae are 

very ef cient when 

the coef cients of the 

simultaneous liner 

equations are complex 

numbers.

Notice that we could 

have substituted 

the value of x in the 

second equation to 

 nd the value of y

For a method using 
determinants See the CD.
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Systems of three linear equations with three unknowns

You can use the methods of  substitution and elimination to reduce a 

system of  three equations with three unknowns to a system of  two 

equations with two unknowns.

Example 

Solve the system of  equations: 

2 4 5

3 5 4

6

x y z

x y z

x y z

+ + =
− − =
+ − =

⎧

⎨
⎪

⎩
⎪

Use:

a the method of  substitution

b the method of  elimination.

Answers

a x y z
x y x y

x y x y
+ − = ⇒

+ + + − =
− − + − =

( )
( )

⎧
⎨
⎪

⎩⎪
6

2 4 6 5

3 5 6 4

Use the third equation to express z in terms of  x and y 

and substitute for z in the first two equations.

Use z because the coeffi cients of  z are simpler.

⇒
+ =

− = −

⎧
⎨
⎪

⎩⎪

3 5 11

2 6 2

x y

x y

⇒
− + =

= −

( )⎧
⎨
⎪

⎩⎪

3 3 1 5 11

3 1

y y

x y

⇒
− + =

= −

⎧
⎨
⎪

⎩⎪

9 3 5 11

3 1

y y

x y

⇒
=

= −

⎧
⎨
⎪

⎩⎪

14 14

3 1

y

x y

⇒
=

= ⋅ − =

⎧
⎨
⎪

⎩⎪

y

x

1

3 1 1 2

 ⇒ z = 2 + 1 – 6 = –3

 ⇒ (x, y, z ) = (2, 1, –3)

Use 2x  6y = 2 to express x in terms of  y and 

substitute for x in 3x + 5y = 11

If you use substitution 

to obtain a system of 

two equations with two 

unknowns, you don't 

have to use the same 

method to solve for 

the unknowns in this 

new system – you can 

use elimination.

b 


 
 

 
 
 

  


    


   


  

2 4 5

3 5 4 5 9

3 5 112 4 5

6

x y z

x y z x y

x yx y z

x y z

25 5 45

3 5 11

x y

x y

 
 

 

 
 

 

 ⇒ 28x = 56 

 ⇒ x = 2

 ⇒ 5 · 2 – y = 9 ⇒ 1 = y

 ⇒ 2 + 1 – z = 6 ⇒ –3 = z

 ⇒ (x, y, z) = (2, 1, –3)

To eliminate z,add the fi rst and second equations and the 

fi rst and third equations.

You must eliminate the same unknown from both pairs 

of  equations. Eliminate z because z has the simplest 

coeffi ecients.

To eliminate y, multiply 5x − y = 9 by 5 and 

then add 3x + 5y = 11.

To fi nd y substitute x = 2 in 5x − y = 9

To fi nd z substitute x = 2 and y = 1 in x + y − z = 6
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Linear systems with three unknowns can also be solved using a GDC.

When solving systems of  three simultaneous linear equations with 

three unknowns there are again three possible types of  solution:

i  A unique triplet of  numbers (the three variables) that satisfi es all 

three equations.

ii No triplet of  real numbers that satisfi es all the equations.

iii Infi nitely many triplets of  real numbers that satisfy all the equations.

To solve three linear equations in three unknowns a special method of  

elimination was invented by Johann Carl Friedrich Gauss (1777–1855). 

The method, called the Gaussian method, is more suitable to use when 

the coeffi cients of  the system are in matrix form. It involves eliminating 

variables in order until you reach the last variable. Consequently you 

fi nd the variables in reverse order to the order of  elimination. 

Example 

Use the Gaussian method to solve the simultaneous equations 

x y z

x y z

x y z

+ − =

− + =

+ − =

⎧

⎨
⎪

⎩
⎪

3 2 3

2 4 3 5

4 6

Answer

x y z

x y z

x y z

+ − =

− + =

+ − =

⎧

⎨
⎪

⎩
⎪

3 2 3

2 4 3 5

4 6

1

2

3

( )

( )

( )

x y z

y z

y z

+ − =

− =

− =

⎧

⎨
⎪

⎩
⎪

3 2 3

10 7 1

11 7 6

1

4

5

( )

( )

( )

x y z

y z

z

z

+ − =

− =

− = −

=

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

3 2 3

10 7 1

1

4

7

10

49

10
7

7

( )

( )

( )

Eliminate x from equations (2) and (3)

To obtain equation (4) subtract (2) from 2  (1)

To obtain equation (5) subtract (3) from 4  (1)

To obtain equation (7) subtract (5) from 
11

10
(4)

Use equation (7) to fi nd z 

The geometrical 

interpretation of a 

linear equation in 

three variables as a 

plane is developed in 

Chapter 11.

For a method using 
determinants see the CD

{ Continued on next page
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x y z

y

y

+ − =
− =

=

⎧

⎨
⎪

⎩
⎪

3 2 3

10 7 7 1

5

x

x

x

+ − ≠
+ ≠

=

⎧

⎨
⎪

⎩
⎪

3 5 2 7 3

1 3

2

The solution is    , , 2, 5, 7x y z

Substitute z = 7 in equation (4) to fi nd y

Substitute y = 5 and z = 7 in equation (1) to fi nd the 

value of  x

Example 

Discuss all the possible types of  solution of  this system of  equations with respect to 

the real parameter a

ax y z

x y z

x y z

+ + =
+ + =
+ − =

⎧

⎨
⎪

⎩
⎪

3

1

2 2

Answer

ax y z

x y z

x y z

a x

x y

+ + =
+ + =
+ − =

⇒
− =
+ =

⎧

⎨
⎪

⎩
⎪

( )
3 1

1 2

2 2 3

1 2 4

2 3 3 5

( )

( )

( )

( )

( ))

⎧
⎨
⎪

⎩⎪

⇒
=

⋅ + =
⇒

=

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎧

⎨
⎪⎪

⎩
⎪
⎪

x

y

x

y

a

a

a

a

a

2

1

2

1

2

1

3 7

3 3
2 3 3








  



 

  

2

1

3 7

3 3

2 3 7

1 3 3
1

a

a

a

a

a a

x

y

z

⇒ = ≠( )
−

−
−

−
−

⎛
⎝
⎜

⎞
⎠
⎟x y z a

a

a

a a
, , , , ,

2

1

3 7

3 3

2

3 3
1

If  a = 1 ⇒ 0 ⋅ x = 2 ⇒ 0 = 2

⇒ (x, y, z) ∈ ϕ

Eliminate z

To obtain equation (4) subtract (2) from (1).

To obtain equation (5) add (2) and (3).

To fi nd a unique solution assume that a ≠ 1.

To fi nd y substitute for x in (5).

To fi nd z substitute for x and y in (2).

The unique solution when a ≠ 1

Equation (4) gives a false statement therefore there 

is no solution when a=1.

Exercise 3R

1 Solve the following simultaneous equations and check your 

answers with a GDC.

a 
2 2 3 1

1 2 3

ix i y

i x y

+ + =

+ + =

⎧
⎨
⎪

⎩⎪

( )

( )
b

1 3 2 6

2 4 3 4 3

+ + = +

− − + = −

( )⎧
⎨
⎪

⎩⎪

i x iy i

i x i y i( ) ( )
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2 Solve these systems of  equations.

a 

x y

x z

y z

+ = −

+ =

+ =

⎧

⎨
⎪

⎩
⎪

1

4

1

b

x y z

x y z

x y z

− + = −

− + =

+ − =

⎧

⎨
⎪

⎩
⎪

5 3 1

3 2 4

2 2

c 

2 2 0

6 4 5 2

4 3 2

x y z

x y z

x y z

+ + =

− − = −

+ − =

⎧

⎨
⎪

⎩
⎪

d

3 4 3 2

2 6 6

2 6 3 8

x y z

x y z

x y z

− + = −

+ + =

− − = −

⎧

⎨
⎪

⎩
⎪

e 

x y z

x y z

x y z

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

2 4

2 2 5

3 2 3 12

f

2 3 5 1

9 7 16 0

2 3 9

x y z

x y z

x y z

− + = −

− + =

− + =

⎧

⎨
⎪

⎩
⎪

3 Find the value(s) of  a real parameter k so that each system of  

equations has no unique solution.

a 

x y z

x y z

x y kz

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

2 0

2 2 1

2 2

 b 

x y z

x ky z

x y kz

+ + =

+ + = −

+ + = −

⎧

⎨
⎪

⎩
⎪

1

2 3 2

3 5 1

4 Find the value(s) of  a real parameter k so that each system of  

equations has infi nitely many solutions. Find the solutions.

a 

x y z

kx y z

x y z

+ + =

+ + =

+ − =

⎧

⎨
⎪

⎩
⎪

2 3 1

4 3 2

3 6 2 3

b 

x y z

x ky z

x y kz

+ + =

+ + = −

+ + = −

⎧

⎨
⎪

⎩
⎪

1

2 3 2

3 5 1

5 Find the values of  a real parameter m so that the 

system of  equations has a unique solution.

x y z m

x my z m

x y mz

+ + =

+ + =

+ + = −

⎧

⎨
⎪

⎩
⎪

2

1

 Hence, find the solution in terms of  m

For more challenging 
systems of simultaneous 
equations see the CD
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Review exercise

EXAM-STYLE QUESTIONS

1  When the polynomial f  (x) = x 4 – 3x 3 + ax 2 – 4x + 7 is divided by 

(x + 2) the remainder is 7. Find the value of  a

2  Solve the simultaneous equations:

3 2 2

4 1 3 3

x y i

y i x i

− = −
− − = +( )

⎧
⎨
⎪

⎩⎪

3  Find the value of  m in the quadratic function 

f  (x) = m – 2 + (2m + 1)x + mx2 if  f  (x) ≤ 0 for all real x

4  Given that 1 – 2i is a complex root of  the equation 

z  4 –2z  3 + 14z  2 – 18z + 45 = 0, fi nd the remaining roots.

5  Find the value of  m such that this system of  equations has no 

unique solution.
mx y

x m y

+ =
+ + =( )

⎧
⎨
⎪

⎩⎪

2 1

4 2 4

6  Find the value of  a such that the roots α and β of  the quadratic 

equation x 2 + ax + a + 1 = 0 satisfy α 3 + β 3 = 9

7  Given that z
i= +1

2
, use mathematical induction to show that 

z nn
n

n

i2

2
= ∈ +, 

8 Show that the imaginary part of  the number 
1

1

2011+⎛
⎝
⎜

⎞
⎠
⎟

i

i
 is −1.

9  The cubic equation x 3 – 5x 2 + 6x – 3 = 0 has solutions α, β and γ. 

Find the value of
  

 
2 2 2

1 1 1

10 a Show that 7 50 7 503 3− + +  satisfi es the equation 

x3 + 3x – 14 = 0

 b  Factorize the polynomial f  (z) = z3 + 3z – 14, z ∈  and fi nd all 

the possible zeros.

 c Hence, fi nd the value of  7 50 7 503 3− + +

✗
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CHAPTER 3 SUMMARY

Zero factor property

a b = 0 ⇒ a = 0 or b = 0 

Quadratic formula

ax bx c x
b b ac

a

2
2

0
4

2
+ + = ⇒ =

− ± −

Discriminant

Δ = b2 – 4ac

i Ιf  Δ > 0 there are two distinct real roots.

ii Ιf  Δ = 0 there is one repeated real root.

iii  Ιf  Δ < 0 there are no real roots (conjugate complex pair of  

solutions.)

Review exercise
EXAM-STYLE QUESTIONS

1 Solve the inequality x 3 + 5x 2 + 2x – 22 ≥ 0

2  Find all the values of  the real parameter m for which the 

equation (mx)2 + 3x + 1 – m = 0 has no real solution.

3  Solve these simultaneous equations and write your answers as 

fractions.







   

  

  

2 14 9 7

4 3 4 7

10 28 5 6

x y z

x z y

x y z

4  Given that α, β and γ are solutions of  the equation 

3x3 + 2x = 5x2 + 4, fi nd the value of  α3 + β 3 + γ 3

5  Find the smallest zero of  the polynomial 

f  (x) = x 7 + 35x 6 – 97x 5 + 33x 2 + 4

Continued on next page
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Operations with complex numbers

Given that z
1
 = a

1
 + ib

1
, z

2
 = a

2
 + ib

2
, a

1
, b

1
, a

2
, b

2
∈ 

(z
1
 = z

2
) ⇔ (a

1
 = a

2
 and b

1
 = b

2
) 

z
1
± z

2
 = (a

1
± a

2
) + i(b

1
± b

2
)

λz = λ(a + ib) = (λa) + i(λb), λ ∈ 

z
1

z
2
 = (a

1
a

2
 – b

1
b

2
) + i(a

1
b

2 
+ a

2
b

1
)

|z| = |a + ib| = a2 + b2

z

z

a a b b i a b a b

a b

z z

z

1

2

1 2 1 2 2 1 1 2

2

2

2

2

1 2

2

= =
+( ) + −( )

+

*

Axioms of complex numbers

A For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 is a complex 

number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
 + z

2
 = z

2
 + z

1

(Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then 

(z
1
 + z

2
) + z

3
 = z

1
 + (z

2
 + z

3
) (Associativity)

A  There exists a complex number 0 = 0 +0i such that for every 

complex number z, 0 + z = z + 0 = z (Additive identity)

A  For every complex number z there exists a complex number –z

such that z + –z = –z + z = 0 (Additive inverse)

A  For every complex numbers z
1
 and z

2
 then z

1
 · z

2
 is a complex 

number (Closure)

A  For every complex numbers z
1
 and z

2
 then z

1
z

2
 = z

2
z

1

(Commutativity)

A  For every complex numbers z
1
, z

2
 and z

3
 then 

(z
1

z
2
) z

3
 = z

1
 (z

2
z

3
) (Associativity)

A  There exists a complex numbers 1 = 1 +0i such that for every 

complex numbers z, 1 z = z · 1 = z (Multiplicative identity)

A  For every complex numbers z, z ≠ 0, there exists a 

complex numbers z–1 such that z · z–1 = z–1 · z = 0 

(Multiplicative inverse)

A  For every complex numbers z
1
, z

2
 and z

3
 then 

z
1

 (z
2
 + z

3
) = z

1
z

2
 + z

1
z

3
 (Distributivity of  multiplication 

over addition)

Continued on next page
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Viète’s formulae for quadratic equations

ax bx c2 0+ + = ⇒ x x x x
b

a

c

a
1 2 1 2+ = − ⋅ =and 

Viète’s formulae for cubic equations

ax3 + bx2 + cx + d = 0 ⇒

x x x

x x x x x x

x x x

b

a

c

a

d

a

1 2 3

1 2 1 3 2 3

1 2 3

+ + = −

⋅ + ⋅ + ⋅ =

⋅ ⋅ = −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Viète’s formula for equations of 
the nth degree

a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x2 + a

1
x + a

0
= 0 ⇒

x x x k ni i i

i i i n

k n k

n
k

k

a

a1 2

1 21

1 1⋅ ⋅ ⋅ = − ≤ ≤( ) ( )
≤ < < < ≤
∑ ... ,

Degree of polynomials

The degree of  a polynomial, f  (x) = a
n
x n + an–1 xn–1 + ... + a

1
x + a

0
, 

is the largest power of  x appearing: deg(f  ) = n

For a liner combination of  two polynomials, af  (x) + bg(x) 

with a, b ∈ , or the product of  two polynomials, f  (x) g(x), 

the degree is given by

deg(af + bg ) = max{deg( f  ), deg( g)}

deg( f g) = deg( f  ) + deg( g)

Unique decomposition

For any two polynomials f  and g there are unique polynomials 

q and r such that f  (x) = g (x) q (x) + r (x), for all real values of  x

Remainder theorem

Given a polynomial 

f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x2 + a

1
x + a

0
, a

k
∈ , 

k = 0, 1, 2, ..., n, a
k
≠ 0 and a real number p, then the 

remainder when f  (x) is divided by a linear expression 

(x – p) is f  (p).

Continued on next page
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Factor theorem

A polynomial f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x 2 + a

1
x + a

0 
with 

real coeffi cients (a
n 
≠ 0) has a factor (x –  p), p ∈, if  and only 

if  f  ( p) = 0.

Fundamental theorem of algebra (FTA)

A polynomial f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x 2 + a

1
x + a

0 
with 

real or complex coeffi cients (a
n 
≠ 0) has at least one zero.

Each polynomial f  (x) = a
n
x n + a

n – 1 
x n – 1 + ... + a

2
x 2 + a

1
x + a

0

with real coeffi cients can be written in a factor form 

f  (x) = a
n
(x – ω

1
) (x – ω

2
) ... (x – ω

n 
) such that ω

k
∈ , k, ..., n. 

Given a polynomial  

f  (x) = a
n

x n + a
n – 1

x n –1 + ... + a
2
x 2 + a

1
x + a

0
, a

k
∈ , a

n
≠ 0 

and an integer p such that f  (p) = 0, then p is a factor of  a
0

Given a polynomial 

f  (x) = a
n

x n + a
n–1

x n–1 + ... + a
2
x 2 + a

1
x+ a

0
, a ∈  a

n
≠ 0 and a rational 

number 

p

q
, gcd( , )where p q = 1 that is 

p

q

⎛

⎝
⎜

⎞

⎠
⎟ is in its simplest form, such that 

f
p

q

⎛

⎝
⎜

⎞

⎠
⎟ = 0, then p is a factor of a

0
 and q is a factor of a

n

All the possible zeros of the polynomial

f  (x) = a
n
x n + a

n–1 
x n–1 + ... + a

1
x + a

0
 are in the interval 

− + +⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

M

a

M

an n

1 1,  where M = max {|a
n
|, |a

n–1
|, . . . |a

1
|, |a

0
|}
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Theory of knowledge: Is mathematics invented or discovered?164

Is mathematics invented 
or discovered?

Theory of knowledge

Q 8

e 8

e 2e 3 e 6

e 7

e 4 e 1

Number history
At different points in its development the 

real number system was sometimes 

considered to be an invention, and 

sometimes to re ect the reality of the 

universe. The Pythagoreans did not 

acknowledge the existence of irrational 

numbers. Negative numbers were  rst 

thought to be meaningless entities. 

Complex numbers were originally called 

‘imaginary numbers’, but as work on 

polynomial equations developed and 

ultimately led to the Fundamental 

Theorem of Algebra, imaginary numbers 

were seen in a new light, and eventually 

they became known as complex numbers. 

 Explore how the history of number 

highlights the central themes in the 

discussion of whether mathematics is 

invention or discovery, considering:

{ The real number system as a 

historical artifact

{ The ‘existence’ of numbers other 

than our real number system

{ The de nition of number operations 

on the non-real numbers

{ The intrinsic connection between 

number and geometry, e.g. the 

Argand diagram

{ The relationship between number 

and dimension

{ Higher dimensional numbers, e.g. 

Quaternions and Octonions, and 

order of operations

{ The problem of rotations and higher 

dimensional numbers.

 Have we invented/discovered all 

the kinds of numbers that there 

are?

” Numbers in string 

theory – the 

octonion.
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The meaning of +=

1 + 1 = 2 is probably one of the  rst arithmetic facts you 

ever learned.

 Is the concept behind the numbers always the same? 

What does 1 mean in group theory? What does 1 + 1 

mean in group theory?

 Is the representation of the concept of the numbers 

always the same? How is it expressed in different 

number bases?



“We used to think that if  we knew one, we knew two, because one and one 

are two. We are fi nding that we must learn a great deal more about ‘and’.”

Sir Arthur Eddington, British astrophysicist (1882 1944)

Gödel’s Incompleteness Theorem

In 1931, Czech-born mathematician Kurt Gödel (1906–78) 

published his famous Incompleteness Theorem which, put 

simply, stated that in any axiomatic system certain 

statements cannot be either proved or disproved. Or in other 

words, mathematical truth is greater than proof.

Mathematicians have still not recovered from the shock waves 

that Gödel’s theorem created in the mathematical world.

 Research how Gödel’s theorem challenged the existing 

notions of mathematics.

There are 10 types 
of mathematician – 
those who think in 
binary and those 
who don’t! 

US theoretical physicist and 

Nobel laureate Frank 

Wilczek (1951–) has said 

that mathematics is both 

invented and discovered, 

but he thinks “it’s mostly 

discovered”. Argentine–

American mathematician 

and philosopher Gregory 

Chaitin (1947–) on the other 

hand, believes that 

mathematics is empirical: 

“we invent it as we go”.

The question ‘Is 

mathematics invented or 

discovered?’ gives rise to 

other questions.

 What is the meaning of 

the words ‘mathematics’, 

‘invention’ and 

‘discovery’?

 If mathematics is 

invented, what does this 

say about its ability to 

describe reality? 

 If mathematics is 

discovered, what does 

this say about its ability 

to describe reality? 

 Are some parts of 

mathematics invented, 

and others discovered? 

If so, which are which?



Modeling the 
real world

CHAPTER OBJECTIVES:

6.1  Informal ideas of limit, continuity, and convergence; de nition of the 

derivative from  rst principles; the derivative interpreted as a gradient 

function and as a rate of change;  nding equations of tangents and 

normals; identifying increasing and decreasing functions; the second 

derivative; higher derivatives

6.2  Derivative of xn; differentiation of sums and multiples of functions; the product 

and quotient rules; the chain rule for composite functions; related rates of 

change; implicit differentiation

6.3  Local maximum and minimum values; optimization problems; points of in ection 

with zero and non-zero gradients; graphical behavior of functions including the 

relationship between the graphs of f, f ′, and f ″

6.6  Kinematic problems involving displacement s, velocity v and 

acceleration a; total distance traveled

You should know how to:

1 Draw graphs of  rational functions.

 e.g., sketch the graph of  y = 
1

x 1
, clearly 

showing any asymptotes as dotted lines.

4 8–4–8
x

y

–4

–8

4

8

f(x) = 
1

x – 1

2 Find the sum of  infi nite geometric series.

 e.g., since, r
r

r

<1 2
1

2

1

1
1

2
0

,
⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑ = =

Skills check

1 Sketch the graph of  f  (x) = 
1

x 3
, clearly 

labeling all intercepts and asymptotes.

2 Find 5
1

20

⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑
n

n

4

Before you start
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From abstract models to real-world 
applications

A mathematical model uses mathematical language 

and systems of  functions to describe, explain, interpret, 

and predict real-world phenomena. Climate scientists 

and meteorologists have collected vast amounts of  data 

about weather systems and CO
2 
concentrations in the 

atmosphere over many years. They have created

mathematical models that fi t the historical data and that 

they can now use to predict future climate changes.

Mathematical models are used today in all areas 

of  human endeavor, from the natural sciences to the 

creative arts. In this chapter you will learn how to 

work with functions that may be derived from real-world 

situations, such as mechanics and economics.

Mathematical modeling has many 

bene cial applications. However, what 

are the possible pitfalls of modeling 

real-life phenomena? What are the 

limits of mathematical modeling?

The global  nancial crisis of 2008, 

was mainly due to a mathematical 

model created by economist David X. 

Li, to manage  nancial risk. His model 

was used in  nancial institutions 

throughout the world to assist in the 

calculation of risk factors in certain 

investment strategies. Was it a  aw in 

the model or in its interpretation that 

caused the crisis?
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Zeno of Elea, a philosopher and logician, posed this problem about 2500 

years ago. Achilles and a tortoise were engaged in a footrace. Achilles 

allowed the tortoise a head start of 100 metres. Both started running at a 

constant speed. Who won the race?

Zeno analysed the problem as follows. After a short time into the race, 

Achilles arrives at the tortoise’s starting point of 100 m. In that time, the 

tortoise advances further. It then takes more time for Achilles to run this extra 

distance, in which time the tortoise advances even further. So, whenever 

Achilles reaches some point that the tortoise has already been at, he still has 

further to go. Since Achilles has an in nite number of points to cover before 

he reaches where the tortoise was, Achilles is still trying to win this race today!

.  Limits, continuity and convergence

It has taken several 

millennia for 

mathematicians to 

arrive at the language 

and concepts needed 

to satisfactorily 

solve this paradox. 

In this section you 

will learn some of 

the mathematics 

developed by 17th, 

18th and 19th-century 

mathematicians in an 

attempt to deal with 

the concepts of time 

and in nity.

An informal treatment of limits

You can think of  a limit as a way of  describing the output of  a 

function as the input gets close to a certain value. 

The rules for fi nding limits are quite straightforward, and can be 

algebraic, graphical, numerical, or a combination of  these methods.

As an example, consider the rational function y = 
x

x

2 1

1
, x ≠ 1

This function is not defi ned at x = 1 and its domain is 

{x|x ∈ , x ≠ 1}. 

Now, with your GDC, trace along the graph of  this function. You 

will notice that as x gets closer to 1 from the left, the value of  the 

function gets closer to 2. Trace along the graph from the right, and 

notice that the value of  the function likewise gets closer to 2. 

This table shows these results.

Approaching x = 1 from the left. Approaching x = 1 from the right.
     

x 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

y =
x

x

2
1

1
1.6 1.7 1.8 1.9 undef. 2.1 2.2 2.3 2.4

Approaching 1 in 

steps or increments

of 0.1.
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You can write this result using this notation: lim
x

x

x→
=

1

2 1

1
2

This means that the limit of  the functions as x approaches 1 both

from the left and from the right is 2.

Example 

a Sketch the graph of  y = 
2 1

x

x
≠, x 0

b Find lim
0

2 1

x

x

x→
, giving your answer to 2 decimal places. 

Answers

a

x 10 5 2 1 0 1 2 5 10

2 1
x

x

0.099 0.194 0.375 0.5 1 1.5 6.2 102

10 2 3 4 5–1–2–3–4–5 x

y

1

2

3

4

5

6
2x – 1

x
y =

b lim
0

2 1

x

x

x→
 ≈ 0.69

Make a table of  

values 

Sketch the graph

Example 

a Sketch the function y = 
x x

x x+

⎧
⎨
⎩

3 2

1 2

<

>

b Find the value of  the function as x gets closer to 2 from the left and 

from the right. 

Answers

a

–2–4–6–8–10 x

y

2

–2

–6

–8

4

6

8

0

f(x) = { x – 3, x < 2

x + 1, x > 2

b lim 1
2x→
= − and lim 3

2x→
=

+

Since the piecewise function is not 

defi ned at x = 2, there are open circles 

at the points (2, −1) and (2, 3).

When x approaches 2 from the left, the 

function gets closer to −1, and when x 

approaches 2 from the right, the function 

gets closer to 3

GDC tip! Change 

the table start and 

set to obtain a  ner 

approximation of 

this limit.

x → 2 means x

approaches 2 from 

the left, and x → 2+

means x approaches 

2 from the right.
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In Example 1, the limits were the same whether approaching from 

the left or from the right. In Example 2, the limits are different when 

approached from the left and from the right. Therefore we say that 

in Example 2, the function has no limit.

For the limit of  a function to exist as x approaches a particular value, 

the function does not need to be defi ned at the value but the value of  

the limit as the function approaches from the left and from the right 

must be the same.

➔ The notation used to say that the limit, L, of  a function f exists 

as x approaches a real value c is 

lim ( ) lim ( ) lim ( )
x c x c x c

f x L f x L f x L
→ → + →

= = =( ) ( )⇔ and  for L ∈ 

Exercise 4A

Using a GDC, sketch the graph of  each function and fi nd the limit, 

if  it exists.

1 lim
x

x

x→− +1

2 1

1
2 lim

x

x

x→1

3 1

1

3 lim

,

,x

x x

x
x→

⎧

⎨
⎪

⎩⎪
2

3 1 2

1

1
2

2

<

≥
4 lim

x

x

x→0

5 lim( )
x

x
→

−
6

6
2

3 6 lim
x

x
→

⎢⎣ ⎥⎦
3

Asymptotes and continuity

Does lim
x x→0

1
2
 exist? Here is the graph of  the function 

1
2x

You can see that as x approaches 0 from the left and 

from the right, the values of  the function increase without 

bound, and approach positive infi nity. The limit therefore 

does not exist, since the limit is not a real number.  

The line x = 0 is the vertical asymptote of  this function. We can now 

defi ne the vertical asymptote of  a function.

➔ The line x = c is a vertical asymptote of  the graph of  a 

function y = f  (x) if  either lim ( )
x c

f x
→ +

= ±∞ or lim ( ) .
x c

f x
→ −

= ±∞

On page 174 you saw that the graph of  
2 1

=
1

x
y

x
, x ≠ 1, is linear. 

Simplifying, gives y
x

x
x +=

1

1

2

=

However, since x ≠ 1, there is a gap or hole in the function at 

x = 1. For the function y = x + 1, however, there is no gap at 

x = 1. Hence, both functions have a limit of  2 as x approaches 

The double arrow is 

read ‘if and only if’. 

An ‘if and only if’ 

de nition or theorem 

has the form: if p

then q and if q then 

p, where p and q are 

statements. This 

means that the two 

parts of the de nition 

or theorem are 

equivalent. To prove an 

‘if and only if’ theorem 

it is necessary to 

prove both, if p then 

q and also prove if q

then p

y = ⎣x⎦ or y = int(x) 

is the  oor function. 

It is de ned as the 

‘largest integer less 

than or equal to x’. 

This function will be 

de ned for you in an 

examination.

20 4 6 8 10–2–4–6–8–10
x

y

2

4

6

8

f(x) = 
1

x2

You met vertical 

asymptotes in Chapter2.
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1, but the graph of  

2 1
=

1

x
y

x  is discontinuous at x = 1. The graph of  

y = x + 1 has no holes anywhere in its domain, so y = x + 1 is 

continuous. 

➔ A function y = f  (x) is continuous at x = c, if  lim ( ) ( ).
x c

f x f c




The three necessary conditions for f to be continuous 

at x = c are:

 f is defi ned at c, i.e., c is an element of  the domain 

of  f

 the limit of  f  at c exists.

 the limit of  f  at c is equal to the value of  the 

function at c

A function that is not continuous at a point x = c is 

said to be discontinuous at x = c

A function is said to be continuous on an open interval I if  it is 

continuous at every point in the interval.

A function is said to be continuous if  it is continuous 

at every point in its domain. 

A function that is not continuous is said to be discontinuous

Example 

a Sketch the graph of  f  (x) = 

1,  –1

– , –1 0

1, = 0

– , 0 1

1,  1

x

x x

x

x x

x


  

  




b Find the limits, if  they exist, as x approaches −1, 0 and 1. 

c Determine if  f  is continuous at x = −1, x = 0, and x = 1. 

Answers

a

2

(1,–1)

(1,1)(0,0)

10–2–4–6–8–10
x

y

2

4

6

8

f1(x

1, x ≤ –1

–x, –1 < x < 0

1, x = 0

–x, 0 < x < 1

1, x ≥ 1

A polynomial function 

such as 3x 2 + 2x − 4

is continuous at every 

point in its domain. 

{ Continued on next page
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b lim ( ) 1
1x

f x
→−

=

lim
0

0
x

f x
→

=( )

lim 1, lim 1

lim

1 1

1

x x

x

f x f x

f x undef

→ →

→

− +

⇒

( ) ( )

( )

= − =

=

c lim 1
1x

f x
→−

( ) =  and f  ( 1) = 1, 

hence at x = 1 f is continuous. 

lim 0
0x

f x
→

( ) = , but f  (0) = 1, hence 

at x = 0, f is discontinuous. 

lim
1x

f x
→

( ) = is undefi ned, and 

f  (1) = 1, hence at x = 1, f is 

discontinuous.

As x approaches 1 from 

the left and from the right, 

f  approaches 1.

As x approaches 0 from 

the left and from the right, 

f  approaches 0.

As x approaches 1 from the 

left, f  approaches 1, and 

as x approaches 1 from the right, f  

approaches 1, that is, the limit as x 

approaches 1 does not exist.

Example 

f  (x) = 

x x

x
x

k x

3 2
3 4

1
,

, 1

≠ −

= −

⎧

⎨
⎪

⎩
⎪

+

+
1

 Determine the value of  k in order that f  (x) be continuous at x = 1.

Answer

2 4 6–2–4
x

y

2

4

6

f(x) = x3
 – 3x2

 + 4

x + 1

0

x x

x

3 2
3 4

1

− +

+
 is equivalent to 

(x − 2)2 in their respective 

domains.

 When x = 1, (x − 2)2 = 9 

Hence, when k = 9, 

f  ( 1) = lim 9
1

3 2
3 4

1x

x x

x→−

− +

+
=

so f  is continuous at x = −1

x3 – 3x2 + 4  = 
(x 2) x 1)

x 1

2 (− +

+
= (x – 2) 2

For f  to be continuous, f  (–1) must 

equal 9.

Modeling the real world172



Exercise 4B 

1 f  (x) = 
2

3 , 1

( 1) , 1

x x

x x





 

 
 Determine if  f  is continuous at x = 1.

2 f  (x) = 
2 4 5, 2

2 5, 2

x x x

x x





   

  
 Determine if  f  is continuous at x = −2.

3 f  (x) = 

1

1
, 1

0, 1

x

x
x

x











 Determine if  f is continuous at x = 1.

EXAM-STYLE QUESTIONS

4 Find a value for k such that f  (x) = 




 



2 1, 3

2 , 3

x x

kx x
 is continuous at 3

5 Find the value of  a such that f  (x) = 




 



2 , 3

4, 3

ax a x

x
 is continuous 

for all values of  x

6 Determine if  these functions are continuous on the set of  real 

numbers. If  they are not continuous for all real x, state the values 

of  x for which the function is discontinuous.

 a f  (x) = 
x

x

2

2

1

1

+
b f  (x) = 

x

x

+1

4 2
c f  (x) = 

x

x 2 1+

 d f  (x) = 
x x

x x

2

2

3 5

3 4

+ +

+ −

e f  (x) = 
x

x

2

3

1

1

+
f f  (x) = 

x

x

+

+

1

12

Limits to infi nity

Infi nity is not a number. It lies beyond all fi nite bounds. 

Hence, when discussing the behavior of  a function as 

x approaches positive or negative infi nity, written ±∞, 

we look for the value that the function approaches 

as x increases and decreases without bound.

For example, consider the behavior of  the function 

y =
1

x
 as x approaches ±∞. 

The equation of  the vertical asymptote is x = 0. The value 

of  the function approaches 0 as x approaches ±∞, but is 

never equal to 0. There is no real number x such that 
1

x
 = 0.

The line y = 0 is the horizontal asymptote.  

➔ The line y = k, k ∈ , is the horizontal asymptote of  

f  (x) if  either lim
x

k
→∞

=  or lim
x

k
→−∞

=

2 4–2–4
x

y

2

–2

–4

4

0

f(x) = 
1

x
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Example 

 Sketch the graph of  y = 
x

x 2 1+
 for 20 ≤ x ≤ 20, show clearly any 

asymptote(s). 

Check your answer on a GDC.

Answer

x 20 10 5 2 1 0

x

x
2
+1

0.999 0.995 0.981 0.894 0.707 0

x 1 2 5 10 20

x

x
2
+1

0.707 0.894 0.981 0.995 0.999

5–5–10–15
x

y

–0.5

0.5

1.0

0

y =
x

x
2
 + 1

lim
x→∞

=f x( ) 1 and lim
x→−∞

= −f x( ) 1

The horizontal asymptotes are y = 1 and y = 1

As x increases 

in the positive 

direction y 

approaches 1.

As x decreases 

in the negative 

direction y 

approaches 1.

Points on the 

graph are the 

values from the 

table.

Example 

 Sketch the graph of  f  (x) = 
x

x

+

+

2

12
 for 20 ≤ x ≤ 20, show clearly any  

asymptote(s).

Check your answer on a GDC.

Answer

x 20 10 5 2 1 0

x

x

+

+

2

2
2 0.004 0.084 0.199 0 0.5 2

x 1 2 5 10 20

x

x

+

+

2

2
2 1.5 0.8 0.269 0.119 0.005

5–5–10–15–20 10 15 20
x

y

–1

–2

1

2

3

0

y =
x + 2

x
2
 + 1

lim 0
x

f x
→∞

=( )  and lim 0
x

f x
→−∞

=( )

The horizontal asymptote is y = 0, the x-axis.

Notice that when 

x = −2, y = 0

Points on the 

graph are the 

values from the 

table.
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The horizontal asymptote tells you the behavior of  the function for 

very large values of  x. However unlike the vertical asymptote, the 

function can assume the value of  the horizontal asymptote for 

small values of  x as happened in Example 6 at x = 2. 

Other asymptotes

While not explicitly on the syllabus, it is useful to know that some 

asymptotes are neither vertical nor horizontal. For example, 

consider the graph of  f  (x) = 
x x

x x
x

2 2 1 1
2

+ +
= + +

2

(–1,0)

(1,4)

4 6 8 10–6–8–10 x

y

2

–2

–4

–6

–8

4

6

8
f(x) = 2 + x + 

1

x

You will notice that there is a slant, or oblique, asymptote which 

passes between the local minimum and maximum points. As x

approaches ±∞ the function resembles ever more closely the straight 

line y=x + 2 

On the graph, the line y = 2 + x is an asymptote to the function 

f x x
x

( ) = + +2
1

2 4 6 8 10–6–8–10
x

y

2

–2

–4

–6

–8

4

6

8

g(x) = 2 + x

f(x) = 2 + x + 
1

x

As is clear from the graph, the difference, 
1

x
, between the full 

function, 
x x

x

2 2 1+ +
 and its slant asymptote, x + 2, becomes 

vanishingly small as x → ± ∞.

Now consider the graph of  f  (x) = 2 + x + x 2 + 
1

x

2 4 6 8–2–4–6–8 x

y

–2

–4

4

6

8
f1(x) = 2 + x + x2 + 

1

x

We know that there is a vertical asymptote at x = 0. The limit of  this 

function as x approaches ∞ is lim
1

2+ + +2

x

x x
x→∞

⎛
⎝⎜

⎞
⎠⎟
 = 2 + x + x2. 

The curve 2 + x + x 2 is an asymptote to the function. 

The point (1,  4) is 

a local minimum of 

the function. The 

point ( 1,  0) is a local 

maximum.

For very large values 

of x the value of 
1

x
 is 

very small

The word asymptote 

comes from the Greek 

asymptotos, meaning 

‘not falling together’.
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Hence, an asymptote can be defi ned more generally as a line 

tangent to a curve at infi nity. 

Finding limits algebraically

Up to now we have been fi nding limits graphically and confi rming 

our results numerically. We can fi nd some limits algebraically using 

these properties of  limits.

➔ Properties of limits as x → ±∞ 

Let L
1
, L

2
, and k be real numbers and lim

x
f x L

→±∞
=( ) 1 and 

lim
x

g x L
→±∞

=( ) 2
. Then,

1 lim lim lim
x x x

f x g x f x g x L L
→±∞ →±∞ →±∞

± = ± = ±( ( ) ( )) ( ) ( ) 1 2

2 1 2lim( ( ) ( )) lim ( ) lim ( )
x x x

f x g x f x g x L L
  

   

3 lim lim lim
x x x

f x g x f x g x L L
→±∞ →±∞ →±∞

÷ = ÷ = ÷( ( ) ( )) ( ) ( ) 1 2
, 

provided L
2 
≠ 0.

4 lim lim
x x

kf x k f x kL
→±∞ →±∞

= =( ) ( ) 1

5 lim
x

a

b

a

bf x L
a

b→±∞

=[ ,( )] 1 ∈ (in simplest form), 

provided L
a

b
1
 is real.

Example 

Find the horizontal asymptote of  y = 
x

x

+ 2

2 + 3

Answer

lim lim
+ 2

2 + 3

1+
2

2 +
3x x

x

x

x

x

→∞ →∞
=

lim lim lim
x x x

x

x

x x→∞ →∞ →∞

+

+
= +⎛

⎝
⎜

⎞
⎠
⎟ +⎛

⎝
⎜

⎞
⎠
⎟÷

1
2

2
3

1
2

2
3

lim lim lim
x x xx x→∞ →∞ →∞

+⎛
⎝
⎜

⎞
⎠
⎟ = + = + =1

2
1

2
1 0 1

lim lim lim
x x xx x→∞ →∞ →∞

+⎛
⎜

⎞
⎟ = + = + =2

3
2

3
2 0 2

Hence, lim
x

x

→∞

+

+
=

2

3

1

22x
, and the 

horizontal asymptote is y = 
1

2

Divide numerator and denominator 

by largest power of  x.

Apply limit property 3: the limit 

of  a quotient is the quotient of  the 

limits.

Apply limit property 1: the limit of  

a sum is the sum of  the limits.

Remember that the line y = k 

is an horizontal asymptote if  

lim
x

f x k
→∞

( ) = .

2 4 6 8–2–4–6–8 x

y

–2

–4

4

6

8

f2(x) = 2 + x + x2

f1(x) = 2 + x + x2 + 
1

x

You will only be 

required to use 

informal methods to 

 nd limits in the exam

These properties also 

hold when  nding the 

limit as x → c, c ∈ 

{ Continued on next page
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Graphing the function confi rms the 

limit graphically and numerically:

As shown in Example 7, when fi nding limits of  rational algebraic 

expressions, it is often useful to divide the numerator and 

denominator by the largest power of  x. For example, when fi nding 

lim
x

x

x→∞

+

+

3

12
, dividing both numerator and denominator by x2 gives 

lim
x

x x

x

→∞

+

+

1 3

1
1

2

2

Using the properties of  limits it is easy to verify that lim
x

x

x→∞

+

+

3

12
 = 0

Similarly, lim lim
x x

x

x x

x

x

→∞ →∞

− +
=

− +

= −
2 2

2
2

1
1

3

3

3

2

2

Hence, the horizontal asymptote is y = −2

You may wish to 

con rm this result 

using your GDC.

Investigation – graphs of x n + y n = 1
Graph the equation x2 + y2 = 1 using a graphing program. How would 

you enter the same equation in your GDC in order to see the same 

shape as the software produces?

Now graph x 4 + y 4 = 1  How does it compare with the graph of x 2 + y 2 = 1?

Experiment with different even values of n for x n + y n = 1  What do 

you notice? From your observations, conjecture the shape of the graph 

of x n + y n = 1, when n is an even number, and n approaches in nity.

Investigation – graphs of polynomials

Graph functions of the type 
P x

Q x
n

m

( )

( )
, such that n and m are positive 

integers, that represent the degree of the polynomial function.

Investigate the limit of the polynomial functions as x approaches ±∞ when

a n < m b n = m c n > m

Make a conjecture regarding the horizontal asymptotes of your 

functions, and justify your conjecture for the different cases in a, b and c

Possible examples 

are, P
2
(x) = x 2 + 3

Q
4
(x) = 3x 4 + x 2 + 1
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Exercise 4C

1 Find the required limit algebraically, if  it exists.

a lim
x

x

x→

+⎛
⎝
⎜

⎞
⎠
⎟

4

3

3
b lim

x

x x

x→−

+ −
+

⎛

⎝
⎜

⎞

⎠
⎟

2

2 2

2
c lim

x

x

x→−

⎛

⎝
⎜

⎞

⎠
⎟

2

6

3

64

8

d lim
x

x

x x→0

2

2

1
e lim

x

x

x x→1

2

2

1
f lim

x

x

→
+

1

1

1
1

1

g lim
( ) ( )

x

x x

x→

+ − +
0

2 22 3 4 1

6
h

2 2

lim
x a

x a

x a

2 Find the limit of  f  (x) algebraically as x approaches +∞, if  it exists.

a 
2

2

x

x +
b

3

1

2

2

x

x
c

2 1

3 5 1

2

2

x x

x x

+ −
+ −

d 
5

4 2

2

3

x

x +
e

x

x x− +
1

3 52
f

4 3 2 1x x

x

+ + +

3 Find, algebraically, any horizontal asymptotes of  these functions.

a 
3 5

4

2

2

x x

x

− +
b

2

4 1

x

x
c

2 3 12

3

x x

x

− +

d 
x

x

2

2

1

1

+
e

2 3

2 1

3

2

x x

x +

Convergence of sequences

The concept of  limits can be used to describe the value that 

a sequence approaches as its index approaches a certain value. 

You know that lim .
x x→ ∞

=1
0  Now consider lim

n→ ∞
a

n
, n ∈ +, a

n
 = 

1

n

Write out the terms of  this sequence: 

1, 1

2

1

3

1
, ,..., ,...

n

If  m and n are positive integers, then when m < n, 
1 1

m n
 . Hence, 

as the number of  terms in the sequence increases, the value of  the 

expression 
1

n
 decreases, until it is very close to 0.

Hence, lim
n n→ ∞

=
1

0, and we say that the sequence converges to 0.

You can investigate this graphically and numerically with the GDC.

If  the sequence has a fi nite limit, then the sequence is said 

to be convergent, otherwise it is divergent

The properties of  limits of  sequences are the same as those for limits 

of  functions. 

Sequences were 

introduced in Chapter 1
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Example 

 Find lim
n

n n

n→∞

+
+

2

2

3

2 1
, n ∈ +

Answer

lim
n

n n

n→∞

+
+

2

2

3

2 1
 = lim

n

n

n

→∞

+

+
=

1
3

2
1

1

2
2

 Hence, the sequence converges to 
1

2
. 

Divide both numerator and 

denominator by n2, and use the 

properties of  limits.

Put your GDC in sequence mode.

Confi rm this result graphically and 

numerically on the GDC.

Investigation – inscribed polygons
Consider a polygon inscribed in a circle.

You can form a sequence of rational numbers by taking 

the ratio of the perimeter of a regular polygon to its diameter.

Begin with an equilateral triangle in a circle. Calculate its perimeter 

and write the ratio of its perimeter to its diameter. Do the same for 

regular polygons of up to 10 sides. Formulate a conjecture. 

Test your conjecture by calculating the same ratio for polygons with 

many sides, e.g., 60, 80, 100, etc. 

Determine the limit to in nity of your sequence, and justify your answer.

Convergence of series

In Chapter 1 you learned that if  a geometric series has a fi nite sum, 

it converges to its sum.

Recall the formula for fi nding the sum of  a fi nite geometric series,

S
n
 = 

u r

r

n

1 1

1

( )

➔ For a geometric series, u r n

n 
n

n
u r

r
1

= 0

1lim
(1 )

1

∞

→∞∑ =

When −1 < r < 1, lim 0n

n
r



  and the series converges to S = 
u

r

1

1

Consider the geometric series 
1

21

⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑
n

n

. Writing out this series, you 

obtain 
1

2

1

4

1

8
+ + + ... . Since r < 1, this infi nite geometric series has a 

fi nite sum, S =

1

2

1
1

2

 = 1. The series converges to 1.

If the series does not have a fi nite sum, the series diverges
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Example 

 Determine whether the series 
5 4

60

n n

n
n

+

=

∞

∑  converges.

Answer

    

    

    
      

   
    

0 0 0 0 0

5 4 5 4 5 4

6 6 6 6 6

n nn n n n

n n n
n n n n n

5

60

⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑
n

n

 = 
1

1
5

6

6=  and 
4

60

⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑
n

n

 = 
1

4
1

6

3

 Hence, 
5 4

60

9
n n

n
n

+

=

∞

∑ = , so the series converges to 9.

This is the sum of  two geometric series.

Find limits seperately.

Using limit property 1, the limit of  a sum is the 

sum of  the limits.

Exercise 4D

1 Determine whether these sequences converge.

a lim
n

n

n→∞

+1
b lim

n

n

n→∞

+
+
1

2 1
c lim

n

n n

n n→∞ +

2

22

d 
 

3

2

1
lim

1n

n

n
e lim

n

n

n→∞

+2

3

1

1

2 Determine whether each series converges. If  it converges, 

determine its sum.

a ( )

=

∞

∑ 1

20

n

n
n

b
1 3.14

n

n





 
 
 

 c 5
1

31

⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑
n

n

d 
3

101
n

n =

∞

∑ e





1

2 3

7

n n

n
n

f 4 0 6 1

1

( . )−
=

∞

∑ n

n

EXAM-STYLE QUESTIONS

3 A geometric series has u
1
 = 35 and r = 2x. 

a Find the values of  x for which the series is convergent.

b Find the value of  x for which the series converges to 40.

4 Find the set of  values of  x for which the series 
3

10

x

xn +
⎛
⎜

⎞
⎟

=

∞

∑
n

converges.

. The derivative of a function

In mathematics, the derivative is the rate at which 

one quantity changes with respect to another. 

The process of  fi nding the derivative is called 

di erentiation. These ideas are central to 

the area of  mathematics called the calculus.

Calculus was the result of centuries 

of work and debate. Isaac Newton

(1642−1726) said “If I have seen 

further it is by standing on the 

shoulders of giants”. There is evidence 

that both Newton and Leibniz

(1646–1716) developed calculus 

independently within the same ten-year 

period, approximately 1665 to 1675. 
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Average rates of change

The graph shows the exchange rate of  

the euro to the US$ over the indicated time 

period in 2010. What was the average daily 

drop in exchange rate from September 29 to 

October 25?

The average daily drop in the exchange rate

=

total change in the rate

change in the time period

The change in the exchange rate over the indicated 

time period is approximately 0.735684 – 0.71328, 

or – 0.02356. The number of  days between October 25 

and September 29 is 26. Hence, the average daily exchange 

rate drop, – 0.2356 ÷ 26, is about 0.001.

Graphically, the average rate of  change between two points is the 

gradient of  the line joining the two points.

Example 

 This graph shows the growth of  internet domains on the world wide 

web since 1994. Estimate the average yearly growth between January 

2001 and January 2010.

Ja
n
-9

4

Ja
n
-9

5

Ja
n
-9

6

Ja
n
-9

7

Ja
n
-9

8

Ja
n
-9

9

Ja
n
-0

0

Ja
n
-0

1

Ja
n
-0

2

Ja
n
-0

3

Ja
n
-0

4

Ja
n
-0

5

Ja
n
-0

6

Ja
n
-0

7

Ja
n
-0

8

Ja
n
-0

9

Ja
n
-1

0

Ja
n
-1

1 x

y

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

800,000,000

900,000,000
Internet domain survey host count

Source: Internet Systems Consortium (www.isc.org)

Answer

 The average yearly growth is the gradient of  the secant line joining the 

points (2001,100 000 000) and (2010,800 000 000).

 Average yearly growth = 
800000000 100000000

9

≈ 77.8 million domains yearly

Source: www.x-rates.com

Sep 29 Oct 7 Oct 15 Oct 25 Nov 2 US$

EUR

0.702078

0.71328

0.724482

0.746886

0.735684

0.758088

A secant line joins two 

points on a curve.
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Example 

 A ball rolling toward the edge of  a ping-pong table is d cm from the 

edge at any time t seconds, t > 1, and d = t2 + t + 6. Find the average 

speed of  the ball between the fi rst and third second.

Answer

 Average speed = total distance ÷ total time

− − −(3) +3 + 6 (1) +1+ 6

3 1

2 2

= 3 cm
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ s 1

The speed of  the ball is 3 cm s 1

➔  In general, the average rate of  a function f  between two input 

values x
1
 and x

2
 is given by

f x f x

x x

( ) ( )2 1

2 1

, or Δ

Δ

y

x

(read as ‘the change in y divided by the change in x’ where  is 

the Greek letter delta.) 

The rate of  change, 
Δ

Δ

y

x
, at a point, is the gradient of  the graph at 

the point. 

If  a function is linear, the gradient between any two points is the 

same, hence the rate of  change, 
Δ

Δ

y

x
, between any two points is the 

same, and will be the same for the rate of  change at any 

particular point. 

This changes, however, for a curve. Consider the graph of  the 

function y = x2, and the rate of  change, 
Δ

Δ

y

x
, between any point 

on the curve and the point (1, 1).

The gradient of  any of  the secant lines is 
 


 

  

2 1

1
1, 1

y x

x x
x x

What is the gradient at x = 1, since according to this defi nition, x

cannot equal 1? You can see geometrically that as the points move 

closer to (1,1) the secant lines approach a line which is a 

tangent to the curve at (1,1). 

Now take a point on the curve arbitrarily close to the point (1, 1), 

whose x coordinate is 1 + h, where h is a very small quantity, h ≠ 0. 

The corresponding y-coordinate is (1 + h)2. You can now fi nd the 

gradient between the two points (1, 1) and (1+ h, (1 + h)2): 

Δ

Δ
=

+ −

+ −
=

+ + −
=

+
= +

y

x

h

h

h h

h

h h

h
h

( )

( )

1 1

1 1

1 2 1 22 2 2 2 2 2

2

The limit of  this expression as h approaches 0 is lim )(
h

h
→

+ =
0

2 2. 

Hence, the gradient of  the tangent at the point (1, 1) is 2. 

Since speed refers to 

how fast an object is 

moving, it is always 

positive. Velocity refers 

to the rate at which 

an object changes 

its position, hence 

it can be positive or 

negative. For example, 

if I move forward at 

a rate of 2 km/h and 

then return at the 

same rate, my speed 

is always the same, 

but the direction in 

which I’m moving has 

changed. Moving 

forward I have a 

positive velocity, 

whereas returning 

I have a negative 

velocity.

2

A
(1, 1)

(x, x2)B

C

4 6 8–2–4–6 x

y

2

–2

–6

–8

4

6

8

0

y = 2x – 1

y = x2
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➔ The gradient of  a curve y = f  (x) at the point (a, f  (a)) is 



 

0

( ) ( )
lim
h

f a h f a

h
, provided this limit exists.

Example 

 Find the gradient of  the curve y = x 2 at the point x = 2.

Answer

Δ
Δ

=
− + − −
− + − −

=
− + −y

x

h

h

h h

h

( 2 ) ( 2)

( 2 ) ( 2)

4 4 42 2 2

=
− +

=
− + − +4 ( 4 )2

= 4
h h

h

h h

h
h

lim ( 4 ) 4
0h

h
→

− + = −

Use the defi nition for gradient of  a 

curve at a point.

Simplify.

Evaluate the limit.

Example 

 Find the points on the curve y = 
1

x
 such that the gradient at these 

points is 
1

9

Answer

Consider the point a
a

,
1⎛

⎝
⎜

⎞
⎠
⎟  and a 

neighboring point a h
a h

+
+

,
1⎛

⎝⎜
⎞
⎠⎟

Δ
Δ

= +
+ −

=

− +
+ = +y

x

a h a

a h a

a a h

a a h

h

h

a ah

h

1 1
2

( )

( )

( )

= 
+

1
2a ah

lim
h a ah a→ +

=−
0

1 1
2 2

− =−
1 1

92a
, hence a = ±3

The points are (3, 
1

3
) and (–3, 

1

3
).

Use the defi nition for gradient of  a 

curve at a point, then simplify.

Evaluate the limit.

Set the expression equal to the 

gradient, and solve for a.

In geometrical terms, 

a curve is a set 

of points under a 

speci c condition. 

For example, a circle 

is a set of points 

equidistant from a 

 xed point called 

its center. Recall 

from chapter 2 that 

other geometrical 

curves, such as the 

parabola, ellipse 

and hyperbola are 

obtained when a plane 

intersects a cone at 

different angles. Many 

curves have been 

either discovered, 

or invented for the 

solution of special 

problems, for example, 

in mechanics.

parabola

circle

ellipse

hyperbola

Find examples of 

real-life problems 

where conic sections 

are used, and model 

them. 

Chapter 4 183



Exercise 4E

1 Find the gradient of  the curve at the given value of  x

a y = 2x2 − 1 at x = 1 b y = 
2

x
 at x = −2

c y = x3 at x = 1 d y = −x2 at x = 1

e y = 
x

x +1
 at x = 0 f y = 

1

x 2  at x = 2

2 Find the point on the curve y = 1

x 2
 such that the gradient 

at the point is 2.

3 Find the point on the curve y x
x

= +2 2 1
 and then the point on 

the curve whose gradient is 3.

Investigation – gradients
a  Find the gradient to y = xn, n a positive integer, at different points 

along the curve. You have already found two such values for y = x2,

at x = 1 and x = −2. 

b  Conjecture a rule to  nd the gradient of the tangent to y = x n

at any point on its curve.

You have developed the defi nition of  the gradient of  a point on 

a curve, and looked at some examples. In the investigation above 

you derived a rule for the gradient function of  the given curve for 

all points on the curve. The derivative of  a function at each point 

along its curve can now be found.

➔ The derivative, or gradient function, of  a function f  with 

respect to x is the function 


 


0

( ) ( )
lim( )
h

f x h f x

h
f x , provided 

this limit exists.

If  f  ′ exists, then f  has a derivative at x, or is di erentiable at 

x. ( f  ′(x) is read f dash, or f  prime, of  x.) Another notation for 

the derivative is d

d

y

x
, the derivative of  the function y = f  (x) 

with respect to x.

A function is differentiable if  the derivative exists for all x in 

the domain of  f.
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Example 

 Find f  ′(x) given that f  (x) = 2x2 + x, and hence fi nd the gradient of  the 

function at x = −3.

Answer

f  ′(x) = lim
2( ) ( h) (2 )

h0

2 2

h

x h x x x

→

+ + + − +

   = lim(
0

4 1 2 )
h

x h
→

+ +

   = 4x + 1

f  ′( 3) = 4( 3) + 1 = 11

Use the definition of  the derivative,

then simplify,

then evaluate the limit.

Evaluate f  ′ at x = 3.

Example 

 If  f  (x) = x , fi nd f  ′(x), and then fi nd the gradient to the curve 

at x = 4.

Answer

f  ′(x) = lim
0h

x h x

h→

+ −

   = 




0
lim .
h

x h x

h

x + +

+

h x

x h x+

   = lim

( )

h

x x

h

x h x→ + +0

+h

   = lim
h x h x→ + +0

1

   = 
1

2 x

 When x = 4, the gradient to the 

curve is 
1

2 4
 = 

1

4

To simplify use the difference of  two 

squares.

Multiply by 
x h x

x h x

+ +

+ +

Place h as shown so as to arrive at 

the next result.
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Example 

 A particle moves in a straight line so that its position from its starting 

point at any time t, in seconds, is given by s = 4t2, where s is in metres. 

The particle passes through a point P when t = a and then sometime 

later it passes through point Q when t = a + h. Find the average velocity 

as the particle travels from point P to point Q, and deduce its velocity at 

the instant it passes through P

Answer

0 a a + h t

s

p

q

P (a, 4a2) and Q (a + h, 4(a + h)2)

 Average velocity = 
4 42 2( )

( )

a h a

a h a

+ −

+ −

=
+ + −4 2 42 2 2( )a ah h a

h

=
+4 82h ah

h

 = h
h a

h

4 8+

= 4h + 8a m s−1

Velocity at P = 8a m s−1

Sketch a graph.

 Average velocity = 

total distance traveled

total traveling time

To fi nd velocity at P fi nd

lim (4h 8a)
h 0→

+ . 

Some functions do not have a derivative at every point in their 

domain. You can easily prove that if  a function is differentiable 

at x = c, then it will be continuous at x = c. In other words, 

di erentiability at a point implies continuity at the point

Let f  be differentiable at x = c. You want to show that 


lim ( ) ( ).
x c

f x f c

Since f is differentiable at x = c, and the point x = c is excluded from 

the limit x  c, 

lim lim lim( ) ( )
( ) ( ) (

x c x c x c
f x f c

f x f c f x

x c
x c

→ → →
−

−
⎡⎣ ⎤⎦ =

⎡

⎣
⎢

⎤

⎦
⎥ =

)) ( )
lim ( )

−

→

f c

x c
x c

x c

 = f  ′(c) · 0 = 0.

Since 


  lim ( ) ( )
x c

f x f c  = lim lim( ) ( )
x c x c

f x f c
→ →

− = −
→

lim ( ) ( )
x c

f x f c  it follows

that 
 

lim lim( ) ( )
x c x c

f x f c , hence f is continuous at c

Now consider the converse, i.e., if  a function is continuous at x = c, 

it is differentiable at x = c. To fi nd a counter – example you need to 

fi nd a function that is continuous at x = c, but whose left and right 

limits as x approaches c are either not equal or do not exist.

The velocity of the 

particle when t = a is 

the instantaneous 

velocity
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One such function that you are familiar with is y x=  . You know 

that for all x < 0, the function is equivalent to y = −x, hence the 

gradient of  all points to the left of  x = 0 is −1. For all x > 0, the 

function is equivalent to y = x, hence the gradient of  all points to 

the right of  x = 0 is 1. Using mathematical notation,

lim
| | |

h

x h x

h→
+

+ −

=
0

1− and lim
| | |

h

x h x

h→

+ −

=
0

1

Since the left and right limits differ, the function does not have a 

derivative at x = 0. 

➔ If  a function is differentiable at c, it is continuous at c

 A function that is continuous at c may not be differentiable at c. 

Linearity

A visual approach to deciding if  a function is differentiable at the 

point is local linearity at the point. If  you zoom in with your GDC 

at a point on a function that is differentiable, for example, x2 at 

x = 0, the function seems to ‘fl atten’ at this point. The more you 

zoom in, the more linear it appears at x = 0. 

Test this visual approach on several functions at points that have a 

derivative. 

When you perform the zoom test on y x=  at x = 0, it will remain 

unchanged regardless of  how closely you zoom in.

Exercise 4F

1 Find the gradient function of  the given curve, and then the value 

of  the gradient to the curve at the given point.

a y = x2 + 2x + 1 at x = 0 b y = x3 
− 1 at x = 1

c y = 
2

x
 at x = 3 d y = 1x  at x = 2

e y = x +3 at x = 1 f y = 
1

x
 at x = 4

EXAM-STYLE QUESTION

2 A particle moves in a straight line so that its position from its 

starting point after t seconds is 12 − 5t 2. If  the particle passes 

through point A when t = a, and point B when t = a + h, fi nd

a the average velocity of  the object as it moves from A to B

b the velocity as it passes through point A

0.04 0.08–0.04–0.08 x

y

–0.02

0.02

0.04

0

f(x) = x2

x

y

0

f(x) = |x|
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Investigation – functions that are not di erentiable

Find examples of functions that are continuous at a point in an open 

domain, but not differentiable at this point, given these conditions. 

a A function that is de ned piecewise.

b A function with a point such that the secant lines approach +∞ 

from one side, and ∞ from the other side, at this point.

c A function with a point such that the secant lines approach 

either +∞ or ∞ from both sides, at this point.

Equations of tangents and normals

If  m is the gradient at a point (x
1
, y

1
) on a curve the equation 

 of  the tangent at that point is 

(y − y
1
) = m (x − x

1
)

You can also fi nd the normal to the function at a particular point, 

since the gradient of  the normal is the negative reciprocal of  the 

gradient of  the tangent.

Example 

Given f  (x) = 3x2  2, fi nd 

a the gradient to the curve at x = 1

b the equation of  the tangent to the curve at x = 1

c the equation of  the normal to the tangent at x = 1

Answers

a f x
x h x

hh
′( )

( ) ( )
=

+ −⎡⎣ ⎤⎦ − −

→
lim

0

2 23 2 3 2

=
+ + − − +

→
lim
h

x xh h x

h0

2 2 23 6 3 2 3 2

=
→ →

+
= +lim lim

h h

xh h

h
x h

0

2

0

6 3
6 3  = 6x

Hence, at x = 1, the gradient is 6.

 Equation of  tangent is

y − 1 = 6(x − 1) or y = 6x − 5

Find the gradient function.

Evaluate the gradient function 

at x = 1.

 The gradient of  the tangent is 6 and 

it goes through the point (1, 1). 

c Equation of  normal is 

y − 1 = − −
1

6
1( )x

or y =  

7

6 6

x

 The gradient of  the normal to the 

tangent is 
1

6
 and the normal goes 

through the point (1, 1). 

Gradient-point formula: 

y − y
1

= m (x − x
1
)
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Exercise 4G 

1 Given f  (x) = 9 − x2, fi nd

 a the gradient of  the curve at x = −1

 b the equation of  the tangent to the curve at x = −1

 c the equation of  the normal to the curve at x = −1

2 Find the points on the curve y = 
1

1x
 whose gradient is −1, and 

fi nd the equations of  the tangents through these points.

3 Find any points on the following curves that have horizontal 

tangents, i.e., tangents parallel to the x-axis.

a y = 4 − 3x − 3x2 
b y = x3 + 1 c y = 

1

x
d y = x2 − 3x e y = x

4 Find the equations of  the tangent and normal to the curve 

y = x
x

+
1  at x = 1 

. Di erentiation rules

Derivative of a constant function

The graph of  f  (x) = c, c ∈ , is a straight line whose equation is y = 

c and it is parallel to the x-axis. Its gradient is therefore 0 for all x. 

Hence,

➔ If  f  (x) = c, and c ∈ , then f  ′(x) = 0

Positive integer powers of x

From the investigation on the derivative of  y = x 2, you will probably 

have conjectured that its gradient function is 2x. What happens with 

higher powers of  x ? Here is a rule developed from fi rst principles.

Using the defi nition of  the derivative

f
h

n nx h

h
′ =

+ −
( ) limx

x
→0

( )

f
h

n n n nh x h x h x x h x x

h
′ =

+ (
( ) lim

... ( ) ]
x

→

− − − −+ + + + + +
0

1 2 2 1[( ) )

= lim( ... ( ) )
h

n n n nx h x h x x h x x
→

− − − −+ + + + + +
0

1 2 2 1( ) )+ ( = nx n 1

➔ If n is a positive integer, and f  (x) = x n, then f  ′(x) = nx n 1

You have already seen this result in the investigation in the previous 

section, that is, if  f  (x) = x2, then f  ′(x) = 2x

The power rule holds for all n, where n is a real number, and this 

result will be used without proof.

Use the algebraic 

identity (see 

Chapter 1). 

a b a b

a n b

ab b n

n n

n n

n n

− = −

 + + ...

+ + ∈
∗

( )

(

),

1 2

2

- -

- -1


with a = x + h and 

b = x

There are n terms, 

each having the limit 

x n – 1 as h approaches 0.

This is the power rule.
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Constant multiple of a function

➔ For c ∈ , (cf  )′(x) =cf  ′(x) provided f  ′(x) exists.

The sum and di erence of functions

Let f  (x) be the sum of  two functions in x whose derivatives exist, 

i.e., f  (x) = u(x) + v (x). Then,

f x
h

u x h v x h u x v x

h
′ =

+ + + − +
( ) lim

0

[ ( ) ( )] [ ( ) ( )]
→

=
+ − −

lim
0

( ) ( ( ) ( )
h

u x h u x

h

v x h v x

h→

+
+)

=
+ − −

lim
0 0

( ) (
lim

( ) ( )
h h

u x h u x

h

v x h v x

h→ →

+
+)

= u ′(x) + v ′(x)

➔ If  f  (x) = u (x) ± v (x), then f  ′(x) = u′ (x) ± v′ (x)

The proof for the difference of two functions is left as an exercise 

for you.

Example 

Differentiate y = 
1

4

1

2

5 3 25 3x x x x− + − +  with respect to x

Answer

d

d

5

4

1

2

4 23 10
y

x
x= − + −x x

The derivative of  a sum is the sum 

of  the derivatives. The fi rst four 

terms use the power and constant 

multiple rules, and the last term uses 

the constant function rule.

Example 

Find f  ′(x) if  f  (x) = 
2 3 14 3

2

x x

x

− +
, x ≠ 0

Answer

f x
x

x

x

x x

x x x

( ) = − +

= − +

2 3 14

2

3

2 2

2 22 3

f  ′(x) = 4x  3  2x 3 = 4 3
2

3
x

x
− −

Write as a sum.

Simplify.

Differentiate each term.

The proof for negative 

integer powers of x

is left to the student 

as an exercise. This 

result can be extended 

to all real number 

powers of x

When the function is 

given as y, write the 

derivative as 
d

d

y

x

When the function is 

given as f (x), write the 

derivative as f ′(x)
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Example 

Find the equation of  the normal to the curve f  (x) = 2x3 + x  1 

at x = 0.

Answer

At x = 0, f  (0)= −1, so the point on 

the curve is (0, −1).

f  ′(x) = −6x2 + 1

f ′(0) = 1

Gradient of  normal   
1

1
1

y − 1 = −1(x − 0)

y = −x + 1 

Differentiate f ′(x) to get the gradient 

function.

Evaluate f ′(x) at x = 0

Find gradient of  normal.

Use y − y
1
 = m(x − x

1 
) 

Simplify.

Exercise 4H 

1 Find 
d

d

y

x
 for each function.

a y = 4 − x − 3x2 b y = 2x4 − 3x + 1

c y = 4 23

3

2

2

1 2

3
x x

x x
− + + d y = 

2 42 3 5x x

x

 

2 Find the equation of  the tangent to the curve y = 2(3x2 − 2x) 

at x = 1

3 Find the equation of  the normal to the curve y = 
x

x

3
 at the 

point x = −1

The chain rule

The function y = (2x − 1)3 is a polynomial so it is differentiable for 

all x. To differentiate this function, expand it, and then use the sum 

and difference rules.

y = (2x − 1)3 is a composite function where 

y = f  (g (x)), g (x) = (2x − 1), and f  (x) = x3

Let u = g (x), then y = u3

Consider the relationship 
d

d

d

d

d

d

y

x

y

u

u

x
=

d

d

y

u
 = 3u2 and 

d

d

u

x
 = 2 (since u = 2x – 1) 

then using the relationship above 

d

d

y

x
 = 3u2  2 = 6u2

Replacing u 

d

d

y

x
 = 6(2x − 1)2

This is as example of  the chain rule.

This function, 

y = (2x − 1)3

= 8x 3 − 4x 2 + 6x − 1

Hence 

d

d
= 24 4 + 62y

x
x x

d

d

d

d

y

u

u

x
and  are not 

fractions, hence 

this relationship is 

not arrived at by 

cancelling du. Since, 

however, these are 

rates of change, we 

can intuitively see 

that if, for example, y

changes twice as fast 

as u and u changes 

three times as fast as 

x, then y would change 

6 times as fast as x. 
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➔ If  f is differentiable at the point u = g (x), and g is differentiable 

at x, then the composite function ( )( )f g x  is differentiable 

at x. Furthermore, if  y = f (u) and u = g (x), then  
d d d

d d d

y y u

x u x
 Another defi nition for the chain rule is 

     ( ) ( ))f g x f g x g x

Example 

Differentiate y = (1  3x)7 with respect to x

Answer

Let u = 1 − 3x, then 
d

d

u

x
= −3

Hence, y = u7 and 
d

d

y

u
u= 7 6

    6d d d

d d d
7 ( 3)

y y u

x u x
u

dy

xd
 = 7(1  3x)6 ( 3) = 21(1  3x)6

Defi ne u and fi nd 
du

dx

Write y in term of  u. 

Find 
dy

du

Use the chain rule. 

Substitute for u and simplify.

Example 

Differentiate 3 42x

Answer

f g f

g

f g x g x

( )

( ) ( )=

( ) 3 ( ) =

( ) = 3

′ =

 =

1

2

x x x x

x x

2

2

4

4

1

2

for

and

( ) ( )
11

2

1

2

4

2

2

2

4

4

3

′( ) = 6 

′( ) 3

1

2

1

2=

=
3

3

x

x x

x x x

x

x

( )

( ) ( )

g

f g 6 

Find f  and g for the composite 

function.

Differentiate f  (g) 

Differentiate g(x)

Apply the chain rule.

Simplify.

You can use the chain rule to show that the derivative of  an odd 

function is an even function. Recall the defi nition of  an odd 

function, i.e., if  f is odd, then f  (−x) = −f  (x)

Hence, −f  ′(x) = f  ′(−x)(−1), and it follows that f  ′(−x) = f  ′(x) 

f  ′ is therefore an even function.

Similarly, if  f is an even function, then f  (−x) = f  (x). Hence, 

f  ′(−x)(−1) = f  ′(x), and it follows that f  ′(−x) = −f  ′(x), and therefore 

f  ′ is an odd function.

Odd and even functions 

are discussed in 

Section 2.2
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Exercise 4I

1 Find 
d

d

y

x
 for each function.

a y = (2x + 3)5
b y = 2 3− x

c y = 
2 3 + 5

2 4
x x

x
d y = 

3

5 +1
2

x

e y = 
x

x1

3

⎛
⎜⎜

⎞
⎟⎟

2 Find the equation of the tangent to the curve y = 3 2
2

x x−  at x = 1

3 Find the equation of the normal to the curve 
x

x

3
 at the point x = 1

4 Find the point of  the curve 
1

3 6 +12x x
 where the tangent to the 

curve is parallel to the x-axis.

5 Find the derivative, with respect to x, of  the function y = 1− x

Product rule

You use the chain rule to differentiate composite functions. To fi nd 

the derivative of  a product of  functions, you use the product rule.

The derivative of  y = x 2 is 2x

Rewrite x 2 as x x. The derivative of  x is 1

Thus the product of  the derivatives of  the component functions is 

1 × 1 =1 ≠ 2x. Thus, in general, the derivative of a product of functions 

is not equal to the product of the derivatives of the functions.

You can derive the product rule from fi rst principles.

Let f  (x) = u (x) v (x), where u (x) and v (x) are differentiable functions.

Then 

f x
h

u x h v x h u x v x

h
′

→
( ) = lim

0

( + ) ( + ) ( ) ( )

= lim
0

( + ) ( + ) ( ) ( )( ) ( ) ( ) ( )]

h

u x h v x h u x v x

h

u x + h v x u x + h v x

→

− −[ −

= lim ( + )
( + ) ( ) ( + ) ( )

h
u x h

v x h v x

h

u x h u x

h→∞

− −
+⎡

⎣⎢
⎤
⎦⎥

v x( )

=
→ → → →

lim ( ). lim ( ). lim
( ) ( ) ( )

h h h0 0 0

u x h v x
v x h v x

h

u x h u

h 0

+
+ −

+
+ −

lim
(( )x

h

= u(x)v′(x) + v (x)u′(x)

Hence, if f  (x) = u(x)v (x), where u(x) and v (x) are differentiable 

functions then 

f  ′(x) = u(x)v′(x) + v (x)u′(x)

Insert the expression 

in square brackets –

this is equal to O

Factorize, and then 

rearrange.
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➔ If  y = uv then 
d d d

d d d

y v u
u v

x x x
 

where u and v are functions of  x and differentiable.

Another way of  writing this is:

If  f (x) = u (x) v (x), where u(x) and v (x) are differentiable 

functions then f  ′(x) = u(x)v ′(x) + v (x)u ′(x).

Example 

Find f  ′(x) if  f  (x) = (2x + 3)(4 − 3x)

Answer

Let u(x) = 2x + 3, then u′(x) = 2 

Let v(x) = 4 − 3x, then v′(x) = 3

f  ′(x) = 3(2x + 3) + 2(4 − 3x) 

= −1 − 12x

Defi ne u and v

Find
du

dx
 and 

dv

dx

By the product rule: 

f  ′(x) = u(x)v ′(x) + v (x)u ′(x)

Example 

Find the equation of  the tangent to the curve y = 
x

x

2 1

1

+

+

, x ≠ 1 at (0, 1).

Answer

y = (x2 + 1) (x + 1) 1

Let u = x2 + 1, then 
d

d

u

x
 = 2x

Let v = (x + 1) 1, then 
d

d

v

x
(x) = (x + 1) 2

d

d

y

x
 = 2x (x + 1) 1 − (x2 + 1) (x + 1) 2

= (x + 1) 2 [2x (x + 1)  (x2 + 1)]

 
2 2

2

2 +2 1

( +1)

x x x

x

x x

x

2

2

2 1

( 1)

+ -

+

f  ′(0) = 1

y = x + 1

Change quotient to a product.

Use product rule: 
d(uv)

dx
u

dv

dx
v

du

dx
= +

Factorize.

Evaluate f  ′(x) at x = 0

Use gradient point formula: 

y − y
1
= m (x x

1  
)

Exercise 4J

Differentiate these functions, with respect to x

1 y = (x − 1) (x + 3)3 2 y = (2x − 3)2 (4x + 1)3

3 y = 

x

x

+1

1
4 y = x x1 2−

5 y =
1

3 +14x x
6 y = ( 1) (3 2)4

2

3x x− −

7 Find the equations of  the tangent and normal to the curve 

f  (x) = (x 2 + 1)(x 2 + 3) at the point (–1, 4).
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Changing a quotient to a product in order to differentiate, is not 

always straightforward, so you need the quotient rule. 

The quotient rule

If  y = 
u

v
, where u and v are both differentiable functions in x,

then

f x

u x h

v x h

u x

v x

h
′ =

+

+
( ) lim

( )

( )

( )

( )

h→0

=
+ − +

+→
lim
h 0

( ) ( ) ( ) ( )

( ) ( )

v x u x h u x v x h

hv x h v x

=
→

+ − +
lim
h 0

( ) ( ) ( ) ( )( ) ( ) + ( ) ( )v x u x h u x v x h

h

v x u x v x u x

=
→

− (

lim
h 0

( )
( ) ( )

( )
( ) )

( ) ( )

v x
u x + h u x

h
u x

v x + h v x

h

v x + h v x

=

+ − + −
lim ( )

( ) ( )
lim ( ) lim

( ) (

h 0→ → → →

⋅ ⋅v x
u x h u x

h
u x

v x h v x
lim
h h h0 0 0

))

lim ( ) ( )

h

v x h v x
h→

[ ]
0

+

′ − ′v x u x u x v x

v x

( ) ( ) ( ) ( )
2

 Hence, if  u(x) and v (x) are differentiable functions, and 

f x v x
u x

v x
′ = ≠( ) ( ) 0

( )

( )
,  then f x

v x u x u x v x

v x
′ =

′ − ′
( )

( ) ( ) ( ) ( )

( ( ))
2

➔ If  y = 
u

v
 then 

2

d d

d d d

d

u v
v u

x x

v

y

x

where u and v are differentiable functions of  x.

An alternative way of  writing this is:

if  u (x) and v (x) are differentiable functions, and 

f  (x) = 
u x

v x

( )

( )
, v (x) ≠ 0 then f  ′(x) = 

v x u x u x v x

v x

( ) ( ) ( ) ( )

( ( ))

′ ′

2

Add and subtract 

v (x)u (x)

Factorize

Take the limits in 

both numerator and 

denominator.
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Example 

Using the quotient rule, differentiate y = 
x

x

2 +1

+1
x ≠ 1

Answer

Let u = x2 + 1, then 
d

d

u

x  = 2x

Let v = (x + 1), then d

d

v

x
 = 1

Hence, 

d

d

2 ( 1) ( 1)

( 1)

2 1

( 1)

2

2

2

2

y

x

x x x

x

x x

x
=

+ − +

+

=
+ −

+

This is the same function as in 

Example 24 – and answer, using the 

quotient rule is the same.

Example 

Differentiate y = x

x

2

2

1

1

+ , (x ≠ ±1), with respect to x, and hence fi nd the 

derivative at x = 2

Answer

Let u = x2 + 1, then 
d

d

u

x
 = 2x

Let v = x2  1, then 
d

d

v

x
 = 2x

d

d

2 ( 1) 2 ( 1)

( 1)

2 2

2 2

y

x

x x x x

x
=

− − +

= 
4

( 1)2 2

x

x

At x = 2, 
d

d

8

9

y

x
= −

Find 
dv

dx
 and 

du

dx

Use the quotient rule.

Check your answer using the GDC

Exercise 4K

1 Differentiate these functions, with respect to x:

a y = 
x

x

2

3

7
b y = 


2 1

x

x

c y = 
1

3 14x x− +

d y = 
1

1

+ x

x

e y = x x− f y = 
1

1 2 +33 2x x x
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2 Find the gradient of  the curve 

known as ‘Newton’s Serpentine’, 

y = 
4

12

x

x +
, at x = −1

3 Find the equation of  the normal to the 

curve known as ‘The Witch of  Agnesi’, 

y = 
8

4 2+ x
, at x = 1

4 Find f  ′(x) if  f  (x) = 1
1

2

2

3

+
⎛
⎝
⎜

⎞
⎠
⎟

x

Higher derivatives

If  f is a differentiable function, then f  ′(x) is the derivative of  f  (x). 

Similarly, if  f  ′(x) is a differentiable function, f  ″(x) is the derivative 

of  f  ′(x). Since multiple dash or prime notation begins to lose its 

effi ciency after about the third derivative, for higher derivatives we 

write f  (n)(x).

Using 
d

d

y

x
 notation, we write

f  ′(x) = 
d

d

y

x
f  ″(x) = 

2

2

d

d

y

x
f  ″′ (x) = 

3

3

d

d

y

x
f  (n)(x) = 

d

d

n

n

y

x
n = 4, 5, ...

Example 

Find the fi rst fi ve derivatives of  f  (x) = x 4  3x 2 + 2x  1

Answer

f ′(x) = 4x 3  6x + 2

f ″(x) = 12x 2  6

f ″′ (x) = 24x

f  (4)(x) = 24

f  (5)(x) = 0

When using a superscript for a 

derivative the numbers are placed in 

brackets, as shown.

For n ≥ 5, f  (n)(x) = 0

Example 

A particle  moves in a straight line so that its position from a fi xed point 

after t seconds is given by s(t) = 3t + 5t 2 − t 3, s in cm.

a Find the velocity of  the particle at t = 2.

b If  the acceleration is the derivative of  the velocity, fi nd the 

acceleration of  the particle at t = 2.

1 2 3–2–3 –1
x

y

–0.2

0.2

0.4

0.6
f(x)

10 2 3–2–3 –1
x

y

2

Throughout history famous 

curves have often been 

given special names, such 

as the two in questions 

2 and 3. What is the 

signi cance of the name 

given to a curve? What 

properties of curves, if any, 

do the names highlight? 

Find applications of these 

famous curves, or real-life 

situations that the curves 

model.

f ″ is ‘f double dash’, or 

f double prime’, of x

f (n)(x) is the nth 

derivative of f with 

respect to x

{ Continued on next page
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Answers

a s ′(t) = 3 + 10t − 3t2

s ′(2) = 11 cm s−1

b s ″(t) = 10 − 6t

s ″(2) = 2 cm s 2

Differentiate s(t).

Evaluate v(t) = s′(t) at t = 2

Differentiate s′(t).

Evaluate a(t) = s ″(t) at t = 2

Exercise 4L

1 If  f  (x) = 4x + 1 + 
1

x
, fi nd f ″(x).

2 If  f  (x) = x4 − 2x − 1, fi nd f  ′(0) and f ″(−1).

3 If  f  (x) = x4 − 4x3 + 16x −16, fi nd x such that 

f  (x) = f  ′(x) = f  ″(x) = 0

4 f  (x) = x4 + rx2 + sx + t passes through the point (−1, 16). 

At this point, f  ″(x) = −f  ′(x) = 16. Find the values of  r, s, and t

5 A particle moves in a straight line such that its position at any 

time t is s(t) = (t − 4)3(3 − 2t)2 metres. Find

a the velocity after 4 seconds

b the acceleration after 4 seconds

c  the jerk of  the particle after 1 second.

6 Given f  (x) = 
1

x
, fi nd f  ′,  f ″,  f ″′,  f  (4),  f  (5) and hence fi nd an 

expression for f  (n)(x). Prove  your result using the method of  

mathematical induction.

The derivative of the 

acceleration is called 

the ‘jerk’.

Investigation – Leibniz’s formula

f (x) = uv is the product of two functions in x. You can  nd f ′(x) using 

the product rule,

f ′(x) = u′v + uv′

You can  nd f ″(x), using the product rule.

f x u v uv

u v u v u v uv

u v u v uv

′′ ′ ′ ′ ′

′′ ′ ′ ′ ′ ′′

′′ ′ ′

= +

= + + +

= + +

( ) ( ) ( )

( )( )

2 ′′′

Now  nd the 3rd derivative and 4th derivatives. Note the similarity 

to the binomial formula, and conjecture a formula for f (n)(x). Use 

this formula to  nd the 5th derivative of f (x).

The general case for f (n)(x) is called Leibniz’s formula.
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Graphical meaning of the derivative
Local maximum and minimum points

Look at a quadratic function whose leading coeffi cient is 

i positive (a > 0) or ii negative (a < 0).

What is the gradient of  the parabola at its vertex?

a > 0

0
x

y

a < 0

0 x

y

In both cases the tangent to the vertex is parallel to the x-axis. This 

means that the gradient of  the targent to the vertex of  a quadratic 

function is 0.

i  For a > 0 the vertex is a minimum point (the curve is concave 

upwards). What are the signs of  the gradients of  the points on 

the left and right of  this vertex?

1 212
x

y

1

2
A

B

C

D

E

F

G

3

0

A point where the 

derivative of a function 

is zero is sometimes 

called a stationary 

point

To the left of  the minimum 

point the gradients of  the 

tangents to points A, B, C and 

D are all negative. Also, the 

function is decreasing in the 

interval where the gradients 

are negative

To the right, the gradients of  the 

tangents to points E, F and G are 

all positive. The function is 

increasing in the interval where 

the gradients are positive. 

➔  Hence, the gradients of  the points change from negative to 

positive in going through the minimum point.
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ii  For a < 0 the vertex is a maximum point (the curve is concave downwards). 

1 212
x

y

1

2

A

B

C

D

E

F

3

0

To the left of  the maximum point the 

gradients of  the tangent to points A, B, 

and C are all positive. In the interval 

where the gradients are positive, the 

function is increasing

To the right, the gradients of  the 

tangent to points D, E, and F

are all negative. In the interval 

where the gradients are negative, 

the function is decreasing. 

➔  The gradients of  the points change from positive to negative 

in going through the maximum point.

Example 

Find the maximum and minimum points on the curve y = 2x 4 − 4x 2 + 1

Answer

d

d

y

x
 = 8x3  8x

8x3 − 8x = 0, hence 8x (x2 − 1) = 0 

and x = 0, ±1

Test values to the left and right of  these, using a 

sign diagram:

Set the fi rst 

derivative equal to 0 

and solve.

values 

of x

x < 1 1 < x < 0 1 < x < 1 x > 1

sign of 
d

d

y

x

+ +

Since the gradients go from negative, through zero 

at x = ±1, to positive at x = ±1 the function has 

local minimum points. At x = 0 the gradient goes 

from positive, through zero, to negative and is 

therefore a maximum.

Exercise 4M

1 Find any maximum and minimum points of  these functions 

and classify them as such.

a y = x 2 − 3x + 1 b y = −2x 3 + 6x 2 − 3

c y = 3x 4 − 2x 3 − 3x 2 + 4 d y = x 4 – 4x 3
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Points of infl exion

In question 1d of  Exercise 4N, there was a point on the curve 

whose gradient was 0, but it was neither a maximum nor a 

minimum point. Unlike at a maximum, or minimum, the 

sign of  the gradient did not change when going through the 

point. If  you look at its graph, you will see that the graph 

changes from concave up to concave down at this point, x = 0.

Now look at the graph of  the function y = x3 

At the point (0, 0), the gradient is 0, and this is neither a maximum 

nor a minimum of  the function. At this point the curve changes from 

being concave downwards to being concave upwards. The point 

where the concavity of  a curve changes is called a point of 

infl extion. At a point of  infl exion the tangent line at the point 

crosses the curve. A horizontal point of  infl exion has a gradient of  0.

➔ A point whose gradient is equal to 0 is either a maximum, 

minimum, or horizontal point of  infl exion.

First derivative test

On both sides of  the point of  infl exion in the graph of  y = x3 the 

gradients are positive, i.e., there is no change in sign. Since the 

gradients are positive for all x, the function is increasing throughout 

its domain (x ≠ 0).

Now look at the graph of  y = −x3

On both sides of  the point of  infl extion the gradients are negative, 

i.e., there is no change in sign. Since the gradients are negative for 

all x, the function is decreasing throughout its domain (x ≠ 0).

➔ Consider the function f  (x) and suppose that f ′(c) = 0. 

To determine if  the point x = c is a maximum, minimum or 

horizontal point of  infl extion, make a sign table and test 

values of  f  (x) to the left and right of  c

● If  the signs of  gradients change from negative to positive, 

then f  has a minimum at x = c

● If  the signs of  the gradients change from positive to 

negative, then f  has a maximum at x = c

● If  there is no sign change, then f  has a horizontal point of  

infl extion at x = c

➔ Let f  (x) be continuous on [a, b] and differentiable on [a, b].

● If  f  ′ > 0 for all x ∈ ]a, b[, then f increases on [a, b]

● If  f  ′ < 0 for all x ∈ ]a, b[, then f decreases on [a, b]

1 2–1–2
x

y

–1

–2

A

B

C D
E

1

2

0

f(x) = x3

No sign change in 

gradients going from the 

left to the right of the 

point of in exion.

No sign change in 

gradients going from the 

left to the right of the 

point of in exion.

1 2–1–2
x

y

–1

–2

A

B

C

D

1

2

0

f(x) = –x3
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Example 

a Find and classify any maxima, minima or points of  infl exion of  the 

function f  (x) = x 3 − 3x + 1

b State the intervals where f is increasing and where f is decreasing.

c Sketch the graph of  the function.

Answers

a f  ′(x) = 3x 2  3

Set f  ′(x) = 0

3x 2  3 = 0 ⇒ x = ±1

x x < 1 x = 1 1 < x < 1 x = 1 x > 1

 f (x ) + 0 0 +

 f increasing stationary decreasing stationary increasing

f  ( 1) = 3 and f  (1) = 1 

Hence, the cubic has a maximum 

at ( 1, 3) and a minimum (1, 1)

b f is increasing at ] , [ ] , [−∞ − ∪ ∞1 1

f  is decreasing at ] [,1 1

Differentiate, 

set f  ′(x) = 0 and 

solve for x.

Make a sign diagram.

c

–1
x

y

–1

–2

–3

–4

1

3

4

0

f(x) = x3 – 3x + 1

(1, –1)

(–1, 3)

Sketch the curve.

Label the maximum 

and minimum points.

Set f(x) = 0 to fi nd 

where the curve crosses 

the x-axis.

Find f(0), where the 

curve crosses the y-axis.

Example 

Find and classify any maxima, minima or points of  infl exion of  y=x4 + 2x3, and the intervals 

where the function is increasing or decreasing.

Answer

a 
d

d

y

x
 = 4x 3 + 6x 2

4x 3 + 6x 2 = 0 ⇒ 2x 2(2x + 3) = 0 ⇒ x = 0, x = 
3

2

x x <
3

2
x = 

3

2

3

2
< x < 0 x = 0 x > 0

d

d

y

x
0 + 0 +

f decreasing stationary increasing stationary increasing

Differentiate.

Set
dy

dx
 = 0

The cubic has a 

positive leading 

coef cient so as 

x → −∞, f  (x) → −∞ 

and as x → +∞, 

f  (x) → +∞. Given the 

general shape of a 

cubic this means that 

the only possibilities 

are a maximum 

followed by a minimum 

or a single point of 

in exion.

{ Continued on next page
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Hence, f  (x) has a minimum at − −⎛
⎝
⎜

⎞
⎠
⎟

3

2

27

16
,  and 

a horizontal point of  infl exion at (0, 0).

The function is increasing at ⎤
⎦⎥

⎡
⎣⎢
∪ ] [∞3

2
, 0 0,

and is decreasing at −∞⎤
⎦⎥

⎡
⎣⎢

3

2

 Sketch the graph of  the 

quartic function to confi rm 

these results.

1 2 3 4
x

y

–2

–3

–4

1

2

3

4
f(x) = x4 + 2x3

(0, 0)

(–1.5, –1.69)

Exercise 4N

1 Use the graphs to estimate where f  ′ is

 i 0 ii positive iii negative.

a 

–1–3–4
x

y

1

–1

–2

–3

–4

3

4

0

 b 

1 2 3 4–1–3–4
x

y

1

–4

2

3

4

2 Use these graphs of  gradient functions for a function f

to determine

i where f   has any maxima, minima or points of  infl exion

ii intervals where f is increasing

iii intervals where f is decreasing.

a 

1 2 3 4–2–3–4
x

y

1

–1

–2

–3

–6

–5

–4

2

3

4

0

 b 

21–2
x

y

–2

4

3

2

1

y = x4 – 2x3 – x2 + 2x

3 For each function, fi nd: 

i any stationary points, and justify your results

ii any intervals where f is increasing 

iii any intervals where f is decreasing.

a y = −3x 2 + 6 x − 1 b y = 22x x c y = 
x

x 2 1+

 d y = 
1

3 ( 2)x x e y = 

2 22x x
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Second derivative test for maximum 
and minimum points

This is another test to determine the 

nature of  maximum and minimum points. 

Here are the graphs of  y = x2 and its 

derivative.

The gradients go from negative to 

positive at the minimum point, the 

second derivative is positive, and f  ″(x) = 2. 

When the graph of  f is concave 

up its second derivative is positive.

Here are the graphs of  y = −x2 and its 

derivative.

The gradients go from positive to negative 

at the maximum point, the second derivative 

is negative, and f  ″(x) = −2. When the graph 

of  f is concave down, the second derivative is negative.

➔ ● If  f  ′(c) = 0 and f  ″(c) < 0, then f (x) has a local maximum at x = c

● If  f  ′(c) = 0 and f  ″(c) > 0, then f (x) has a local minimum at x = c

Example 

Find and classify all maxima, minima and horizontal points of  

infl exion of  the function y = 3 + x + 
1

x
Confi rm your fi ndings with a sketch graph of  the function.

Answer

d

d

y

x x

x

x
= − =1

1 1
2

2

2

x 2  1 = 0 ⇒ x = ±1
d

d

22y

x x2 3
=

f  ″(1) = 2 > 0 ⇒ f has a minimum at x = 1

f  ″( 1) = 1 < 0 ⇒ f  has a maximum at x = 1

Hence, the stationary points are: minimum (1, 5) 

and maximum ( 1, 1).

2 4 6 108–2
x

y

–2

–4

–6

2

4

6

(–1, 1)

(1, 5)

f(x) = 3 + x +  
1

x

Set d

d

y

x
 = 0 and 

solve for x

Using the second 

derivative test.

The graph of  the 

function confi rms 

the result.

1 2 3 4–1–3–4 –2
x

y

1

2

3

4

f1(x) = x2

0

1 2 3 4–3–4 –2
x

y

–1

–2

–3

–4

1

0

f1(x) = –x2

1 2 3 4–1–3–4 –2
x

y

–3

–4

1

2

3

4

f1(x) = 2x

f1(x) = –2x

1 2 3 4–1–3–4 –2
x

y

–1

–2

–3

–4

2

3

4

0

If both f ′(c) = 0 and 

f ″(c) = 0 the test is 

inconclusive. You shall 

study this later on in 

this section.
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Exercise 4O

1 Find and classify any maxima, minima and horizontal points of  

infl exion of  these functions.

a   y = 2x3 + 3x2 − 12x − 3 b y = −x4 + 2x − 1

c   y = x5 − 5x d y = 
 

2

12

2 3x x
e   y = 

3 3

(3 )

x

x x

EXAM-STYLE QUESTION

2 For each of  these functions

i  Find the coordinates of  any maxima, minima or horizontal 

points of  infl exion, and state their type. Justify your answers.

ii  Indicate the intervals where f is increasing, and the intervals 

where f is decreasing.

iii  Sketch the curve, showing clearly the points you have found 

in i, as well as the intercepts and any asymptotes.

a y = x5 − 5x4  b y = 


2

1

8

x

x

.  Exploring relationships between 
f, f ′ and f ″

Points of infl exion and concavity

Here are the graphs of  the cubic f  (x) = x3 − 3x + 1, its fi rst derivative 

f  ′(x) = 3x2 − 3 and second derivative f  ″(x) = 6x

Notice that there is a point on f which corresponds to a stationary 

point on f  ′ at x = 0. At this point, f  ′ has a gradient of  0. This is 

evident from the graph of  f  ″. 

–1
x

y

–2

–4

–8

–6

4

6

8

0

f(x)
f

1 2

(0, –3)

3 4–2–3–4
x

y

1

–3

–4

2

0

f'(x)f'

Do this exercise 

analytically and 

con rm your results 

on a GDC.

✗

See the next page for 

the graph of f ″

f (x) has a point of  infl exion at x = 0

This is a non-horizontal point of  

infl exion, since the fi rst derivative 

at this point is not equal to 0. 

At this point f changes concavity 

from concave down to concave up. 

Where f has a point of  infl exion at 

x = 0, f  has a minimum.
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1 2 3 4–1–2–3–4
x

y

2

4

6

–8

8

f"(x)

f"

➔ ● f is concave down in an open interval if  for all x in the 

interval, f  ″(x) < 0

● f is concave up in an open interval if  for all x in the 

interval, f  ″(x) > 0

➔ ● If  a curve has a point of  infl exion its second derivative will 

be 0 at this point. 

However if  a curve has a point whose second derivative is 0 that 

point is not always a point of  infl exion.

For example, consider f  (x) = x 4

1 2 3 4–1–2–3–4
x

y

1

2

3

4

5

–1

6

0

f(x) = x4

1 2–1–2

y

2

–2

0

f'(x)

x

y

0.2 0.4–0.2–0.4

0.1

–0.1

0

f"(x)

Where f  has a point of  infl extion at 

x = 0, f  ″ is negative on the left and 

positive on the right.

Here, f  ′(x) = 4x 3, and f  ′(x) = 0 

for x = 0. 

At (0, 0) y = x 4 has a minimum. 

f  ″(x) = 12x 2, and f  ″(x) = 0 for 

x = 0, but (0, 0) is clearly not a 

point of  infl exion.
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Example 

Consider the function f  (x) = 2x4 − 4x2 + 1

a Find any maxima, minima or horizontal points of  infl ection.

b  Find the intervals where the function is i decreasing ii increasing.

c  Find the intervals where the function is i concave up ii concave down.

d  Sketch the function, indicating any maxima, minima and points of  infl exion.

Answers

a f  ′(x) = 8x3 − 8x

8x3 − 8x = 0, hence 8x (x2 − 1) = 0, and x = 0, or x = ±1.

f  ″(x) = 24x2 − 8

f  ″(0) = 8, f  ″(0) < 0, hence at x = 0, f  has a maximum.

f  ″( 1) = 16, f  ″( 1) > 0, hence at x = 1 f  has a minimum.

f  ″(1) = 16, f  ″(1) > 0, hence at x = 1, f  has a mimimum.

The stationary points are therefore (0, 1), ( 1, 1), and (1, 1).

b Sign diagram

x x < 1 1 < x < 0 0 < x < 1 x > 1

sign of f ′ + +

behavior of f decreasing increasing decreasing increasing

  i f is decreasing in the intervals     , 1 0, 1

ii f is increasing in the intervals      1, 0 1,

c 24x2 − 8 = 0, hence x = ±
1

3

x x <
1

3

1

3
< x <

1

3
x >

1

3

sign of f ″ + − +

concavity of  f concave up concave down concave up

 i f is concave up on the interval −∞ − ∪ ∞[ ]⎤

⎦
⎥

⎡

⎣
⎢, ,

1

3

1

3

 ii f is concave down on the interval 
⎤

⎦
⎥

⎡

⎣
⎢

1

3

1

3
,

d 

(1, –1)(–1, –1)

(–1.31, 0)

(–0.54, 0)

(–0.577, –0.11)

(0.577, –0.11)

(0.54, 0)
(0, 1)

(1.31, 0)

–1–2
x

y

1

–1

0

f(x) = 2x4 – 4x2 + 1

Set f  ′(x) = 0 to fi nd any 

stationary points.

Using the second derivative 

test.

To fi nd any points of  

infl exion, set f  ″(x) = 0

f  ′′(x) < 0 means concave 

down.

f  ′′(x) > 0 means concave up.

f  (x) = 2x 4  4x 2 + 1

f  (0) = 1

Although the question 

does not ask for zeros 

in the sketch, you 

should indicate on the 

graph where they are.
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Exercise 4P

1 For each function 

 i fi nd any points of  infl exion

 ii  determine the intervals where the function is concave up 

or concave down. 

Justify your answers.

a   y = x 3 − x b y = x 4 − 3 x + 2 c y = 24x x

d   y = 
2

3( 1)x e y = 
23

1

x

x

EXAM-STYLE QUESTION

2  Here is the graph of  f  ′ for a function f

From the graph, indicate 

a the x-coordinates of  any points where the gradient of  f  (x) 

is zero and determine the nature of  the points

b the intervals where f is

 i increasing ii decreasing 

c the intervals where f is

 i concave up ii concave down.

d Sketch f on a copy of  the graph.

Investigation – cubic polynomials
For the cubic polynomial y = ax 3 + bx 2 + cx + d, de ne the conditions 

for a, b, and c such that the cubic has stationary points, and show that 

the cubic always has a point of in ection.

.  Applications of di erential calculus: 
kinematics

Kinematics is the study of  how objects move. A particle 

moving in a straight line is the simplest type of  motion.

To describe simple linear motion you need a starting 

point, a direction, and a distance. 

● The path is the set of  points between the start 

and end location. 

● The displacement describes the difference in the 

particle’s position between its start and end points. 

● The distance is the length of  the path between two 

points on the path the particle has traveled. 

✗

1–2
x

y

–2

–3

–4

–1

2

0

y = – x
4
 + 2x

3 
+ x

2
 – 2x

Although Leibniz and Newton 

discovered calculus at about the same 

time, Newton was led to calculus when 

studying motion. In fact, he used the 

term ‘ uxions’ for derivatives. Leibniz’s 

notation for the derivative 
d

d

y

x
 is the one 

we use today. Newton’s notation y, with 

a dot over the dependent variable, was 

less popular. 
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For example, if  you jog once around a standard track the 

distance you will cover is 400 m, but your displacement 

is 0, since your start and end positions are the same. 

Displacement and distance are related. In physics terms, 

displacement is a vector quantity that measures the change in position 

between a start and an end point, and distance is a scalar. In the 

diagram below, the path of  a particle follows the squiggly line from 

A to B. The length in metres of  this path is the distance traveled. 

The displacement is given by the vector AB. Hence, the 

displacement is always less than or equal to the distance traveled.

A B

Instantaneous velocity and acceleration
● Velocity at a particular instant is the derivative 

of  the position function, s (t) with respect to time.

v t
s

( ) =

d

dt
or s′(t)

● Acceleration is the derivative of  the velocity with 

respect to time, a(t). It is therefore the second derivative 

of  the position function. If  a particle’s velocity at 

time t is v(t), then 

a t
v s

t
( ) = =

d

d

d

dt

2

2
or s ″(t)

● When v and a have the same sign, the particle is 

speeding up (accelerating).

● When v and a have opposite signs, the particle is 

slowing down (decelerating).

Example 

A particle moves in a horizontal line so that its position from a fi xed 

point after t seconds is s metres, where s = 5t 2 − t 4

Find the velocity and acceleration of  the particle after 1 second. 

Is the particle speeding up or slowing down at t = 1?

Answer

v = 
d

d

s

t
 = 10t − 4t3

At t = 1, v = 6 m s 1

a = 
d

d

d

d

2

2

v

t

s

t
=  = 10 − 12t2

At t = 1, a = 2 m s 1

At t = 1 the particle is slowing down.

Differentiate s to fi nd velocity. 

Evaluate at t = 1

Differentiate v to fi nd acceleration. 

Evaluate at t = 1

The signs of  v and a are different 

which means the particle is 

slowing down.

The derivative of the acceleration is 

called the jerk. It is exactly what you 

experience when there is a sudden 

change in acceleration, i.e., you feel 

your body being moved abruptly. For 

example, if you are in an airplane 

when there is a sudden change in 

acceleration, your drink might spill, 

or items might fall off trays. It is 

interesting that the travel sickness 

that many people experience is 

often due to jerk, even jerk that is 

not noticeable. Note that the jerk as 

the derivative of acceleration is not 

explicity on the HL syllabus but you 

may be asked to calculate a higher 

derivative.
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Example 

A particle moves along a line so that its position at any time t, in seconds, is 

s (t) = t3 − 7t2 + 11t − 2.5

  a Find the velocity and acceleration at any time t

  b  Find the times when the particle is at rest, and the times when it is speeding up and slowing 

down. Justify your answers.

   c  Find the values of  t when the particle changes direction.

  d  Find the total distance traveled in the fi rst 3 seconds.

Answers

a v (t) = s′(t) = 3t2 − 14t + 11

a(t) = v ′(t) = 6t − 14

b 3t2 − 14t + 11 = 0, t = 1 or t = 
11

3
6t − 14 = 0, t = 

7

3

t 0 < t < 1 1 < t <
11

3
t >

11

3

sign of v + − +

When a = 0, t = 2
1

3

t t < 7

3
t > 

7

3

sign of a +

v and a have different signs for 0 < t < 1 and 
7

3
 < t < 

11

3

In these time intervals the particle is slowing down. This 

makes sense since these are the times just before the particle 

comes to rest.

v and a have the same signs for 1 < t < 
7

3
 and t > 

11

3

At these time intervals the particle is speeding up.

c t = 1 and t = 
11

3

d  The total distance traveled in the fi rst 3 seconds is 

[s (1) s (0)] + [s (3) s (1)].

s (1) − s (0) = 2.5 − ( 2.5) = 5

In the fi rst second the particle moves 5 m to the right.

s (3) − s (1) = 5.5  2.5 = 8

Between the fi rst and third seconds, the particle moves 8 m to 

the left.

Hence the particle has covered a total distance of  13 m.

When the particle is at rest v(t) = 0

When the particle has constant 

velocity, a(t) = 0

From the sign diagram for v(= s′), 

s is increasing on the intervals 

0 < t < 1 and t > 
11

3
, hence the 

particle is moving to the right. 

During the interval 1 < t < 
11

3
, 

s is decreasing, hence the particle 

is moving to the left.

Since the particle changes 

direction at t = 1, fi nd the 

distance traveled from t = 0 to 

t = 1, and from t = 1 to 

t = 3, separately.
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Exercise 4Q

1 At any time t, in seconds, a diver’s position after diving off  a 

board can be modeled by the function s(t) = −5t 2 + 5t + 10, 

where s is the height, in metres, above the water. Find

a the height of  the diving board

b how long it takes the diver to hit the water

c the velocity and acceleration of  the diver at impact. 

Interpret your answers.

2 A detonation in the earth propels a rock straight up. Its height at 

any time t can be modeled by the function s(t) = 50t − 15t 2 where 

s is in metres. Find

a  the maximum height of  the rock

b the velocity and speed when the rock is 20 m above the 

ground, and interpret your answers

c the acceleration of  the rock at any time t

d the time taken for the rock to hit the ground again.

3 A particle moves in a straight line such that its displacement t

seconds later is s metres, where s(t) = 7t + 5t 2 − 2t 3

a Find the initial velocity and acceleration, and interpret your 

answer.

b Find the velocity and acceleration after 2 seconds, and 

interpret your answer.

4 A particle moves in a straight line such that its displacement 

from a fi xed point after t seconds is s metres, where s(t) = 10t  2 
− t  3

a Find the average velocity in the fi rst 3 seconds.

b Find the velocity at t = 3 and acceleration at t = 3.

c Determine if  the particle is speeding up or slowing down at t = 3.

d Find the value of  t when the direction of  the particle changes.

EXAM-STYLE QUESTION

5 The position of  a particle at any time t seconds after it starts 

moving is given by the function s(t) = 
1

3
t 3 − 3t 2+ 8t metres. Find 

a the velocity and acceleration at any time t

b the times when the particle is 

 i at rest ii is speeding up iii is slowing down

c the acceleration when the particle’s velocity is 0, and interpret 

your answer

d the times when the particle changes direction

e the total distance traveled in the fi rst 5 seconds.

.  Applications of di erential calculus: 
economics

Calculus is applied in basic economic theory in marginal analysis. 

Economists analyze how small changes, for example, increasing the 

✗
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production of  a product by a single unit, affect profi ts and 

costs. Marginal analysis quantifi es the benefi ts of  performing 

such an action against the costs. When the benefi ts, or profi ts, 

exceed the cost of  the action, you can proceed on this course 

until this balance changes. The break-even point occurs when 

the production costs and the total revenues, the amount of  

income generated before any deductions are made, 

are the same.

There are three basic terms in marginal analysis. 

● Marginal profi t is the rate of  change of  profi t with respect to the 

number of  units produced or sold.

● Marginal revenue is the rate of  change of  revenue with respect to the 

number of  units sold. 

● Marginal cost is the rate of  change of  cost with respect to the number 

of  units sold.

Here is a summary of  the basic terms and corresponding formulae.

     x = number of  units produced (or sold)

 r (x) = total revenue from selling x amount of  units

 c (x) = total cost of  producing x amount of  units

p (x) = profi t in selling x amount of  units

r ′(x) = marginal revenue, the extra revenue for selling one extra unit

c ′(x) = marginal cost, the extra cost for selling one extra unit

p ′(x) = marginal profi t, the extra profi t for selling one additional unit

Example 

The profi t, in euros, obtained from selling x pairs of  shoes can be 

modeled by p (x) = 0.000 25x3 + 10x

a Find the marginal profi t for a production of  50 pairs of  shoes.

b  Find the actual gain in profi t obtained by raising the production level 

from 50 to 51 pairs of  shoes.

c  Comment on your answers to a and b

Answers

a p′(x) = 0.00075 x2 + 10

p′(50) = 0.00075 (50)2 + 10 = 11.88 euros

b p (50) = 0.00025 (50)3 + 10(50) = 531.25 euros 

p (51) = 0.00025 (51)3 + 10(51) = 543.16 euros

The additional profi t is therefore 543.16  531.25 = 11.91 euros

c The marginal profi t is the extra profi t for selling one additional pair of  shoes. 

This approximates very well the actual profi t, according to the profi t formula, 

for selling an extra pair of  shoes.

Source: www.12mana e.com

Total RevenueBreak-even

point

Break-even Analysis

Loss Prot

Total Cost

Variable Cost

Fixed Cost

Units sold (#)

Sales ($)

20

40

0

The variables are 

connected by the 

formula p (x) = r (x) c (x)
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In the real world, however, profi t does not always work according to 

the profi t model. It is more likely that a company will be able to 

maintain sales only by lowering prices at some stage. So other 

models, such as a demand function, need to be introduced in order 

to make a more accurate marginal analysis.

What are the variables affecting maximum profi t, and when does 

maximum profi t occur?

Profi t is the difference between revenues and costs, i.e., 

p(x) = r (x) − c (x). Differentiating, p′(x) = r ′(x) − c ′(x). Profi ts will be 

maximized when p′(x) = 0, i.e., 0 = r ′(x) − c ′(x) ⇒ r ′(x) = c ′(x) 

Maximum profi t occurs when the marginal revenue and marginal 

cost are equal.

Of  course, minimum profi t can also occur when p′(x) = 0. Profi t 

will at any rate occur when marginal revenues and marginal costs 

are equal.

Example 

The cost of  manufacturing fi shing poles, in thousands 

of  units, is modeled by c (x) = x3  10x2 + 20x. The revenue 

is modeled by r (x) = 7x + 3

Find a production level that maximizes profi ts.

Answer

c ′(x) = 3x2 20x + 20 

r ′(x) = 7

c ′(x) = r ′(x) 

⇒ 3x2  20x + 20 = 7 

⇒ 3x2  20x + 13 = 0

⇒ x
1
≈ 0.730, x

2
≈ 5.94

Therefore, maximum profi t 

occurs at a production level of  

5 940 fi shing poles. Minimum 

profi t occurs at a production level 

of  approximately 730 fi shing 

poles. 

Differentiate both c(x) and r(x), and 

set them equal.

Since p(x) = r(x)  c(x) is a cubic 

function, if  it has a maximum it will 

also have a minimum.

The ideal production level is the one that minimizes costs. 

If  the cost of  producing x units is c (x), then the average cost per 

unit is c x

x

( ) . If  the cost of  producing x units can be minimized, then 

it will occur when 
 
 
 

d ( )

d

c x

x x
 = 0
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d

d

( ) ( ) ( )
2x

c x

x
=

xc x c x

x

⎛
⎝
⎜

⎞
⎠
⎟

′ −
 = 0

⇒ xc ′(x) = c (x) 

⇒ c ′(x) = 
c x

x

( )

If  the production cost of  x units can be minimized, it will occur 

when the marginal cost of  producing one extra unit is the same as 

the average cost of  producing x units.

Example 

The cost of  manufacturing fi shing poles, in thousands of  units, is 

modeled by c (x) = x3  10x2 + 20x. Find a production level, if  it exists, 

that minimizes average cost.

Answer

c ′(x) = 3x 2  20x + 20

c x

x

( )
 = x 2  10x + 20

Hence, 3x 2  20x + 20 = x 2  10x + 20

⇒ 2x 2  10x = 0 ⇒ 2x(x  5) = 0

⇒ x = 0, x = 5 
d

dx

c x

x

( )⎛
⎝
⎜

⎞
⎠
⎟  = 2x  10

d

dx
(2x  10) = 2 

The only production level that would possibly 

minimize average cost is x = 5. 

Since x is in thousands, 5000 fi shing poles is the 

production level necessary to minimize costs. 

Use the second 

derivative test.

Since 2 > 0, the 

second derivative is 

positive for all x, so 

x = 5 is a minimum.

In Examples 37 and 38 the maximum profi t is for a production level  

of  almost 6000 fi shing poles, but to minimize average cost, the 

production level is 5000 poles.

Hence, these results would have to be analyzed and a decision taken 

as to which production level the company should aim for. 

Ultimately, every company’s goal is to maximize profi ts, which 

means maximizing revenues. Obviously, a company with minimal 

production costs, but no revenues, will not make a profi t. 

Exercise 4R

1 A company manufactures oil tanks for reservoirs. The total 

weekly cost in euros of  producing the tanks can be modeled by 

c (x) = 20 000 + 180x − 0.1x2

a Find the marginal cost function.

b Find the marginal cost of  producing 100 tanks per week.

c Find the cost of  producing 101 tanks, and compare your 

answer with b

Use quotient rule.

For minimum cost, 

c ′(x) = 
c x

x

( )
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2 A company does market research before producing a new 

type of  memory stick. Initial overheads and fi xed costs of  

production, in euros, for x memory sticks can be modeled by 

c (x) = 500 + 3x. The projected selling price is modeled by 

p (x)= 7 − 0.002x

a Find

 i the domain of  the price function

 ii the marginal cost function, and interpret its meaning

 iii the revenue function, and its domain.

b Graph the revenue and cost functions, and fi nd the break-

even points, and interpret what they mean. 

State the memory stick production levels in the form a < x < b, 

(a and b are integers), that must be met in order for the 

company to make a profi t.

3 A company specializes in making units from rare metals for 

nuclear plants. The total cost, in dollars, is modeled by

c (x) = 500 x2 + 1000, where x represents hundreds of  units. 

Find the number of  units the company should make in order to 

minimize costs. 

4 The cost, in euros, for producing x number of  jackets is 

c (x) = 400 + 20x − 0.2x2+0.0004 x3

a Find the number of  jackets that should be produced to 

minimize costs.

b Find the number of  jackets that should be produced to 

maximize profi ts if  the revenue function can be modeled by 

r (x) = 35x − 3

c Interpret your answers to a and b.

. Optimization and modeling

The primary purpose of  applied mathematics is to describe, 

investigate, explain and solve real-world problems. This process is 

called mathematical modeling. The steps are:

● Identify all variables, parameters, limits and constraints.

● Translate the real-world problem into a mathematical system.

● Solve the mathematical system.

● Interpret the reasonableness of  the solution in light of  the real-

world problem.

Optimization problems deal with fi nding the most effective 

solutions to real-world problems, for example, how to minimize the 

surface area of  a container for a required volume.
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Example 

An open box is made from cutting congruent 

squares from the corners of  a 4 m by 4 m cardboard 

sheet. How large should the squares be so that the box 

has a maximum volume?  What is the maximum capacity 

of  the box? 

Answer

Let x be a side of  the square in cm

L = W = 4 − 2x

H = x

0 < x < 2

 V = x (4 − 2x)2

V ′ = (4 − 2x)2 + 2x (4 − 2x)( 2) 

= (4 − 2x)2 4x (4 − 2x)

V ′ = 12x2  32x + 16

Set V ′ = 0, 12x2 32x + 16 = 0

4(3x2  8x + 4) = 0

4(3x  2)(x  2) = 0

x = 2

3
 or x = 2

Since x < 2, reject x = 2

V ″ = 24x  32 

When x = 
2

3
, V ″= −16 < 0 hence

at x = 
2

3
 m, V has a maximum.

Hence, V = 
2

3
(4 − 

4

3
)2 = 4.74 m3

Identify any variables.

Express the dimensions of  the box in terms 

of  the side of  the square, x.

Identify constraints.

Write the function for volume.

Differentiate the function.

Solve for x.

Use the second derivative 

test to check x = 
2

3
 gives 

a maximum.

Check your answer on a GDC.

4 – 2x xx
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Example 

You have been asked to design a cylindrical can to hold 1 litre of  car 

oil, with the minimum surface area in order to minimize costs. Find 

the dimensions of  the can.

Answer

V = 1 litre = 1000 cm3

  r = radius of  base 

 h = height of  can

V = πr2h

Surface area A = 2(πr2) + 2πrh

1000 = πr 2h, hence h = 
2

1000

r

A = 2πr 2 + 2πr 
2

1000

r

= 2πr 2 + 2000

r

A′ = 4πr 
2

2000

r

4πr 
2

2000

r
 = 0

 4πr3  2000 = 0

r = 3
500



≈ 5.42, h = 10.8 cm 

A = 554 cm2

Identify constraints.

Identify variables.

Identify function to be optimized.

Use the constraint to reduce the 

function to be maximized to one 

unknown.

Differentiate.

Substitute r and h into A.

Check your answer on the GDC.

Exercise 4S

1 Find the dimensions of  the rectangle with largest area, if  its base is 

on the x-axis, and its upper corners are on the parabola 10 − x2

2 A rectangular plot of  land is bounded on one side by a river, and by a fence on the 

other three sides. Find the largest area that can be enclosed using 800 m of  fencing.

3 A stained glass window is to be designed and entered in an annual competition in the 

UK. The window must be in the shape of  a semicircle over a rectangle, such that the 

diameter is on a side of  the rectangle. If  the perimeter of  the window is to be 4 m, fi nd 

the dimensions that will result in the rectangular part having the largest possible area.

  You wish to make an open rectangular box from a 24 cm by 45 cm piece of  cardboard, 

by cutting out congruent squares from its corners and folding up the sides. Find the 

dimensions of  the box of  largest volume you can make this way, and fi nd the volume.

 Find the volume of  the largest right circular cone that can be inscribed 

in a sphere whose radius is 10 cm.

 A rectangular sheet of  tin whose dimensions are l cm by w cm and 

whose perimeter is 36 cm will be rolled to create a cylinder.

a Find the values of  the length and width that will give the greatest volume.

b The same sheet of  tin will be revolved about one of  its sides to create a 

cylindrical fi gure. Find the values of  l and w that will give the greatest volume.
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. Di erentiation of implicit functions

The functions you have studied so far have been explicitly defi ned, 

i.e., the dependent variable is defi ned in terms of  the independent 

variable. The equation of  the circle however, whose center is at the 

origin is x2 + y2 = r2, where r is the radius of  the circle. In this case, 

both x and y are implicitly defi ned.

You can often change an implicitly defi ned function into an explicit 

function by expressing one variable in terms of  the other. However, 

this is not always easy, or possible, and so to analyze such functions 

you need to differentiate them implicitly. 

For example, differentiate y2 = 4x implicitly with respect to x. 

Differentiate the left-hand side with respect to x using the chain rule: 
d

d

d

d

d

d

d

d

( ) ( )y

x

y

y

y

x

y

x
y

2 2

2= ⋅ =

Differentiate the right-hand side: 
d

d

( )4
4

x

x
=

Hence: 2 4
4

2

2
y

y

x

y

x y y

d

d

d

d
= = =⇒

Therefore: d

d

y

x y
=

2

In order to check the result, you can (if  possible) write the function 

explicitly, and differentiate.

In this case y x y x x2 4 4 2= ⇒ = ± = ±

Taking y x= 2

d

d

d

d

d

d

1

2

1 2 2
1

2

1

2 1

2
y

x x x y
= = = = = =

( ) ( )2
2 2

2

x

x

x

x
x

Likewise, taking y x= 2−

d

d

1 2 2y

x xx y
= − = =

2

Thus you obtain the same result by either differentiating implicitly 

or explicitly.

Example 

Find the gradient of  the circle x2 + y2 = 1 at the point (0, 1).

Answer

2x + 2y
d

d

y

x
 = 0

d

d

y

x

x

y
= −

Substitute (0, 1) for x and y
d

d
0

y

x
=

Differentiate implicitly with respect 

to x. 

Rearrange.

Again, you can check by fi rst writing 

the equation explicitly and then 

differentiating.

y = x 2 + 2 is an 

explicitly de ned 

function. x3y + xy3 = 3

is an implicitly de ned 

function.
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As in these examples, it is sometimes possible to check the result of  

implicit differentiation by defi ning the function explicitly, and then 

differentiating. For example, consider the Folium of  Descartes 

whose equation is x3 + y3 = 9xy, and is graphed here. This is 

obviously not a function, but consists of  three distinct piecewise 

functions joining to form the graph.

Example 

Differentiate the folium of  Descartes,  x3 + y3 9xy = 0

Answer

3x2 + 3y2d

d

y

x
 9 y x

y

x
+⎛

⎝
⎜

⎞
⎠
⎟

d

d
 = 0

3x2 + 3y2d

d

y

x
 9y  9x 

d

d

y

x
= 0 

d

d

y

x
(3y2  9x) = 9y − 3x2

d

d

y

x

y x

y x

y x

y x
= =

9 3

3 9

3

3

2

2

2

2

Use the product rule to differentiate 

xy.

Expand.

Factorize 
dy

dx

Solve for 
dy

dx

Example 

The point P (2, m), where m < 0, lies on the curve 2x2y + 3y2 = 16

a Calculate the value of  m

b Find the gradient of  the normal to the tangent at P

Answer

a 2(2)2 (m) + 3m2 = 16

8m + 3m2 = 16

3m2 + 8m  16 = 0

(3m  4)(m + 4) = 0

3m  4 = 0 or m + 4 = 0

m = 
4

3
 or m =  4

Since m < 0, m =  4

Substitute (2, m) into the 

implicit function for (x, y).

Solve the quadratic for m.

Reject positive value of  m. 

b 2 2 6 02xy x y
y

x

y

x
+ + =⎛

⎝
⎜

⎞
⎠
⎟

d

d

d

d

 4xy + 2x2 d

d

y

x
+ 6y

d

d

y

x
 = 0

d

d

y

x
 = 

+
4

2 6

xy

x y2

 At (2, 4), 
d

d

y

x
 = 

1

2

Hence, the gradient of  the normal 

at P is −2.

Differentiate implicitly.

Substitute your solution for x 

and y.

1
0

2–2 –1 x

y

1

–1

–2

2 x
3 + y3 = 9xy

[ The Folium of 

Descartes
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Exercise 4T

1 Find 
d

d

y

x
 by differentiating implicitly with respect to x.

a 3y2 + x2 = 4  b y4 = x3 + 1  

c x2 + y2
− 3x + 4y = 2  d 2x2

− 3x2 y2 + y2 = 9

e (x + y)2 = 5 − 2x f x2 = 
x y

x y+

2 Find the equation of  the tangent to the curve x2
− y2 = 9 at the 

point (5, 4).

3 Find the equation of  the normal to the curve y2 = 3x + 1 

at the point (1, −2).

4 Find the equations of  the tangent and the normal to the curve 

x2
− 3 xy + 2y2 = 5 at the point ( 3, 2).

5 Find the coordinates of  the where the gradient is zero points on 

the curve x2 + y2
− 6x − 8y = 0 

6 Given the curve 3x2 + 2xy + y2 = 3, fi nd 
d

d

y

x
 and 

d

d

2 y

x 2
 at the 

point (1, −2).

7 Given the curve x2 + xy + y2 = 3, fi nd the x-intercepts 

and show that the tangents to the curve at the x-intercepts 

are parallel.

8 A rectangular tank with square base x m and height y m is 

designed so that the top of  the tank is at ground level. The 

purpose of  the tank is to store excess water that runs off  from the 

ground, which has a low porous index. The proposed volume 

of  the tank is 125 m3. The costs for such a design is modeled by 

the function C(x) = 3(x2 + 2xy) + 8xy in local currency. Find the 

dimensions of  the tank that will minimize the costs.

EXAM-STYLE QUESTION

9 Given the curve x + y = x2
− 2xy + y2

a fi nd 
d

d

y

x

b show that 1 −
d

d

y

x
 = 

2

2 2 1x y− +

c show that 
d

d

2

2

y

x
 = 1

3

⎛
⎝
⎜

⎞
⎠
⎟

d

d

y

x
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. Related rates

Related rates problems look at the effect that a change in a 

particular rate has on another rate. For example, when a balloon is 

fi lled with air at a certain rate, at what rate is its surface area 

increasing? Suppose the balloon then begins to lose air at a certain 

rate, at what rate is its surface area decreasing?

The next example shows the necessary steps to solving related rates 

problems.

Example 

A 10 m long industrial ladder is leaning against a wall on a building 

site. It starts to slip down the wall at a rate of  0.5 ms 1

How fast is the foot of  the ladder moving along the ground when it

is 6 m from the wall?

Answer

2
0

4 6

10

8 10
x

y

2

4

6

8

10

When x = 6 and 
d

d

y

t
 = 0.5, 

fi nd 
d

d

x

t

x2 + y2 = 100

2x
d

d

x

t
+ 2y

d

d

y

t
 = 0

When x = 6, y = 8

2(6)
d

d

x

t
 + 2(8) (  0.5) = 0

d

d

x

t
 = 

2

3

The ladder is moving along 

the ground at a rate of  

approximately 0.667 m s−1

Sketch a diagram of  the problem, 

naming the variables.

Write down the given information, 

and what you are asked to fi nd.

Write down an equation relating the 

variables.

Differentiate with respect to time.

Find any missing values necessary to 

solve for the required rate.

Substitute and solve.

Interpret the answer in the context of  

the given problem using appropriate 

units.
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Example 

Water is poured into a conical tank at the rate of  3 m3 min−1. 

The tank stands with the point downward. How fast is the water 

level in the tank rising when the depth is 2 m and the radius of  the 

water surface is 1.5 m?

Answer

At time t, r is the radius of  the 

water surface.

h is the depth of  water in the tank.

Sketch a diagram.

Defi ne the variables.

Write down the given information 

and what you have to fi nd.

Find 
d

d

h

t
 when 

d

d

V

t
= 3, h = 2, r =1.5

V = 
1

3
π r 2 h

d

d

V

t
= 

1

3
π (2hr 

d

d

r

t
 + r 2  

d

d

h

t
)

r

h
=

1 5

2
⇒ 2r = 1.5h ⇒ r = 0.75h

d

d

d

d
0.75

r

t

h

t
= so r 

d

d

r

t
= 1.5 · 0.75 

d

d

h

t

3 =  
1

3
π [(2)(2)(1.125) ( 

d

d

h

t
) + 

(2.25) 
d

d

h

t
]

d

d

h

t
 = 0.424

When the depth is 2m, the water 

level is rising at a rate of. 

0.424mmin 1 (3 sf).

Write down a formula connecting 

the variables.

Differentiate with respect to t.

Similar triangles.

Differentiate to get 
dr

dt
 in terms of  

dh

dt

Substitute values in 
dV

dt
 and solve.

Interpret the answer in the context 

of  the problem.

Exercise 4u

1 The area of  circle and its radius are related by the formula 

A = πr2. Write an equation relating the rate of  change of  the area 

to the rate of  change of  its radius.

2 The formula for the surface area of  closed cylinder is 

A = 2πr2 + 2πrh. Write an expression relating the rate of  change 

of  the area to the rates of  change of  both the radius and the 

height of  the cylinder.

Alternatively,

d d d d
= × =0.75

d d d d

r r h h

h h t t
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3 If  l, w, and h are respectively the length, width and height of  a 

rectangular box, express the rate of  change of  the diagonal of  the 

box in terms of  the rates of  change of  dimensions of  the box.

4 The length of  a rectangle is increasing at a rate of  2 cm s 1 while 

its width is decreasing at a rate of  2 cm s 1. When the length and 

width of  the rectangle are 12 cm and 5 cm respectively, fi nd the 

rate of  change of  

a the area b the perimeter c the diagonal.

5 A cube is increasing in volume at a rate of 1.5 m3 s–1. Find the rate 

at which the surface area of the cube is changing when the cube 

has a volume of 81 m3

6 A ladder 5 m long is leaning against the side of  a building. Its 

base begins to slide away from the wall, and when it is 3 m from 

the wall, its slides at a rate of  0.5 m s 1. At this point fi nd 

a   how quickly the top of  the ladder is sliding down the wall

b the rate of change of the area between the ladder, the wall and 

the ground.

7 A spark from a fi re burns a hole in a paper napkin. The hole 

initially has a radius of  1 cm and its area is increasing at a rate of  

2 cm2  s 1. Find the rate of  change of  the radius when the radius is 

5 cm.

8 An airplane is fl ying at an altitude of  8 miles and passes over a 

radar station. When the airplane is 12 miles from the base of  the 

station, the radar detects that its horizontal distance is changing 

at a rate of  320 mph. Find how fast the airplane is fl ying at this 

point in time.

9 Kim is fl ying her kite at a height of approximately 10 m. The wind 

is blowing horizontally at the kite at a rate of 1 m s 1. How quickly 

must Kim let out the string when the kite is 20 m away from her?

EXAM-STYLE QUESTION

10 Two concentric circles are expanding in size. At time t the radius 

of the outer circle is 9 m and it is expanding at the rate of 1.2  m s 1. 

The radius of  the inner circle is 1 m and it is expanding at the 

rate of  1.5 m s 1. Find the rate of  change of  the area of  the ring 

between the circles, at time t

11 Consider a ramp modeled by the function y = 
1

x
, x > 0. A ball 

slides down the ramp so that the x-coordinate of  its position 

at any time t seconds is increasing by a rate of  f  (x) units per 

second. If  its y-coordinate is decreasing at a constant rate of  1 

unit per second, fi nd f  (x).
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12 A conical tank with vertex pointed downward has a radius of  

10 m at its top and is 24 m high. Water fl ows out of  the tank at a 

rate of  20m3/min. How fast is the depth of  the water in the tank 

decreasing when it reaches a depth of  16m?

Review exercise

EXAM-STYLE QUESTION

1 Find the limits, if  they exist, of  the following.

 a lim
x

x

x→ +1

2 3

1
b lim

x

x

x→∞

2 1
 c lim

x

x

x→2

3 1

 d lim
x

x x

x→

+
0

2 2

2

3
 e lim

x

x

x→∞ +
5

2 1

2

3
f lim

x x→−∞ +
7

13

2 Determine if  y = 
x x x

x x x

2

3

2 2

6 2

+ ≤

− >

⎧
⎨
⎪

⎩⎪

,

,
 is continuous at x = 2.

3 Determine if the sequence a
n
 = 

2 3

2

2

3

n

n
 converges as n tends to + ∞.

4  Determine if  the series 3
1

50n

n

n
=

∞

∑ ⎛

⎝
⎜

⎞

⎠
⎟

( )
 converges, and if  it does, 

fi nd its sum.

EXAM-STYLE QUESTIONS

5  Find the values of  a for which the series a2 + 
a

a

a

a

2

2

2

2 21 1+
+

+
+

( )
... is 

convergent, and fi nd its sum.

6 Given y
x x

x x
=

− +3 2

2 3

2 5
, fi nd

 a its horizontal asymptote

 b  the points where the curve intersects its horizontal asymptote, 

for small values of  x

7  Find the equation of  the tangent and normal to the curve 

y = 
2 1

12

x

x

+
+

 at x = 0

EXAM-STYLE QUESTION

8  Let f  be an even function with domain ( a, a), a > 0. f  is 

differentiable throughout its domain. Show that the tangent to 

the graph of  f  at x = 0 is parallel to the x-axis.

9  Find any points on the curve y = x x +1 those tangents are 

parallel to the line x + y = −3

✗
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10  The normal to the curve y = 
1

2
(2x4 − 5x3 − 5x2 + 3x ) at the point 

where x = 1 meets the curve again at point P. Find the coordinates 

of  P

EXAM-STYLE QUESTION

11  If  f is a function such that f  (x) = [ g(x)]3, g (0) = 
1

2
, 

g ′(0) = 
8

3
, fi nd the equation of  the tangent to f  (x) at x = 0.

12 Differentiate y with respect to x.

 a y = (1 − 3x)7(3x + 5)3
 b y x x= − +( )4 3 12 5

 c y x
x

x
= ≠ −

+

2 3

1
1,  d y x x= + +2 1

 e (x + 2 + (x − 3)8)3

13  Consider the polynomial function f  (x) = ax3 + 6x2 − bx. Determine 

the values of  a and b if  f  has a minimum at x = −1, and a point of  

infl exion at x = 1. 

14 Consider the function y = x − x3

 a Find the intercepts of  the function.

 b Find any stationary points and distinguish between them.

 c Find any points of  infl exion.

 d  Determine the intervals where 

i the function increases ii the function decreases.

EXAM-STYLE QUESTION

15 Consider the function y
x

x
=

2

12

 a Find the vertical and horizontal asymptotes.

 b Show that the function is an odd function.

 c Show that 
d

d

y

x
 < 0 for all x in the domain.

 d Sketch the function.

16 Consider the function f  (x) = 
x

x

( )3

3

2

2

 a Find any zeros, intercepts, and asymptotes of  f

 b  Find any stationary points, and justify your answers.

 c Find any points of  infl exion.

 d  Find the intervals where f  is 

i increasing, ii decreasing.

 e Sketch the function showing all features found. 

17 Given x = y5 − y, fi nd 
d

d

y

x
, if  it exists, at the points where x = 0
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Review exercise

EXAM-STYLE QUESTIONS

1  Find the shortest distance between the point (1.5, 0) and the 

curve y = x

2  A piece of  wire 80 cm in length is cut into three parts: two equal 

circles and a square. Find the radius of  the circles if  the sum of  

the three areas is to be minimized.

3  The radius of  a right circular cylinder is increasing at a rate of  

3 cm min 1 and the height is decreasing at a rate of  4 cm min 1. 

Find the rate at which the volume is changing when the radius 

is 9 cm and the height is 12 cm, and determine if  the volume is 

increasing or decreasing.

4  A poster has a total area of  180 cm2 with a 1 cm margin at 

the bottom and sides, and a 2 cm margin at the top. Find the 

dimensions that will give the largest printing area.

5  A particle travels along the x-axis. Its velocity at any point x is 

d

d

x

t x
=

+

1

1 2
. Find the particle’s acceleration at x = 2 in terms of  x

CHAPTER 4 SUMMARY

Continuous function

●  A function y = f  (x) is continuous at x = c, if  lim ( ) ( ).
x c

f x f c




The three necessary conditions for f to be continuous 

at x = c are:

 f is defi ned at c, i.e., c is an element of  the domain of  f

 the limit of  f  at c exists.

 the limit of  f  at c is equal to the value of  the function at c

A function that is not continuous at a point x = c is said to be 

discontinuous at x = c

Properties of limits

● Properties of limits as x → ±∞ 

Let L
1
, L

2
, and k be real numbers and lim

x
f x L

→±∞

=( ) 1 and 

lim
x

g x L
→±∞

=( ) 2
. Then,

1 lim lim lim
x x x

f x g x f x g x L L
→±∞ →±∞ →±∞

± = ± = ±( ( ) ( )) ( ) ( ) 1 2

Continued on next page
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2 1 2lim( ( ) ( )) lim ( ) lim ( )
x x x

f x g x f x g x L L
  

   

3 lim lim lim
x x x

f x g x f x g x L L
→±∞ →±∞ →±∞

÷ = ÷ = ÷( ( ) ( )) ( ) ( ) 1 2
, 

provided L
2 
≠ 0.

4 lim lim
x x

kf x k f x kL
→±∞ →±∞

= =( ) ( ) 1

5 lim
x

a

b

a

bf x L
a

b→±∞

=[ ,( )] 1 ∈ (in simplest form), 

provided L
a

b
1 is real.

Convergence of series

● For a geometric series, u r n

n 
n

n
u r

r
1

= 0

1lim
(1 )

1

∞

→∞
∑ =

When −1 < r < 1, lim 0n

n
r


  and the series converges to S = 

u

r

1

1

The derivative of a function

● The derivative, or gradient function, of  a function f  with 

respect to x is the function 


 


0

( ) ( )
lim( )
h

f x h f x

h
f x , provided 

this limit exists.

●  If  f  ′ exists, then f  has a derivative at x, or is di erentiable at x. 

( f  ′(x) is read f dash, or f  prime, of  x.) Another notation for 

the derivative is d

d

y

x
, the derivative of  the function y = f  (x) 

with respect to x

●  A function is differentiable if  the derivative exists for all x in 

the domain of  f

Basic Di erentiation rules

● If  f  (x) = c, and c ∈ , then f  ′(x) = 0

● If n is a positive integer, and f  (x) = x n, then f  ′(x) = nx n 1

● For c ∈ , (cf  )′(x) = cf  ′(x) provided f  ′(x) exists.

● If  f  (x) = u (x) ± v (x), then f  ′(x) = u′ (x) ± v′ (x)

The chain rule

● If  f is differentiable at the point u = g (x), and g is differentiable 

at x, then the composite function ( )( )f g x  is differentiable 

at x. Furthermore, if  y = f (u) and u = g (x), then  
d d d

d d d

y y u

x u x

Another defi nition for the chain rule is      ( ) ( ))f g x f g x g x

Continued on next page
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The product rule

● If  y = uv then 
d d d

d d d

y v u
u v

x x x
 

where u and v are functions of  x and differentiable.

Another way of  writing this is:

If  f (x) = u (x) v (x), where u(x) and v (x) are differentiable 

functions then f  ′(x) = u(x)v ′(x) + v (x)u ′(x).

The quotient rule

● If  y = 
u

v
 then 

2

d d

d d d

d

u v
v u

x x

v

y

x

where u and v are differentiable functions of  x.

An alternative way of  writing this is:

if  u (x) and v (x) are differentiable functions, and 

f  (x) = 
u x

v x

( )

( )
, v (x) ≠ 0 then f  ′(x) = 

v x u x u x v x

v x

( ) ( ) ( ) ( )

( ( ))

′ ′

2

Higher derivatives

● f  ′(x) = 
d

d

y

x
, f  ″(x) = 

d

d

2

2

y

x
, f  ″′(x) = 

d

d

3

3

y

x
, f  n(x) = 

d

d

n

n

y

x
n = 4, 5, . . .

Maximum, minimum and horizontal points 
of infl exion

● A point whose gradient is equal to 0 is either a maximum, 

minimum, or horizontal point of  infl exion.

First derivative test

● Consider the function f  (x) and suppose that f ′(c) = 0. 

To determine if  the point x = c is a maximum, minimum or 

horizontal point of  infl extion, make a sign table and test values 

of  f  (x) to the left and right of  c

 ■  If  the signs of  gradients change from negative to positive, 

then f  has a minimum at x = c

 ■  If  the signs of  the gradients change from positive to negative, 

then f  has a maximum at x = c

 ■  If  there is no sign change, then f  has a horizontal point of  

infl ection at x = c

Second derivative test

●  If  f  ′(c) = 0 and f  ″(c) < 0, then f (x) has a local maximum at x = c

●  If  f  ′(c) = 0 and f  ″(c) > 0, then f (x) has a local minimum at x = c

Continued on next page
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Kinematics

● Velocity at a particular instant is the derivative of  the position 

function, s (t) with respect to time.

v t
s

( ) =

d

dt
or s′(t)

● Acceleration is the derivative of  the velocity with respect to 

time, a(t). It is therefore the second derivative of  the position 

function. If  a particle’s velocity at time t is v(t), then 

a t
v s

t
( ) = =

d

d

d

dt

2

2
or s ″(t)

● When v and a have the same sign, the particle is speeding up 

(accelerating).

● When v and a have opposite signs, the particle is slowing down 

(decelerating).

Economics

● Marginal profi t is the rate of  change of  profi t with respect to 

the number of  units produced or sold.

● Marginal revenue is the rate of  change of  revenue with respect 

to the number of  units sold.

● Marginal cost is the rate of  change of  cost with respect to the 

number of  units sold.

If  x is the number of  units produced a sold:

● r(x) = total revenue from selling x amount of  units

● c(x) = total cost of  producing x amount of  units

● p(x) = profi t in selling x amount of  units

● r ′(x) = marginal revenue, the extra revenue for selling one extra unit

● c ′(x) = marginal cost, the extra cost for selling one extra unit

● p ′(x) = marginal profi t, the extra profi t for selling one additional unit

Di erentiation of implicit functions

To differentiate y 2 = 4x multiply with respect of  x:

LHS: 
d( )

d

d( )

d

d

d

d

d

2 2

2
y

x

y

y

y

x

y

x
y= =

RHS: 
d

d
(4 ) = 4

x
x

2 = 4 = =
d

d

d

d

4

2

2
y

y

x

y

x y y
⇒
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Theory of knowledge: An infi nity of ideas230

An infi nity of ideas

Theory of knowledge

Finite or infi nite?
In reality, the  nite and in nite are closely related. Using the formula for an in nite 

geometric series, you can prove that 0.999999… = 1. It is not approximately 1, but is 

exactly 1.

 Find other examples in which both 

the  nite and the in nite de ne 

the same concept or object.

 How does our perception de ne it 

in one way, or the other?

“Even as the fi nite encloses an infi nite series 

And in the unlimited limits appear, 

So the soul of  immensity dwells in minuta 

And in the narrowest limits, no limits in here 

What joy to discern the minute in infi nity! 

The vast to perceive in the small, what Divinity!”

Jakob Bernouilli, Ars Conjectandi 

(The Art of Conjecture), 1713

” A circle can be thought of as a polygon with an 

in nite number of sides. 

“Ho

that 

Now 

hop

Niels 

ph

19

N

Ph

Solving the paradox
This chapter began with Zeno’s paradox about an endless 

day at the races with Achilles and the tortoise. Intuition and 

common sense tell us that there is, of  course, a solution to 

this paradox. We know that an infi nite series can have a 

fi nite sum. 

You could solve Zeno’s paradox by translating it into an 

infi nite geometric series whose ratio is less than 1, and then 

fi nding its sum. Developing this mathematics took several 

centuries of  long and laborious work.
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To infi nity ...
Some research into the history of mathematics will give you 

insight into the journey of the mathematics of 

in nity. Are there different kinds of in nities? 

An article in Scientifi c American claimed that there 

exist an in nite number of in nities, some in nitely 

small, others in nitely large. What can this mean?

Scientifi c 

American Special 

Report: Parallel 

Universes, 2010

Applications of pure 
mathematics
Practical applications are often found for 

pure mathematics − sometimes many years 

after the  rst ideas were formulated.

George Boole, an English mathematician, 

developed his Boolean Logic system in the 

1850s. This system was later used in digital 

electronics. 

In physics, elementary particles were 

discovered through arguments involving the 

beauty, symmetry or elegance of the 

underlying mathematics.

Perhaps all ‘pure’ mathematics will be used 

to model some aspect of real life one day.

 What other concepts were discovered, or 

invented, through studying pure 

mathematics? 

 How were they later used to solve 

speci c real world problems? 

 If mathematicians did not discover, or 

invent, pure mathematical theories, 

would our world progress at the rate that 

it has? 

 Should knowledge always be 

immediately applicable? Is there merit in 

knowledge for knowledge’s sake? 

 What is the difference between pure and 

applied mathematics? How does it 

compare to the difference between  ne 

arts and commercial arts?

1

2

Calculus
The discovery, or invention, of calculus is 

regarded as a great innovation.

The development of calculus was a 

culmination of centuries of work by 

mathematicians all over the world. English 

scientist Isaac Newton and German 

mathematician Gottfried Wilhelm Leibniz, 

both approached calculus in an intrinsically 

different manner, but yet arrived at the 

same set of concepts. 

The argument over which of them invented or 

discovered calculus  rst, and whether there 

was any plagiarism, is one of the most 

famous con icts in mathematical history.

 Was calculus discovered or invented?

 What speci c concepts of the calculus 

had immediate application to the 

problems being considered in the 17th 

century, when Newton and Leibniz were 

working on it?

 Where did the 
symbol for 
infinity come 
from?

 Who was the 
first to use it?

NEWTOON
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Aesthetics in 

mathematics

CHAPTER OBJECTIVES:

1.1  Further explorations of sequences and series and their applications; recursive 

functions

1.2  Exponents and logarithms; laws of exponents; laws of logarithms; 

change of base

2.4  The function x → ax, a > 0 and its graph; the function x → log
a
x, a > 0 and its 

graph; exploration of exponential and logarithmic functions and their inverses, 

signi cance of e

2.6 Solution of ax = b using logarithms

3.1 The circle: radian measure of angles; length of arc; area of sector

6.2 Derivatives of ax and log
a 
x

You should know how to: 

1 Find an inverse function.

 e.g. f : x
1

3

x

x


 , x ≠ 3

y = 
1

3

x

x
⇒ x = 

1

3

y

y

 ⇒ x ( y – 3) = y + 1

 ⇒ y = 
3 1

1

x

x

 ∴ f  –1: x
3 1

1

x

x


 , x ≠ 1

2 Work with composite functions.

 e.g.  f  (x) = 2x – 3 and g (x) = 
1

2
 x 2

 (  f  ° g) (x) = f
 
 
 

21

2
x

 = 2
 
 
 

21

2
x  – 3 = x 2 – 3

Skills check

1 Show that if  f  (x) = 
x

x 1
, x ≠ 1, then 

f  –1(x) = f  (x). 

Use a sketch of  f  (x) to justify this result.

2 Show that if  f  (x) = ax – b and 

g (x) = 
x b

a

+

, (  f
°

g) (x) = ( g 
°

f  ) (x) for 

all values of  x

5

Before you start
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A journey through number

The golden ratio

“Perhaps the most 
surprising place in 
which the golden ratio 
crops up is in the 
physics of black holes, 
a discovery made by 
Paul Davies of the 
University of Adelaide 
in 1989. Black holes 
and other 
self-gravitating bodies 
such as the sun have a 
‘negative specifi c heat’. 
This means they get 
hotter as they lose heat. 
Basically, the loss of 
heat robs the gas of a 

body, such as the sun, 
of internal pressure, 

enabling gravity to 

squeeze it into a smaller 

volume. The gas then 

heats up, for the same 

reason that the air in a 

bicycle pump gets hot 

when it is squeezed.

However, things are not 

so simple for a spinning 

black hole, since there 

is an outward 

‘centrifugal force’ 

acting to prevent any 

shrinkage of the hole. 

The force depends on 

how fast the hole is 

spinning. It turns out 

that, at a critical value 

of the spin, a black hole 

fl ips from negative to 

positive specifi c heat – 

that is, from growing 

hotter as it loses heat to 

growing colder. What 

determines the critical 

value? The mass of the 

black hole and the 

golden ratio!”

Marcus Chown,

Guardian (16 January 

2003)
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Investigation –  random numerical patterns 
and their behavior

1  Think of two positive numbers a
0
 and a

1
. Let a

n
 = a

n – 1
 + a

n – 2

 ● Use a spreadsheet to generate the  rst 1000 terms of this sequence.

● Add a column in your spreadsheet to represent r
a

a

n

n

=
1

 ● What do you observe?

2 Think of a number k
0
. Let kn

k
n

=1
1

1

+

 ● Use a spreadsheet to generate the  rst 1000 terms of this sequence.

● What do you observe? Write down your conjecture and test it further.

So from the infi nitely large to the infi nitely small the golden ratio is present!

The golden ratio can be defi ned as follows:

➔ If  a line segment AB is divided into two segments by a point 

P such that 
AB

AP
 = 

AP

PB
, we say that the line is divided in the 

golden ratio. The golden ratio is denoted by ϕ

. Recursive functions

One of  the most fascinating aspects of  the golden ratio is that it 

seems to appear in unexpected ways.

“Researchers from the 
Helmholtz-Zentrum 
Berlin für Materialien 
und Energie (HZB), in 
cooperation with 
colleagues from Oxford 
and Bristol Universities, 
as well as the 
Rutherford Appleton 
Laboratory, UK, have 
for the fi rst time 
observed a nanoscale 
symmetry hidden in 
solid state matter. They 
have measured the 
signatures of a 

symmetry showing the 
same attributes as the 
golden ratio famous 
from art and 
architecture. The 
magnetic fi eld is used 
to tune the chains of 
spins to a quantum 
critical state. The 
resonant modes 
(‘notes’) are detected by 
scattering neutrons. 
These scatter with the 
characteristic 
frequencies of the spin 
chains. The fi rst two 

notes show a perfect 
relationship with each 
other. Their frequencies 
(pitch) are in the ratio 
of 1.618…, which is the 
golden ratio famous 
from art and 
architecture.” 

Press release, 
Helmholtz Association 
of German
Research Centres
(7 January 2010)

The  rst and second movements of Mozart’s Piano Sonata No. 1 in C Major, 

which he composed when he was 18 years old, contains approximations of the 

golden ratio. The  rst movement consists of 100 measures. These measures 

are divided into two parts: the  rst part contains 38 measures and the 

second part 62. The ratio 38 : 62 is a close approximation of the golden ratio. 

The second movement of this sonata is also divided into parts whose ratio 

approximates the golden ratio; however, the same cannot be said of the third 

part. Studies show that the golden ratio appears in a number of Mozart’s works.
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Recursive formulae were fi rst introduced in Chapter 1. You saw that 

factorials can be represented by a sequence using the recursive rule:

u
0
 = 1

u
n
 = n × u

n–1
, n ∈ +

Similarly, the triangular numbers, also fi rst seen in Chapter 1, can be 

represented by the recursive rule:

T
1
 = 1

T
n
 = T

n–1
 + n, n ∈ +

➔ A recursive function is one in which initial values U
0
, U

1
,… are 

given together with a rule u
n
 = F (u

n 1
, u

n 2
,…) which explains 

how a term is obtained from the previous terms.

In the fi rst part of  the investigation, the general term is written in 

terms of  the previous two terms, u
n
 = F (u

n 1
, u

n 2
), and two initial 

values, u
0
 and u

1
, are required. In the second part of  the 

investigation, the general term is given in terms of  the previous 

term, u
n
 = F (u

n 1
), and only one initial value, u

0
, is required.

Example 

Find the fi rst four terms of  the triangular number sequence given by

u
0

= 0

u
n

= n + u
n–1

Hence, show that u
n
 = 

n

2
 (n + 1) 

Answer

u
0

= 0

u
1

= 1 + u
0

= 1

u
2

= 2 + u
1
 = 2 + 1 = 3

u
3

= 3 + u
2
 = 3 + 2 + 1 = 6

∴ u
n
 =  n + (n – 1) + (n – 2) + … + 3 + 2 + 1 

= 
n

2
(n + 1)

Sum of  fi rst n positive 

integers.

See the example 

involving Gauss (when 

he was 11 years 

old) in Chapter 1 on 

page12.

Chapter 5 235



Example 

a Find the fi rst six terms of  the sequence given by:

u

u

u u un n n

0

1

1 2

1

1

2 3

=
=
= +− −

⎧

⎨
⎪

⎩
⎪

b Prove by mathematical induction that u
n
 = 

3 ( 1)

2

n n+ −

Answers

a u
0
 = 1

u
1
 = 1

u
2
 = 2 + 3 = 5

u
3
 = 10 + 3 = 13

u
4
 = 26 + 15 = 41

u
5
 = 82 + 39 = 121

b Let P (n) be the statement u
n
 = 

3 ( 1)

2

n n+ −

P (0): u
0
 = 

3 ( 1)

2

0 0+ −
 = 1

P (1): u
1
 = 

3 ( 1)

2

1 1+ −
 = 1

Assume that P (k – 1) and P (k) are true for 

some k ∈ +

 i.e. u
k–1

 = 
3 ( 1)

2

1 1k k− −+ −
 and u

k
 = 

3 ( 1)

2

k k+ −

 Prove that u
k+1

 = 
3 ( 1)

2

1 1k k+ ++ −

 Proof: u
k+1

 = 2u
k
 + 3u

k–1

 = 2
3 ( 1)

2

k k+ −⎛

⎝
⎜

⎞

⎠
⎟ + 3

3 1

2

1 1k k− −+ −⎛

⎝
⎜

⎞

⎠
⎟

( )

=
+ − −2(3 ) 2( 1) + 3 + 3( 1)

2

1k k k k

=
− − − + − −3(3 ) 2( 1)( 1) 3( 1) ( 1)

2

2 1k k k

=
− − + −+ + +3 2( 1) 3( 1)

2

1 1 1k k k

=
+ −+ +3 ( 1)

2

1 1k k

Since it was shown that P (0) and P (1) 

are true and it was also proved that if  the 

statement is true for n = k and n = k – 1, 

k ∈ +, k ≥ 1, it is also true for n = k + 1, it 

follows by the principle of  mathematical 

induction that the statement is true for all 

values of  n ∈ .

For the fi rst step in the proof  you need to show that 

this statement is true for the fi rst two possible values 

since the recursive function uses two previous terms.

Using the recursive defi nition.

Using the assumption.

Expanding brackets and taking a common 

denominator.

Adding the terms in 3k, and using identities: 

2(–1) k ≡ –2(–1)(–1) k

(–1) 2 ≡ 1

and 3(–1)k
≡ 3(–1) 2 (–1) k–1 

≡ 3(–1) k+1

Simplifying terms.
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Exercise 5A

1 Find the fi rst fi ve terms of  the sequence given by the recursive 

function 

1

1

1

,
1

1

n

n

n

u

u

u

u n





 



   Hence, write down u
n
 in terms of  n

2 Find the fi rst six terms of  the sequence given by the recursive 

function 
1

1

11

2

, , 2
n

n

n

u

u

u

u n n










  

Hence, write down u
n
 in terms of n

3 a Find the fi rst six terms of  the sequence given by the recursive 

function 

u

u u n
n n n

0 2

1

1

2

=

= − ∈ +

⎧

⎨
⎪

⎩⎪
, 

b Conjecture a formula for u
n
 in terms of  n

c Prove your conjecture using mathematical induction.

EXAM-STYLE QUESTION

4 a Find the fi rst fi ve terms of  the sequence given by the recursive 

function 





    

1

1

1

2 3,
n n

u

u u n n

 b Prove by mathematical induction that u
n
 = n2 – 2n + 2

Investigation – sequences

1 The Fibonacci sequence is de ned by the recursive function 

F

F

F u u
n n n

0

1

1 2

= 0

= 1

= − −+

⎧

⎨
⎪

⎩
⎪

Find the  rst eight terms of the sequence.

2 If a line segment AB is divided into two segments by a point P such that 
AB

AP
 = 

AP

PB
, 

we say that the line is divided in the golden ratio. The golden ratio is denoted by ϕ

Use this de nition of the golden ratio and the diagram to show 

that the exact value of the golden ratio is given by 
1 5

2



A P B

1 unitsx units

3  Consider the geometric sequence ϕ, ϕ 2, ϕ 3,… 

 Use your result from question 2 to simplify ϕ , and hence show that ϕ 2 = F
2
ϕ + F

1

 Also simplify ϕ 3 and ϕ 4

 Make a conjecture connecting ϕn, F
n
 and F

n 1
 Prove your conjecture.

Continued on next page

Chapter 5 237



. Properties of exponents and logarithms

By defi nition, if  m ∈ +, am denotes the product of  m factors each 

equal to a. m is called the exponent, index or power of  a and a is 

called the base.

Using this defi nition, you can deduce the three fundamental 

properties for the combination of  indices. 

In all the cases below m, n ∈ +, m ≥ n

 ➔ am
× an = am+n

Using the defi nition: 

 LHS = ... ...
m n

a a a a a a      
 

...
m n

a a a


  
  = am+n

= RHS

 ➔ am
÷ an = am–n

Using the defi nition:

 LHS =
m

n

a

a

  


  





...

...

m

n

a a a

a a a
   


...
m n

a a a  = am–n

= RHS

 ➔ (am)n = amn

Using the defi nition:

 LHS =   


...m m m

n

a a a
=

a a a a a a a a a

m m m

n

× × × × × × × × × × × ×... ... ... ...
        

  
= × × ×a a a

mn

...
  

= am−n

= RHS

Explore the 

connections between 

the Fibonacci 

numbers, the Lucas 

numbers and Pascal’s 

triangle.

n of m factors in 

the numerator are 

cancelled by the 

denominator, leaving 

m – n factors of a

4 Now consider the sequence 


 
 
 

1
, 


 
 
 

2

1
, 


 
 
 

3

1
,… 

 Show that 


 
 
 

1
 = 

1 5

2

Hence, show that 


 
 
 

2

1
= F

2 
 
 
 

1
+ F

1

 Write similar equations for 


 
 
 

3

1
and 


 
 
 

4

1

 Make a conjecture connecting 
⎛

⎝
⎜

⎞

⎠
⎟

1

f

n

, F
n
 and F

n − 1
. Prove your conjecture.

5 Use your results from questions 3 and 4 to  nd a formula for F
n
 in terms of n
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A special case of  property 2 gives this result.

 ➔ a0 = 1

 1 = am
÷ am = am m

 = a0

The properties of  indices can be consistently extended to negative 

powers using this defi nition.

 ➔ a n = 
1

n
a

a ≠ 0

Similarly the properties of  indices can be consistently extended to 

rational powers using this defi nitions.

 
➔ a am m

1

= a > 0

Example 

Show that: a
m

na  = 
n m

a b
m

na  =  m
n

a

where a > 0, and m, n ∈ +

Answer

a
m

na  = 


1
m

na  
1

m na  =  n m
a b

m

na  = 


1
m

na
 

  
 

1 m

na  =  m
n

a

➔ a a a

m

n n m n
m

= = ( ) >a 0

Example 

Evaluate:

a 
27

8

2

3⎛
⎝
⎜

⎞
⎠
⎟ b 144

1

2 c 125
1

3

Answers

a
27

8

27

8

2

3
3

2

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎜⎜

⎞
⎟⎟= b 144

1

144

1

2
1

2

= c 125
1

3  = 1

3

1

125

=
3

2

2

⎛
⎝
⎜

⎞
⎠
⎟ =

1

144
=

1

1253

=
9

4
=

1

12

1

5
 

The restriction 

a>0 is necessary 

to avoid possible 

inconsistencies.

For example

    

   

 

1

33

2

266

6

8 8 2

or ( 8) ( 8)

64 2

( )
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Example 

Simplify the expression (20 × 92n+1) ÷ (5 × 34n+1)

Answer

(20 × 92n+1) ÷ (5 × 34n+1)

=
×

× ×

+20 (3 )

5 3 3

2 2 1

4

n

n

×

×

+20 3

15 3

4 2

4

n

n
=

× ×

×

20 9 3

15 3

4

4

n

n
 = 12

Example 

Solve the equation 3x + 31–x = 4

Answer

3x + 31–x = 4

⇒ 3x + 
3

3x
 = 4

⇒ 32x – 4 × 3x + 3 = 0

⇒ (3x)2 – 4(3x) + 3 = 0

Let 3x = y

⇒ y2 – 4y + 3 = 0

⇒ (y – 3)(y – 1) = 0

y = 3 or y = 1

⇒ 3x = 3 or ⇒3x = 1

∴ x = 1 or ∴ x = 0

31–x = 31
÷ 3 x

Multiply throughout by 3 x and 

rearrange.

Exercise 5B

1 Evaluate:

a  
2

364 b
 
 
 

1

38

27
c

 
 
 

3

481

16

2 Show that: 

a 2

2
3 2 3

2

8
4

b x

x
b x

  
 
 



b 

1 2

3
( 1)

a a

a
a a

 

 

c 

3 7

4
1

x x

x




3 Simplify y y3 23
÷  and use your answer to show that 

when y = 64, y y3 23 32÷ =
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EXAM-STYLE QUESTIONS

4 Show that 
( )

( )

x yz x y z

xz

x y

z

4 3 2 5 2

7

2

2 3

9

− −

×

≡

5 Simplify 5 × 43n+1 – 20 × 82n

6 Solve the equation 4x + 2 = 3 × 2x

Investigation – music and indices

The diagram below shows keys on a piano keyboard. If you play 

the A below the middle C the piano string vibrates at 220 hertz.

C

C#

Db

D#

Eb

F#

Gb

G#

Ab

Octave

Middle C

Octave

HigherLower

A#

Bb

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

D E F G A B C D E F G A B

This table shows the frequencies for some notes above A.

Note A# B Middle C C#

Frequency (Hz) 220 × 
1

122

2

12220 2

3

12220 2

4

12220 2

● What is the frequency of G# below middle C?

● What is the frequency of G# above middle C?

● The interval between these two notes is called an octave. 

Explain the signi cance of this term.

● What is the frequency of the C in the next octave above middle C?

● The diagram shows the keyboard of a grand piano. How would you use the results 

above to  nd the lowest frequency and the highest frequency that can be played on a 

grand piano?

C

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

D E F G A BC

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

D E F G A BC

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

D E F G A B

A#

Bb

A B

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

C D E F G A B

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

C D E F G A B

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

C D E F G A B

C#

Db

D#

Eb

F#

Gb

G#

Ab

A#

Bb

C D E F G A B

M
id

d
le

 C

Non-musicians might 

 nd it helpful to ask a 

piano player for 

an explanation of 

‘middle C’.
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Financial matters and indices

This shows how the laws of  indicies are used to solve fi nancial problems.

Example 

When the fi rst Android phone was launched it sold at $600. 

Six months later its selling price was $360. Use the laws of  indices to 

calculate the average percentage depreciation per month.

Answer

Assuming that the depreciation rate is constant, we can argue that the 

value of  the Android when launched was A
0
 and, if  the depreciation 

rate per month is r, the selling price after one month was:

A
1
 = A

0
(1 – r) 

Over the second month this value again depreciated by r, giving:

A
2
 = A

1
(1 – r) = A

0
(1 – r)2

After 6 months:

A
6
 = A

0
(1 – r)6

⇒ 360 = 600(1 – r)6
⇒ (1 – r)6 = 

360

600
 = 0.6

∴ 1 – r = 0.66

⇒ r = 1 – 0.66
 = 0.082 

So, the average percentage depreciation rate per month is 8.2%.

Exercise 5C

1 A house bought for €250 000 in 1990 was sold for €450 000 in 

2010. What was the annual rate of  appreciation of  the house? 

Give your answer to the nearest percent.

2 Tensions in the Middle East cause oil prices to rise. The table 

shows the cost price for a barrel of  oil at various points in time.

December 1999 $17.48

December 2006 $61.08

December 2010 $77.45

February 2010 $72.99

February 2011 $97.87

a What was the annual average percentage rise in oil price between 

1999 and 2006?

b What was the annual average percentage rise between 2006 and 2010?

c Calculate the average percentage rise per month between February 

2010 and February 2011.

3 Samira invests $1000 at Better Bank which offers 8% interest 

compounded quarterly.  Her brother Hemanth invests $500 at Good 

Bank which offers 8% interest compounded annually and another 

$500 at Superior Bank which offers 8.4% interest compounded 

monthly.  Calculate the value of  each investment after 15 years.

See Chapter 1 for 

more on compound 

interest and 

population growth.
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4 Giuseppe borrows €15000 to buy a new car. The bank 

charges 5% interest compounded yearly. Giuseppe agrees to 

pay two-thirds of  the amount owing at the end of  each year. 

How much would Giuseppe have paid back at the end of  

5 years?

. Euler’s number and exponential functions

In the previous investigation the amount starts growing quickly but 

then as the value of  n gets larger there is hardly any increase in the 

outcome. The graph becomes less and less steep, seemingly 

approaching a certain value.

In fact your results should indicate that lim .
n

n

n→∞
+ ≈⎛

⎝
⎜

⎞
⎠
⎟1 2 718

1

In order to establish that this limit exists and to fi nd its value, 

expand 1
1+⎛

⎝
⎜

⎞
⎠
⎟

n

n

, n ∈ + using the binomial theorem:

Investigation – compound interest

In Chapter 1 you looked at  nancial matters and compound interest. 

If €1000 was invested at a compound interest of 2% compounded 

annually, you could  nd out how much it is worth after n years by 

calculating 1000(1.02)n. 

If the interest is compounded every six months the formula 

becomes 1000 1
0 02

2
+⎛

⎝
⎜

⎞
⎠
⎟

2n

And if the interest is compounded monthly the formula 

becomes 1000 1
0 02

12
+⎛

⎝
⎜

⎞
⎠
⎟

.
12n

If you calculate the value after one year in each of these cases you get:

Interest compounded annually:  €1020

Interest compounded every six months: €1020.10

Interest compounded monthly:  €1020.18

Look at the growth of €1 invested for one year at 100% interest 

compounded at different intervals of n.

● Write down the general formula to obtain the growth of this investment 

after one year.

● Use technology to draw up a table with the value of the investment for 

different values of n.

● Plot these values and comment on your results.
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1
1 1

0

+⎛
⎝
⎜

⎞
⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

=
∑

n

n

r n

n

r

n
r

= ⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟

n

n n

n

n n

n

n n

!

!( )!

!

!( )!

!

!( )!0 0

1

1 1

1

2 2

1
0 22

1

1

+ + ⎛
⎝
⎜

⎞
⎠
⎟

+ + ⎛
⎝
⎜

⎞
⎠
⎟

...
!

!( )!

...
!

!( )!

n

r n r n

n

n n n n

r

n

= + + + +⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

− − − +
1

1

1 1

2

1 1 2 1
2

n

n

n n

n

n n n n r

!

( )

!

( )( )...( )
...

rr n

n n n n n

n n

r

n

!

( )( )...( )

!
...

1

1 2 1 1

⎛
⎝
⎜

⎞
⎠
⎟

− − − + ⎛
⎝
⎜

⎞
⎠
⎟+ +

1 1 2 1
...

1

1! 2! !

1 2 1
...

!

1 ...

...

n n n n n n r

n n n n n n

r

n n n n n

n n n n

n

           
       
       

        
     
     

    

 

= + + + +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎜

⎞
⎟
⎛
⎜

⎞
⎟

⎛
⎜

1
1

1

1 1
1

2

1 1
1

1
2

1
1

! !

...

...
n n n

r

n

⎞⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

+ +

r

n n

n

n

n

!

...

!
...

1 1
1

1
2

1
1

1 1 1 1 1 2 1
1

1! 2! !

1 1 2 1

!

1 ... 1 1 ... 1

... 1 1 ... 1

r

n r n n n

n

n n n n

      
       

      

    
    
    

      

    

Since every term in this expansion is positive it is clear that any limit 

must be greater than 2. Looking at the general term of  the 

expansion you can draw two conclusions.

1 1 2 3 4 1
1 1 1 1

r n n n n

r

n!
...1− − − − −⎛

⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

+⎛
⎝
⎜

⎞
⎠
⎟ << =

⋅ ⋅
≤

⋅ ⋅
=1 1

1 2 3

1

1 2 2 2

1

2 1
r r

r! ... ...

The fi rst inequality follows because each term in brackets is less 

than one. The second inequality follows because 2, 3, ...., r ≥ 2. 

Using these bounds on individual terms you can place a bound on 

the whole expression:

1 1 1 2 1 3
1 1

2

1

4

1

8

1

2 1
+ < + + + < + =⎛

⎝
⎜

⎞
⎠
⎟ + + + −

n

n

n

...

Thus any limit must also be less than 3.
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Now consider the general term with r fi xed and allow n to increase. 

As n increases each term in brackets also increases, 
1

1 1
n

 etc., 

therefore so must the general term. Thus, for example, the third 

term in the expansion for n is less than the third term in the 

expansion for n +1. As n increases so does the number of  terms in 

the expansion. Since each individual term gets larger and there are 

more terms as n increases you can conclude that 

1
1

n

n

 
 
 

  is an increasing function of  n. This confi rms the result 

in the numerical investigation.

In summary this shows that 
1

1
n

n

 
 
 

  is an increasing function of  n

whose value lies between 2 and 3. Whilst it is beyond the scope of  this 

course to prove this result, you can use the result that any increasing 

sequence which is bounded above must have a limit. In this case

1 1 1 1 1

1! 2! 3! !
lim 1 1 ... ...

n

n n r

 
 

 
      

➔ This limit is called the Euler number and is denoted by 

e ≈ 2.718 281 828 459 045…

Exponential functions and their properties

This section looks at functions of  the form f (x) = a x. This time

the independent variable is the power and the base is a fi xed 

number a. 

Start with one particular function 

f (x) = 2 x. Sketch the function.

e is a transcendental number.

Negative numbers satisfy equations such as x + 2 = 0. Rational numbers 

satisfy equations such as 3x – 2 = 0. An irrational number like 2, which 

cannot be written exactly as an integer fraction, still satis es the equation 

x 2 – 2 = 0. Together these numbers, which are the solutions of a polynomial 

equation with integer coef cients, are called algebraic numbers. That is, 

if f x a x a x a x a x an

n

n

n( ) = ...1

1

2

2

1 0+ + + + +  is a polynomial function of 

degree n, with a
n
∈  for all values of n, and k is a number such that 

f  (k) = 0 then k is an algebraic number.

A number which is not algebraic and, therefore necessarily, irrational is called 

transcendental. It was not until 1844 that Joseph Liouville (1809–1882) 

showed that an actual transcendental number existed. Now we know that 

there are many more transcendental numbers than algebraic numbers but 

 nding examples is notoriously dif cult.

In 1873 Charles Hermite proved that e is transcendental and in 1882 

Ferdinand Von Lindemann proved that π is transcendental.

Note that y = ax is 

called an exponential 

function but y = e x

is the exponential 

function.
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The graph

● has no stationary points

● is always positive

● is always increasing

● has the y-axis as a horizontal 

asymptote

● has no vertical asymptotes

● is injective or one-to-one.

A function is injective 

or one-to-one if it maps 

every point in its domain 

to a unique point in its 

range. A function 

such as f (x) = x 2 is 

not injective as 

f (2) = f ( 2) = 4;

it would fail the 

horizontal line test.

20 64–2–6 –4 x

f(x) = 2x

y

4

6

8

2

Investigation –  properties of exponential 
functions

Use a GDC to answer these questions about the properties of

exponential functions.

● What do the graphs of f (x) = a x, a > 1 have in common?

● Why do we refer to these graphs as representations of exponential 

growth?

● How are the graphs of f (x) = a x, 0 < a < 1 different? Why do they 

represent exponential decay?

● Why do we put the following restrictions on a, a > 0, a ≠ 1?

● Compare the graphs f (x) = a x and g (x) = x a for a ∈ {2, 3, 5, 10} and 

explain why the following statement is true: ‘Exponential growth is 

bigger and faster than polynomial growth of any degree.’

Example 

The table shows values for a function of  the form y = bax, a > 0. 

Find the values of  a and b and sketch the graph.

x 0 2 4 6

y 3 12 48 192

Answer

3 = ba0
⇒ b = 3

3a2 = 12

⇒ a2 = 4

∴ a = 2

10 2 3–1–2–3–4–6 –5 x

y

4

6

10

8

f(x) = 3 • 2
x

The point (0, 3) is on the graph.

The point (2, 12) is on the graph.

Only the positive solution for a is required since the 

values of  y are all positive.

Note: Only two points were required to fi nd the 

solution.
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Example 

For well-tempered tuning of  an instrument, the interval between the 

fi rst tone at 440 Hz and the thirteenth tone at 880 Hz is divided so that 

the ratio of  two consecutive tones is a constant. What is this ratio? 

Find a formula for obtaining all the tones of  the interval.

Answer

440 · a12 = 880

∴ a12 = 2 ⇒ a = 2
1

12

So, the formula for obtaining all 

the tones is given by 

u nn

n

= ∈440 2 , {1,2,...,11}
1

12( )

Use 12 since 880 Hz is the twelfth 

note after 440 Hz.

Example 

The diagram shows the graph of  f  (x) = 2x

and g (x), the refl ection of  f  (x) in the 

y-axis. Find g (x).

10 2 3 4 5–1–2–3–4–5 x

y

4

6

10

8 f(x) = 2
x

Answer

g(x) = f  (–x)

∴ g(x) = 2 x = (2–1)x = 0.5x

g (x) is a refl ection of  f  (x) in the 

y-axis.

Exercise 5D

1 The diagram shows graphs of  exponential 

functions of  the form y = a x. For each 

of  the functions, fi nd the value of  a. 

2 Given that f  (x) = 2x, show that f  (x + 1) = 2f  (x)

Express f  (x + a) in terms of  f  (x).

3 Sketch the graphs of  f  (x) = 2x and g (x) = 2 x on the same set of  

axes. Hence, sketch the graph of  h (x) = 2 x  on a separate diagram.

4 Solve the equation e x + 1 = e x+1. 

5 Find the geometric transformations of  the graph of  f  (x) = e x

which give these functions. 

a y = e x  b y = – e x c y = – e x

 Hence, sketch all the functions on the same set of  axes.

✗

1 2 3–1–2–3 x

y

3

5

4

1

0

(1,2.5)

(–1, 4)

See Chapter 2 for 

help with graph 

transformations and 

sketching.

Learn these useful 

results.
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.  Invariance and the exponential function –
a di erent approach to Euler’s number 

Here is a simplifi ed way of  showing that the value of  a is e.

For an exponential function y = ax, attempting to fi nd the derivative 

from fi rst principles gives:

d

d

y

x

a a

hh

x h x

=
→

+

lim
0

=
→

lim
( )

h

x ha a

h0

1

→

ax

h

ha

h
lim

( )

0

1

Once again it is beyond the scope of  this course to show that 

lim
( )

h

ha

h→0

1
 exists, so you can accept that it does and call it k

Investigation – the graph of y = ax

Use a GDC to complete a table like this by graphing the function ax for the given 

values of a and using your calculator to  nd the derivative at x = a

a Graph of ax
d

d 0

y

x x =

1
d

d 0

0
y

x x =

=

2
d

d 0

y

x x =

= 0 693

2.5

3

3.5

4

You will have noticed that the graph of function y = ax passes through (0, 1) and that the 

gradient of the function y = ax at this point increases as the value of a increases. However, 

betwen a = 2 and a = 3, the gradient goes from a value below 1 to a value greater than 1. 

Is it possible to  nd a value of a such that the value of the gradient of 
d

d
0

a

x

x

x =

= 1?

Leave enough space 

for a graph in each 

row.

The notation 
d

d

y

x x a

stands for the 

derivative of y with 

respect to x evaluated 

at x = a
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This leads to the result that:

y a kax xy

x
= ⇒ =

d

d
In other words, the derivative of  any exponential function is 

proportional to the function itself  and 




0

d

d

x

x

a

x
k

So the number a such that the value of  the gradient of  




0

d

d
1

x

x

a

x
 is 

actually the number for which k = 1. 

In other words, you want to fi nd a value for a such that lim
h

a

h→

=
0

1
1

Suppose 



0

1
lim 1

h

h

a

h
Then for small h,



1
1

ha

h
  1ha h

 

1

(1 )ha h

Now let 
1

m
h= , so that small h corresponds to large m

lim lim
h m

m

h m
a

→ →∞
+⎛

⎝
⎜

⎞
⎠
⎟= = =

0

1
1

1
1

ah

e

➔ y = e x
⇒

d

d

y
 = e x

The exponential function is invariant under differentiation.

. Logarithms and bases

Napier and Briggs and logarithm tables

You can use the properties of  indices to calculate products of  large 

numbers. The table shows powers of  3 from 3–5 to 39.To multiply two 

number that are powers of  3, look for the corresponding exponents 

in the table, add them and then use the table by looking at the 

number whose exponent is the answer.

For example: 243 × 81 

5 + 4 = 9

∴ 243 × 81 = 19 683 

Similarly, to divide two numbers 

subtract the exponents.

For example: 6561 ÷ 729

8 – 6 = 2

∴ 6561 ÷ 729 = 9

Using the previous 

result.
You may wish to 

explore more invariants 

in mathematics. Why 

are they important?

n 3n

–5
1

243

–4
1

81

–3
1

27

–2
1

9

–1
1

3

0 1 

1 3

2 9

3 27

4 81

5 243

6 729

7 2187

8 6561

9 19 683
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This concept gave the Scottish mathematician John Napier the 

inspiration to invent logarithms. He argued that if  you can write any 

number as ax, where a is a constant and x varies for different numbers, 

calculations would be much easier since you would only need to add or 

subtract powers of x. He needed to fi nd an appropriate number for the 

base a which was close enough to 1 so that its powers did not grow too 

quickly. He chose a = 1 − 10−7 = 0.999 9999, and spent the next 20 years 

painstakingly calculating the value of x, which he called the logarithm, 

for the numbers 10−7 to 4 998 609. Napier published his results in 1614.

Henry Briggs, a contemporary English mathematician, was 

fascinated by this work but realized that the tables would be easier 

to use with a different choice of  a. He visited Napier in Scotland 

and suggested that by choosing a = 10 the work would be easier.

Here is what Briggs had in mind:

Let x = 10 y

The power to which 10 must be raised to give x is y. This is 

represented mathematically as:

x = 10 y ⇒ log
10

x = y

Napier gave Briggs the job of  rewriting the tables using 10 as the 

base because he considered himself  too old to undertake this task. 

Briggs published his fi rst tables in 1624. Until the introduction of  

electronic handheld calculators in 1967, students still used 

logarithm tables for all their calculations.

Logarithms

Logarithms are defi ned as:

➔ a = b x ⇔ x = log
b
a a,b ∈+ and b ≠ 1

The restrictions on a and b are required in order to obtain sensible 

results. You should always check that they are satisfi ed.

Example 

Write 2³ = 8 in logarithmic form.

Answer

23 = 8 ⇒ log
2
8 = 3 The base is 2 and the power is 3. 

So, the logarithm to base 2 of  8 is 3.

Example 

Write log
3 
81 = 4 in exponent form.

Answer

log
3 
81 = 4 ⇒ 34 = 81

Before the appearance 

of logarithms and 

calculators people 

used an abacus or 

counting frame to help 

them do calculations. 

An abacus was  rst 

used around 2500 BCE

in Mesopotamia and 

are still being used 

today. You can use 

an abacus to do 

addition, subtraction, 

multiplication, division 

and even  nd square 

and cube roots very 

quickly.

[ John Napier

(1550–1617)

[ Henry Briggs

(1561–1630)
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Example 

Solve these equations for x

a x = log
16

4 b log
7
x = 2

c log
b
1 = x d log 

x
 32 = 

5

2

Answers

a x = log
16

 4

⇒ 16x = 4

∴ x = 
1

2
b log

7
x = 2 ⇒ x = 72 = 49

c log
b
 1 = x ⇒ bx = 1

∴ x = 0

d log
x
 32 = 

5

2
⇒ x

5
2  = 32

⇒ x = 32
2

5 = 4

Use the defi nition: x = log
b 
a ⇔ bx = a

1
216  = 4

b0 = 1 for any value of  b.

Exercise 5E

1 Write each of  these in logarithmic form.

a 53 = 125 b 103 = 1000 c
1
327  = 3

d 10–3 = 0.001 e m = n2 f ab = 2

2 Write each of  these in index (exponent) form.

a log
3
 9 = 2 b log

10
 1 000 000 = 6 c 49

1

2
log 7 

d log
a
 1 = 0 e  log

4
a = b f log

p
q = r

3 Evaluate:

a log
8
 64 b log

9
 3 c log

10 
0.01

d log
144

 12 e log
37

 1 f log
a

3 a

4 Solve for x:

a log
x
 81 = 2 b log

3
x = 4  c log

11
 121 = x

d log
x
 5 = 

1

3
e log

x
 16 = 

2

3
f log

x
 32 = −5

Properties of logarithms

You derive the properties of  logarithms from the properties of  indices.

1 ➔ am × an = am+n
⇒ log

a
x + log

a
y = log

a
 xy

 Let log
a
x = m ⇒ am = x

 Let log
a
y = n ⇒ an = y

∴ xy = am
× an

 = am+n

 log
a
xy = m + n

 log
a
xy = log

a
x + log

a
y  

For which values of 

a, x and y are these 

properties valid?

Substitute log
a
x for m

and log
a
y for n
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2 ➔ am
÷ an = am n

⇒ log
a
x – log

a
y = log

a  

 
 
 

x

y

3 ➔ log
a
x n = n log

a
x

log log ... log( )a a

n n

x x x x xn

a= × × × =

   

+ + +log ... loga a

n

x x
  

= n log
a
x

 ➔ a0 = 1 ⇒ log
a
 1 = 0

 ➔ a1 = a ⇒ log
a
a = 1

6 ➔ –log
a
x = log

a

 
 
 

1

x

log
a

 
 
 

1

x
 = log

a
 1 – log

a
x 

= –log
a
x

Example 

Express as a single logarithm:

a log
a
 5 + 2log

a
 7 – log

a
 35

b log
a
p + 2log

a
q – 3log

a
 r

c 1 – log
a
 ab

Answers

a log
a
 5 + 2log

a
 7 – log

a
 35

 = log
a
 5 + log

a
 72 – log

a
 35

 = log
a

5 49

35

×

 = log
a
 7

b log
a
p + 2log

a
q – 3log

a
r

 = log
a
p + log

a
q2 – log

a
r3

= log
a 

pq

r

2

3

c 1 – log
a
 ab

 =1– log
a
 a – log

a
 b

 = –log
a
 b

Use property 3

Use properties 1 and 2.

Use property 1

Use property 5

The derivation of this 

rule is very similar to 

that of property 1 and 

is left as an exercise 

for you.

Repeatedly using 

property 1

Using properties 2 

and 4

It is important to 

ensure all logarithms 

use the same base.

When the domain 

restrictions are not 

given, you should 

assume that you are 

working on the largest 

possible domain.
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Example 

Evaluate 2(log 5 + log 2) – 1.

Answer

2(log 5 + log 2) – 1

= 2log 10 – log 10 = log 10 = 1
log 5 + log 2 = log10 and 

1 = log 10

Exercise 5F

1 Express in terms of  log
a

p and log
a

q:

a log
a 

p

q

2

b log
a 

3
2

p

q

2 Express as a single logarithm:

a log 4 + 2 log 3 – log 6 b
1

2
 log

a
p + 

1

4
 log

a
q2

c 2 – log 5

3 Express as a rational number:

a  log 5 + log 8 – log 4 b log
2
 48 – 

1

3
 log

2
 27

c 2 + log
5
 10 – log

5
 2

4 Express y in terms of  x:

a 3 log y = 2 log x b log y = log x + log 2

c log y – 3 log x = log 2 d log y = 2 + 3x

Changing the base of logarithms

Before calculators became commonly available people often used 

tables of  logarithms to do calculations. The tables usually used 

base 10 and so it was sometime necessary to know how to change 

the base.

You can show that 

➔ log
a
x = 

log

log

b

b

x

a

Let y = log
a
x

⇒ ay = x

⇒ y log
b
a = log

b
x

⇒ y = 
log

log

b

b

x

a

⇒ log
a
x = 

log

log

b

b

x

a

Since base 10 is used  

so often it is common 

to just write log x for 

log
10

x

Why can we take 

logarithms of both 

sides?

Take logarithms to 

base b of both sides.

Substitute log
a
x for y
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Example 

Show that log
a
b = 

1

logba

Answer

log
a
b = 

log

log

b

b

b

a

∴ log
a
b = 

1

logb a

Change to base b

log
b
 b = 1

Example 

Evaluate:

a log
3
 5 × log

5
 3 b log

2
 3 × log

3
 32 

Answers

a log
3
 5 × log

5
 3

= log
3
 5 ×

log

log

3

3

3

5
 = 1

b log
2
 3 × log

3
 32

 = log
2
 3 ×

log

log

2

2

32

3
 = 5log

2
 2 = 5

32 = 25
⇒ log

5 
25 = 5log

2 
2

Exercise 5G

1 Evaluate:

a log
3
 2 × log

2
 81 b log

6
 10 × log 6

c log
125

 8 × log
8
 5 d

2 3

1 1

log 6 log 6


e 
4 9

1 1

log 6 log 6
 f log

5
 40 

8

1

log 5

2 Show that:

a a logb = b loga b  
1 1

1
log loga bab ab

EXAM-STYLE QUESTION

3 Let p = log
a
x and q = log

a
y. Express log

x
a in terms of  p

and log
y
a in terms of  q. Hence, show that:

a log
xy

a = 


1

p q
b log x

y

a = 
1

p q

Learn this useful 

result.
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Logarithmic and exponential equations

You can use the properties of  exponents and logarithms to solve 

equations as shown in these examples.

Example 

Solve for x:

a 4x = 9 b 3x–1 = 8 c 3(2x) = 8

Answers

a 4x = 9

⇒ x log 4 = log 9

∴ x = 
log9

log4
 = 1.58

b 3x–1 = 8

⇒ (x – 1) log 3 = log 8 

⇒ x – 1 = 
log8

log3

⇒ x = 1 + 
log8

log3
 = 2.89

Take logarithms of  both sides.

Use the rule logxn = n log x

Using GDC.

Using GDC.

c 3(2x) = 8

⇒ 2x = 
8

3

⇒ x log 2 = log 
8

3

⎛
⎝
⎜

⎞
⎠
⎟

⇒ x = 

 
 
 

8
log

3

log 2
 = 1.42 Using GDC.

Example 

Solve the equation 32–x = 92x

Answer

32–x = 92x

⇒ 32–x = (32)2x

⇒ 32–x = 34x

⇒ 2 – x = 4x

⇒ x = 
2

5

32 = 9

Use the rule: (am) n = amn

Equate the exponents 

Example 

Solve the equation 2 8 = 42x

Answer

2 8 = 42x

⇒ 2 × 2
3

2  = (22)2x

⇒ 2
5

2  = 24x

⇒
5

2
 = 4x

∴ x = 
5

8

  
1 1 3

22 2 2( )8 4 2 2

Equate the exponents.
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Exercise 5H

1 Solve these equations.

a 5x = 7  b 42x–1 = 3

2 Solve (2x)(5x) = 0.01

The next set of  examples shows how exponents and logarithms are 

used in more complicated equations. 

Example 

Solve the equation log
6
x + log

6
 (x – 5) = 1

Answer

log
6
x + log

6
 (x – 5) = 1

⇒ log
6
x(x – 5) = 1

⇒ x(x – 5) = 6

⇒ x2 – 5x – 6 = 0 ⇒

(x – 6)(x + 1) = 0

∴ x = 6 or x = –1 

But x ≠ –1; therefore, x = 6 

Check whether the results are actually 

solutions of  the equation. log
6
(–1) 

does not make sense so x ≠ −1

Example 

Solve the equation log
3
x – 4log

x
 3 + 3 = 0

Answer

log
3
x – 4log

x
 3 + 3 = 0

⇒ log
3
x – 

4

log3 x
 + 3 = 0

Let y = log
3
x

y – 
4

y
 + 3 = 0

⇒ y2 + 3y – 4 = 0

⇒ ( y + 4)( y – 1) = 0

⇒ y = 1 or y = – 4

⇒ log
3
x = 1 or log

3 
x = –4

⇒ x = 3 or x = 3–4 = 
1

81

log 3x

3

1

log x
=

✗
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Example 

Solve the equation 32x+1 + 3x – 2 = 0

Answer

32x+1 + 3x – 2 = 0

⇒ 3(3x)2 + (3x) – 2 = 0

Let (3x) = y

⇒        3y2 + y – 2 = 0

⇒ (3y – 2)(y + 1) = 0

⇒ y = 
2

3

⇒ 3x = 
2

3

⇒ x log 3 = log 
2

3

⇒ x = 
log

2

3

lo 3
 = –0.369

y = 
2

3
or y = −1

Since 3x
> 0 for all x ∈ , 3x

≠−1.

Using GDC.

Example 

Solve these simultaneous equations.

log
3
x + 4log

9
y = 2

2log
4
x + log

2
y = 1

Answer

log
3
x + 4log

9
y = 2

⇒ log
3
x + 3

3

log

log 9
4

y
 = 2

⇒ log
3
x + 

4log

2

3 y
 = 2

⇒ log
3
xy2 = 2 ⇒ xy2 = 9

Change to base 3.

log
3 
9 = 2

2log
4
x + log

2
y = 1

⇒
2

2

log

log 4
2

x
 + log

2
y = 1

⇒ log
2
x + log

2
y = 1 ⇒ xy = 

2

Combining the two results: 

xy

xy
y

2 9

2

9

2
= ⇒ =

x x
y

= ⇒ =
2 4

9

Change to base 2.

log
2
 4 = 2

Using xy = 2 and substituting y = 
9

2
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Exercise 5I

 1 Solve these equations.

a 23x = 5 b 3x(3x–1) = 10 

 2 Solve these equations.

a 4 log
3
x = log

x
 3  b 3 log

2
x + log

2
 27 = 3

 3 Solve the equation 9x – 6(3x) – 16 = 0

 4 Solve the equation log
4
x + 12log

x
 4 – 7 = 0

EXAM-STYLE QUESTIONS

 5 Solve the equation 5x+1 + 
4

5x
 – 21 = 0

 6 Solve the equation log
3
x + log

x
 9 – 3 = 0

 7 Solve the equation 3 × 9x – 2 × 4x = 5 × 6x giving your answer 

to three signifi cant fi gures.

 8 Solve these simultaneous equations.

 6 log
2
x + 6 log

8
y = 7 4 log

4
x + 4 log

2
y = 9

 9 Solve these simultaneous equations. 

 2 log
x
 y = 1  xy = 125

 10 Solve these simultaneous equations.

 y log
2
 8 = x 2x + 8y = 64

 11 Solve these simultaneous equations.

a log
5
x = y = log

25
 (2x – 1)

b log (x + y) = 0 2 log x = log (y + 5) 

✗

✗

✗

Investigation – e π or π e – which is the greater?

Without using a calculator determine which is greater e π or π e

● Write the equation of the tangent line to y = lnx at a general 

point (a, ln a)

● Using a graph, explain why lnx
x

e
<  for all x

● What is the relationship between ln (x e) and x for all x > 0, x ≠ e?

● Make your conclusions.

. Logarithmic functions and their behavior

In Chapter 2 you studied functions and their properties as well as 

the conditions which allow you to fi nd the inverse of  a function, 

if  it exists. 
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Inverse of an exponential function

Since the exponential function is one-to-one, continuous and 

defi ned for all values of  x ∈ , its inverse exists. Also you know that 

the inverse of  a function is given by the image of  the function 

refl ected in the line y = x, so you would expect the inverse of  an 

exponential function to pass through the point (1, 0) and to have the 

y-axis as a vertical asymptote.

x

y

0

y = ax

x

y
y = ax

y = x

y = log
a

x

y = a x ⇒ x = log
a
y

∴ f  (x) = a x

⇒ f  –1(x) = log
a
x

Note that the y-axis is a vertical asymptote.

The domain of  the function is x ∈ , x > 0. 

➔ The inverse of  the exponential function y = e x is given by 

y = ln x, which is also called the natural logarithm function. 

Similarly, the inverse of  y = 10x is given by y = log x

Example 

Show that log x = log e × ln x

Answer

ln x = 
log

log e

x

∴ log x = log e × ln x

Change from base e

to base 10.

Example 

The diagram shows the graph of  

y = log
a

x + k. 

Find k in terms of  x

1 x

y

1

0

(a a)

y = log 
a 

x + k

Answer

a = log
a
a + k

⇒ k = a – 1

(a, a) is on the graph.

log
a
 a = 1

Notation: log
e
x = lnx
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Example 

Identify the domain, any asymptotes and intercepts of  these graphs, and hence sketch 

the functions.

a y = log
2
(x – 1) + 1 b y = ln(2 – x) – 3

Answers

a Αsymptote: x = 1 is a vertical asymptote

 Domain: {x|x ∈ , x > 1} 

 For x-intercept:

 y = 0 ⇒ log
2 
(x – 1) + 1 = 0

∴ log
2 
(x – 1) = –1

⇒ x – 1 = 2–1

⇒ x = 1 + 
1

2
=

3

2

 x-intercept is  
 
 

3
, 0

2

x

y

2

3

4

1

–1

–2

–3

–4

–5

0

(1.5,0)

y = log
2 

(x – 1) + 1

lim
1

log (x 1)
x→ +

=2 -¥

log
2
 (x – 1) is not defi ned for x – 1 ≤ 0

b Αsymptote: x = 2 is a vertical asymptote. 

 Domain: {x|x ∈ , x < 2}

 For x-intercept:

y = 0 ⇒ ln(2 – x) – 3 = 0

∴ ln(2 – x) = 3

⇒ 2 – x = e3

∴ x = 2 – e3

x-intercept is (2 – e3, 0) 

 For y-intercept:

x = 0 ⇒ y = ln 2 – 3

y-intercept is (0, ln 2 – 3)

x

y

1

–1

–2

–3

–4

–5

0

y = ln(2 – x) – 3

2 – e3

ln2 – 3

lim =
2

ln(x 2)
x→ −

− -¥

ln(2 – x) is not defi ned for 2 – x ≤ 0
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Exercise 5J

1 On the same set of  axes, sketch the graphs of  f  (x) = e x

and f  –1(x) = ln x. Hence, state the domain and range of  each 

function.

2 Given that f  (x) = a x, fi nd f  –1(x) and f  ° f  –1(x) and use your 

answers to show that a a xlog
 = x

3 On the same set of  axes, sketch the graphs of  f  (x) = – ln x

and g (x) = |ln x|

4 On the same set of  axes, sketch the graphs of  f (x) = |ln x| 

and g (x) = ln|x|

5 On separate sets of  axes, draw the graphs of  

y = log
3
(x – 3) and y = (log

3 
x) – 3

Identify the two geometric transformations of  y = log
3
x

which produce these functions.

6 Identify the domain, any asymptotes and intercepts of  these 

graphs, and hence sketch the functions.

a y = ln (x – 1) – 1 b y = log
3
 (9 – 3x) + 2

.  Derivatives of exponential and 
logarithmic functions

In section 5.4 you saw that the exponential function is invariant 

under differentiation, that is 
d

dx
(e x ) = e x

To differentiate the composite function y = e f  (x), use the chain rule. 

Let u = f  (x) 

Then y = e u and 
d

d

d

d

d

d

y

x

y

u

u

x
= ×

Now, 
d

d

y

u
 = e u and 

d

d

u

x
 = f  ′(x)   ⇒

d

d

y

x
 = e u × f  ′(x)

So 

➔ y = e f  (x) ⇒
d

d

y

x
 = f  ′(x) e f  (x) 

These examples illustrate the techniques used to fi nd the derivatives 

of  exponential functions.

✗
The answers to 

question 1 are 

important and a key 

fact.

● Investigate why and 

how a logarithmic 

scale is used to 

measure quantities 

such as acidity 

(pH), earthquake 

magnitude, 

brightness of stars 

and loudness of 

sound. 

● What is the Weber–

Fechner law in 

physiology?
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Example 

Differentiate these with respect to x

a y = 
27e x

b y = e–4x c y = 2( +1)

1

e x

Answers

a ( )d

d
( )e sof xy

x
f x 



27
7d(e )

d
14 e

x
x

x
x

 Alternatively, use the chain rule.

u 7x

14x

2

du

dx

=

=

y e

y
e

u

ud

du

=

=

∴ =
dy

dx
14x e7x 2

b 
d

d

y

x
 = – 4e– 4x

c y = 2( +1)

1

e x
 = 

2 +1
e

x

∴
d

d

y

x
 = –2x

 x2 +1
e  = 

x

x
2( +1)

2

e

dy

dx
f x e f x

= ′( ) ( )

Example 

Given that y = x2e5x, fi nd 
d

d

y

x
. Hence, show that 

d

d

2
5

y

x

y

x
y− =

Answer

y = x2 e5x

d

d

y

x
 = 5x2e5x + 2xe5x

    x xy

x x
x x2 5 2 5d 2

d
5 e e

 
y

x x
y y

d 2

d
5 ∴ − =

d

d

2
5

y y

x
y

x

Use the product rule.

d uv

dx

dv

dx

du

dx
u + v

( )
=

u x 2x2 du

dx
= ⇒ =

v e 5e5x 5xdv

dx
= ⇒ =

Exercise 5K

1 Differentiate these functions with respect to x

a 
23

2
exy  b

3 1

5

e x
y  c y = e 4x–1 + 4 

d 
1

e
ex

x
y   e y = e – (1–3x) f y = 2e x

2 Use the product rule to fi nd the derivatives of  these functions 

with respect to x

a y = x e x b
2

ex

x
y  c

2e x

x
y  d e xx

3 Use the quotient rule to fi nd the derivatives of  these functions 

with respect to x

a y
x

x
=

e2

b y
x
x

=
1 2

e
c y

x

x
=

+

e3

1
d y

x

x
=

+1

1

e
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4 Differentiate these functions with respect to x

a 
e

1 e

x

x

x
y



 b y = (1 + e x)2 
c 1 e xy  

d 
e

e

x

x

x
y


 e

e e

e e

x x

x x
y




5 f  (x) = x e x for – 3 ≤ x ≤ 3. Show that f  (x) has one stationary point 

and one point of  infl exion. 

a Identify the nature of  the stationary point and its position. 

b Find the coordinates of  the point of  infl exion, and hence 

sketch the graph of  f  (x). 

c Find the equation of  the tangent at the point of  infl exion.

d Find the point where this tangent meets the x-axis.

e Calculate the area bounded by this tangent and the x- and y-axes.

The derivative of y = ln x and y = a x

By defi nition:

ln e yy x x  

Differentiate implicitly with respect to x:
d d 1 1

e
d d e

1 y

y

y y

x x x
  

Therefore

➔
d

dx
 (ln x) = 

1

x

In section 5.4 you used differentiation from fi rst principles to show 

that 
d

dx
 (a x) = ka x, where k

h

a

h

h

=
→

lim
0

1

Now use the result 
d

dx
 (ln x) = 

1

x
 to evaluate k

Let y = a x

Then ln y = x ln a

Differentiating implicitly with respect to x gives:

1

y

y

x

d

d
 = ln a ⇒

d

d

y

x
 = y ln a = (ln a) a x 

So

➔
d

dx
 (a x) = (ln a) a x

But since 
d

dx
a kax x( ) = , where k

h

a

h

h

=
→

lim
0

1
, you can now say that 

lim ln
h

a

h

h

a
→

=
0

1

✗
Maxima, minima and 

points of in ection were 

studied in Chapter 4.

Another way of 

obtaining this result is 

by using the property 
d

d d

d

y

x
=

1

x

y

. This is left as 

an exercise for you. 
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Also note that 
d

dx
 (a x) = (ln a) a x

⇒ =( )
=

d

dx
a ax

x 0

ln

For an exponential function y = a x, the gradient at the y-intercept is 

always equal to ln a

Example 

Find the derivatives of  these functions with respect to x

a y = 4x b y = 42x c y = x 4x

Answers

a y = 4x
⇒

d

d

y

x
 = (ln 4) 4x

b y = 42x
⇒

d

d

y

x
 = (ln 4) 42x × 2

∴
d

d

y

x
 = (2ln 4)42x

( )xd

dx
a   (ln a) ax

Use the chain rule.

You could also say that 
dy

dx
 = (ln 16)42x

c  y = x 4x

⇒
d

d

y

x
 = x (ln 4)4x + 4x

⇒
d

d

y

x
 = 4x(x (ln 4) + 1)

Use the product rule.

Example 

Differentiate these functions with respect to x

a y = ln (4x)  b y = ln(1 + x2) c y = log
a
x d y = ln(f  (x))

Answers

a y = ln 4x

⇒ = × =
d

d

1

4

1
4

y

x x x

b y = ln(1 + x2)

⇒ = × =
+ +

d

d

1

1

2

12 2
2

y

x x

x

x
x

c y = log
a

x

⇒ y = 
ln

ln

x

a

⇒

d

d

1

ln

y

x ax
=

d y = ln(f  (x))

⇒ × ′
′d

d

1

( )

( )

( )
= ( ) =

y

x f x

f x

f x
f x

Use the chain rule.

Note: 

)
d d 1

dx dx x
ln kx (ln k ln x) (

where k is a constant.

Change the base.

lnx

lna

l

lna
lnx= × , where 

1

lna
 is a 

constant.

Use the chain rule.

Note that this result 

leads to a previously 

obtained result in this 

chapter, that is.

d

d
e

0

lne
x

x

x =

= = 1

➔ ⇒

d

d
log )

1

ln

y

x
x

a
a

x
( =

Learn this important 

result:

if y f x

y

x

f x

f x

=

=
′

ln

d

d

( )

( )

( )

( )
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Exercise 5L

1 Find the derivatives of  these functions with respect to x

a y = 53x b y = ln(4x + 1) 

2 Differentiate these functions with respect to x

a y = 1 + 2 ln x b
1

ln x
y 

Example 

Find the derivative with respect to x of  y = x x

Answer

y = xx
⇒ ln y = x ln x

1 d

d

1
ln

y

y

x x
x x= +×

⇒
d

d

y

x
 = y(1 + ln x) = xx(1 + ln x)

Differentiate implicitly with respect 

to x.

Use the product rule to differentiate 

xln x.

Example 

The equation of  a curve is given by y = ee
x

a Show that the curve has no maxima or minima for x ∈ . 

b Find the equation of  the tangent to the curve at the point where x = 0.

c Find the equation of  the normal to the curve at the point where x = 0.

d Sketch the two lines and hence fi nd the area of  the region bounded by the two lines 

and the x-axis.

Answers

a  y = 
ee

x

⇒
d

d

y

x
 = ex ee

x

≠ 0 for x ∈ 

Therefore, there are no maxima or minima 

on the curve.

d

d

2

2

y

x
 = ex × ex ee

x

 + ex ×
ee

x

⇒
d

d

2

2

y
 = ex ee

x

 (ex + 1) ≠ 0, for x ∈ 

Therefore, there are no points of  infl exion on 

the curve.

To locate maxima or minima fi nd for what values the 

fi rst derivative is zero.

Use the product rule.

To locate points of  infl ection fi nd for what values the 

second derivative is zero.

b y = 

ee
x

⇒ y = e when x = 0

 ⇒
d

d

y

x
 = ex ee

x

 = e when x = 0

The equation of  the tangent at (0, e) is 

y = ex + e

{ Continued on next page
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c The gradient of  the normal at (0, e) is 
1

e

So, the equation of  the normal at (0, e) is 

  

e
e

x
y

d 

x

y

0

BA

y = ex + e

y =     + e
–x

e

e

Total area =
1

2
 ×(1 + e 3) × e =

e

2
 (1 + e 2)

The two lines are shown on the graph.

y = −
x

e
+ e intercepts the x-axis at e 2

Exercise 5M

1 Find the derivatives of  these functions with respect to x

a y = x 2 ln x b y = x a x

2 Differentiate these functions with respect to x

a y = ln 
1

x

⎛
⎝
⎜

⎞
⎠
⎟ b y = ln x 2 c y = 

ln x

x

3 Differentiate these equations with respect to x

a x y = e x
b y = x 2x

4 The equation of  a curve is given by y = e x(x – 1)

a Show that this curve has only one stationary point.

b Identify this stationary point and fi nd its coordinates.

c Find the coordinates of  the point where this curve crosses 

the x-axis.

d Sketch the curve.

EXAM-STYLE QUESTION

5 A curve has equation f  (x) = ln(1 + x 2)

a For what values of  x is this function defi ned?

b Explain why the y-axis is a line of  symmetry for this function.

c Find f  ′(x) and f  ″(x) and use your results to show that the 

curve has one minimum and two points of  infl exion.

d Sketch the curve.

e Show that the normals and tangents at the two points of  

infl ection form a square and fi nd its area.
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. Angles, arcs and areas 

An angle is formed when two rays 

meet at a point. The point is called 

the vertex and the two rays are called 

the sides of  the angle.

An angle is a measure of  rotation 

about the vertex for one ray to 

coincide with the other. Then, if  two rays are coincident, both of  

these statements are true:

● The angle they make is zero.

● The angle they make is one revolution (a full turn).

A circle and two radii are shown in the 

diagram. Start with OB on OA.

The angle is zero. As OB turns 

anticlockwise about the centre, O, the 

angle AOB gets bigger until B once more 

reaches A, when it has gone through one 

revolution. In fact, if  OB continues to 

rotate about O, each time it goes through 

another revolution OB will coincide with 

OA. When B fi rst reaches C, the angle is 

half  a revolution.

Another unit for measuring angles is the radian. To measure the 

angle AÔB = θ draw a circle, radius r, at O and measure the length 

of  the arc AB = S. The angle θ in radius is defi ned as 

➔ q q= ⇔ =
s

r
s r

1 radian is the angle which is subtended 

by an arc of  length equal to the radius of

the circle.

Since the circumference of  a circle = 2πr, 

one full turn = 360° = 2π radians.

➔ 1 radian = 
180

57
°

°
p

    1°= 


180
 radians

B is the vertex.

AB and AC are the 

sides of ∠ABC

A

C
B

C A
O

B

It is thought that 

the Sumerians were 

responsible for 

dividing a full turn 

into 360 degrees 

(360°). The Sumerians 

(Babylonians) had 

a calendar of 12 

months, each month 

having exactly 30 

days. This was based 

on their observation 

that it took the sun 

about 360 days to 

complete its circular 

track across the sky. 

The Sumerians also 

used base 60 in their 

number system.

The de nition does 

not depend on the 

size of the circle since 

all circles are similar.

s

A
O

B

r

i
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Investigation –  converting between degrees 
and radians

The  rst diagram shows a unit circle, that is, a circle whose 

radius is 1 unit long. The radius OB is rotated by one 

radian six consecutive times and the angle measure at each 

stage, in radians, is marked on the circumference.

● What is the radian measure if the radius is rotated 

through one whole revolution? Give reasons for your answer 

based on the de nition of a radian.

● The radius OB is now rotated anticlockwise about O by 

half a revolution, as shown in the second diagram. What is the 

angle measure in radians?  

● What is the angle measure in radians if OB is rotated 

clockwise about O by half a revolution? How would you 

distinguish between clockwise and anticlockwise rotation?

● What is the angle measure if OB is rotated 

anticlockwise about O by 

 i a quarter of a revolution ii three quarters of a revolution?

● Use your results to complete the conversion table.

Angle measure conversion table

Degrees (°) Radians

30


4

60


2

75

2

3

135

150  

π

210

5

4

240

3

2

285

5

3

315

11

6

360

B

O

OB = 1 unit

1
2

3

4

5

B
O

OB = 1 unit

2π radians = 360°

So 1 radian = 
180

p
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Investigation – areas and perimeters of sectors

A diameter divides a circle into two congruent sectors, and two perpendicular diameters 

divide a circle into four congruent sectors. Copy and complete this table.

1
Number of 

diameters

Number of 

congruent 

sectors

Angle subtended 

by minor arc 

(radians)

Area of one 

sector

Length of 

minor arc

1 2 π

1

2 2
=p

p

r r
2 2( ) ⎛

⎜
⎞
⎟

1

2

2 =p pr r( )

2 4


2

1

4 4

=p

p

r r
2 2( ) ⎛

⎝
⎜

⎞
⎠
⎟

1

4 2

2p

p

r r( ) =

● Use your results to make a conjecture for the area of a sector in terms of the angle.

● Use your results to make a conjecture for the length of an arc in terms of the angle.

Slices of pi: areas and perimeters of sectors

Two radii of  a circle divide it into two sectors. The one with the 

larger area is called the major sector and the smaller one is called 

the minor sector. Minor sector

Major sector
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Your results from the investigation should have led to:

➔ Area of  sector = 
1

2
θr 2

Length of  arc = θr, where θ is measured in radians.

Example 

A sector of  a circle has radius 4 cm and central angle 0.25 radians. 

Find its arc length and area.

Answer

Area = 
1

2
 × 0.25 × 16 = 2 cm2

Arc length = 0.25 × 4 = 1 cm

Area of  sector = 
1

2
θr 2

Length of  arc = θr

Example 

A planet is in opposition when it is directly opposite the Sun from our 

viewpoint on Earth. During opposition in March 2012 Mars is closer 

to the Earth than at any other time at a distance of  approximately 

9.98 × 108 km. Mars has an approximate diameter of  6.8 × 103 km. 

What is the angle subtended by Mars when viewed during closest 

approach?

9.98 x 10
8

O
i

6.8 x 10
3 

Mars

Answer

θ = 
3

8

6.8 10

9.98 10





 = 6.8 × 10–6 radians (2 sf ) Arc length = θr

So θ = 
arc length

r

Example 

The diagram shows two arcs which subtend 

the same angle.

Given that OA = 3 cm, OP = 5 cm and ∠AOB = 0.8 

radians, fi nd the area which is not shaded and its 

perimeter.

r

i

You can derive similar  

formulae when θ is

measured in degrees.

A

P

Q

B

O

{ Continued on next page
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Answer

Area required = area of  sector OPQ

– area of  sector OAB

= 
1

2
θ (OP )2 – 

1

2
θ (OA)2

= 
1

2
θ[(OP )2 – (OA)]2

= 
1

2
 × 0.8 × (52 – 32) = 6.4 cm2

Perimeter =  2AP + arc length AB

+ arc length PQ

= 2 × (5 – 3) + 0.8 × 3 + 0.8 × 5 

= 10.4 cm

Area of  sector = 
1

2
θr 2

Length of  arc = θ r

Example 

a The diagram shows a square ABCD with 

sides a cm long which just fi ts inside a circle. 

Find the area of  the shaded segment. 

b On each of  the sides of  the square, 

semicircles are drawn to form four 

crescents. Show that the area shaded 

in dark grey is equal to the area of  

the square .

Answers

a Length of  diagonal = 2a

∴ radius of  sector = 
2

2
a

 Area of  triangle DOC = 
a2

4

∠DOC = 
2



area of  sector 

2
21 2

= × × =
2 2 2 8

a
a

  
 
 

Area of  segment = area of  sector – area of  triangle
2 2 2

= = 1
8 4 4 2

a a a  
  

 

Use 

Pythagoras’

theorem

Diagonals 

divide a 

square 

into four 

congruent 

triangles.

O

A B

a

{ Continued on next page
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b Area of  crescent = area of  semicircle – area of  

segment
2 2 21

 1 =
2 2 4 2 4

=
a a a


   

    
   

Area of  four crescents  = 
2

4
4

a
  = a2 = area of  square

Area of  

semicircle is 

half  the area 

of  a circle 

with radius 
a

2

Exercise 5N

1 For each fi gure, fi nd the length of  the arcs and the area of  the 

sector.

a 

5 cm

r

4

b

4 cm
5r

12

c

5.4 cm

1.3

2 The diagram shows an aerial view of  a swimming 

pool, ABQP, formed by two sectors of  a circle. 

The angle AOB is 0. 8 radians. Find the surface 

area and the perimeter of  the pool.

EXAM-STYLE QUESTION

3 In a special offer, three cans of  cat food are sold for the price 

of  two. The cans are wrapped by a plastic foil as shown in the 

diagram. Each can has a diameter of  7.5 cm. 

Find the length of  plastic foil required to hold the cans together. 

(Assume that no overlapping is required.) 

4 The Greek mathematician Eratosthenes noticed that at noon 

on a summer solstice the rays of  the sun shone straight down a 

deep well in Syene (now known as Aswan). At the same time, in 

Alexandria, the rays made an angle of  7.2° 

with the vertical, as shown in the diagram.

The distance between Alexandria and Syenne 

was 5000 stadia. One stadion measures 

 approximately 185 m. Eratosthenes used this 

 information to calculate the circumference of  the Earth. 

a What result did Eratosthenes obtain?

b The circumference of  the Earth is 40 008 km to 5 sf. 

What was Eratosthenes’ percentage error?

OA = 5 m

 = 

A

P

Q

B

O 0.8

A

CB

Alexandria

Rays from the sun

7.2°

Syenne
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EXAM-STYLE QUESTION

5 The diagram shows a right-angled triangle ABC with 

the right angle at B. Two crescents are formed by constructing 

semicircles with AC, AB and BC as diameters. 

Find the sum of  the areas of  the segments APBA and BQCB. 

Hence, show that the sum of  the areas of  the two crescents is 

equal to the area of  the triangle. 

Review exercise

 1 Simplify the expression 
9 6

3 6 4

2 2 2 3

5 2

n n

n n

+ −

×

× ×

 2 Evaluate 8 4

16

2

3

3

2

3

4

+

 3 Solve these equations.

a 9x – 12(3x) + 27 = 0 b 3 8
9

3

x

x
− =

 4 Solve these logarithmic equations.

a log
a
x + log

a
 3 – log

a
 7 = log

a
 12  b log

4
x – log

4
 5 = 

5

2

c log
3
x – 

6

3log x
 = 1 d log

7
x + 2log

x 
7 = 3

 5 Solve these simultaneous equations.

a xy = 81

 3 log
x

y = 1

b y log
2 
4 = x

 2x + 4 y = 512

c ln 8 + ln(x – 6) = 2 lny

 2y – x = 2

 6 Simplify these expressions.

a log y + log 
1

y
b

log log

log log

x x

x x

5 2

3 +

 c ln(ln x 2) – ln(ln x)

EXAM-STYLE QUESTIONS

 7 Find the value of  x given that 

 log
2
x + log

2
x 2 + log

2
x 3 + … + log

2
x m = 3m(m + 1) 

 8 Given that y = 5e 2x + 8e –2x, show that 
d

d

2

2
4

y

x
y=

 9 Given that y = e 3x (2 + 5x), show that 
d

d

2

2

y

x
 – 6 

d

d

y

x
 + 9y = 0

 10 Find the value of  x which satisfi es the equation ex – e x = 4

 Hence, show that for this value of  x

e x + e x = 2 5

A

B

C

P
Q

✗
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EXAM-STYLE QUESTIONS

11 Show that the function f  (x) = 2

4e

(e 1)

x

x


 has a maximum point 

at (0, 1). Find the x-coordinates of  the two points of  infl exion.

 12 a For what values of  x is the function f  (x) = (ln x)2 defi ned?

b Evaluate f  ′(x) and f  ″(x).

c Use your results to show that the function has a minimum 

and a point of  infl exion and fi nd their coordinates.

d Find the equation of  the tangent which passes through the 

point of  infl exion.

e Find the area of  the region enclosed by this tangent, the 

y-axis and the line y = 1

13 Figure 1 shows an equilateral 

triangle ABC with sides of  length 2a. An arc of  

a circle with centre A and tangent BC is 

drawn as shown. Calculate the shaded area 

and call it S
1

Another segment is formed as shown in 

Figure 2. Find the area of this second segment S
2
. 

The process is repeated and a third segment 

is formed as shown in Figure 3. Calculate the 

area of  the third segment. Hence, show that 

the areas S
1
, S

2
 and S

3
 form a geometric sequence 

and fi nd the common ratio.

The process of  constructing segments can 

continue indefi nitely. What would be the total 

area of  segments formed?

 14 Seven circular glass coasters, each with diameter 

8 cm, are placed on a table so that they are 

touching each other as shown in the diagram. 

Find the area of  the space between the coasters. 

B
2a

A

C B
2a

A

C

Fig.1 Fig.2

B
2a

A

C

Fig.3

CHAPTER 5 SUMMARY

 If  a line segment AB is divided into two segments by a point P

such that 
AB

AP
 = 

AP

PB
, we say that the line is divided in the golden 

ratio. The golden ratio is denoted by ϕ

Recursive functions

An initial value u
0
 is given and a function u

n
 = F (u

n–1
) is defi ned to give a sequence.

E.g. u
0
 = 1, u

n
 = 3u

n–1
 + 5

Continued on next page
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Exponents and their properties
● a m × a n = a m + n

● a m ÷ a n = a m – n

● (a m) n = a mn
● a 0 = 1

● a am m

1

= ● a n

na
=

1
, a ≠ 0

● a a a
m

n mn n
m

= = , a > 0 ● a
m

n

mn n
m

a
= =

1 1

a( )

Logarithms and their properties

Defi nition: x = log
b

a ⇔ a = bx

Notation: log a = log
10

a

 ln a = log
e
a

Properties:

● log
a
xy = log

a
x + log

a
y ● log

a

x

y
 = log

a
x – log

a
y

● log
a
x n = nlog

a
x ● log

a
 1 = 0

● log
a
a = 1 ● log

a

1

x
 = –log

a
x

Change of  base formula: log
log

log
a

b

b

x
x

a
=

Euler number: e ≈ 2.718 281 828 459 045… 

Exponential and logarithmic functions
Exponential functions: y = a x

The exponential function and its inverse:

f  (x) = e x ⇔ f  –1(x) = ln x

Derivatives of  exponential and logarithmic functions:

● y = e x ⇒
d

d

y

x
 = e x

● y = e f  (x ) ⇒
d

d

y

x
 = f  ′(x) e f  (x )

● y = ln x ⇒
d

d

y

x
 = 

1

x

● y = a x ⇒
d

d

y

x
 = (ln a)a x

● y = log
a
x ⇒

d

d

y

x
 = 

1

x aln

Angles, arcs and areas

Degree to radian measure: 360° = 2π  or 180° = π

Length of  arc of  circle = θ r 
180

1 radians


 





180
1 radian

Area of  sector of  circle = 
1

2
θr 2

m  n ∈ 

a ∈ +

a  b ∈ +, b ≠ 1

a  x  y ∈ +, a ≠ 1

a  b, x ∈ +, a, b ≠ 1

x > 0

Remember to consider 

domain restrictions 

where appropriate.

Chapter 5 275



Theory of knowledge: Beauty in mathematics 276

Theory of knowledge

Beauty in mathematics

“The greatest mathematics has the simplicity and inevitableness of  supreme poetry and music, 

standing on the borderland of  all that is wonderful in science, and all that is beautiful in art.” 

Herbert Westren Turnbull (188–191) 

The Great Mathematicians, 1929

Following the pattern
The Swiss mathematician Leonhard Euler (1707–

83) introduced the concept of a function and 

used the notation f (x), as well as the letter e for 

the transcendental number 2.71828…….

He also calculated the values of a set of 

continuing fractions, like the ones shown below.

■

up the fraction and evaluate 

your results. What do you 

notice?

■ Would you call this a 

beautiful fraction?

■ Are there other similar 

continued fractions that lead 

to other curious numbers?

■ Euler  rst came up with 

an equation using this 

continued fraction, which 

included e. Use your results 

to deduce Euler’s equation.

■ Rigor was restored to 

mathematics at the 

beginning of the 19th 

century, a century after 

Euler’s demise. Why was 

Euler able to make so many 

advances in mathematics 

before formalization?

“Pure 

mathematics is, 

in its way, 

the poetry of  

logical ideas.” 

Albert Einstein 

(1879–19)

1+
1

1 + 1

≈

1+
1

1 +

≈

1

2

1+
1

1 +

≈

1

3

1

2+

1+
1

1 +

≈

3

4

1

2+
2

3 +

1+
1

1 +

≈

4

5

1

2+
2

3 +

4 +

3

e 
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The Four-Color Problem

In 1852, South African mathematician and botanist Francis Guthrie (1831–

99) proposed that to color any planar map so that no two regions sharing a 

common border have the same color, you need at most four colors.

■ How could you color this map using 

four colors instead of  ve? 

This simple-sounding conjecture 

was dif cult to prove.

It was  nally proved to be true in 1976 by Kenneth Appel and Wolfgang 

Haken at the University of Illinois. The technique they used came as a 

shock to most mathematicians. They had divided all planar maps into 

certain types and then used a computer to analyze each different type 

separately with all of its possibilities, verifying that all possible maps 

could be colored using just four colors. Thus the theorem was proved.

■ The four-color theorem was proved by exhaustion using computers. 

Is this a valid proof? What makes a proof valid?

■ Is there beauty in the proof of the four-color theorem?

■ How does technology in uence knowledge claims?

■ In 2000 the Clay Mathematics Institute offered a $1 million prize for 

a proof of the Riemann hypothesis. The prize can only be claimed 

provided that the proof is not computer generated. Is this condition 

fair in today’s world, which is so dependent on technology?

The art of mathematics

M.C. Escher (1898–1972) was a Dutch graphic artist known for 

his tessellations, impossible structures and other works of art 

inspired by mathematics.

■ Research how Escher’s works based upon symmetry, 

impossible objects and hyperbolic planes are linked to 

mathematics.

■ Was Escher a mathematician as well as an artist?

■ Is there place for aesthetic beauty in 

mathematics?

You met Sierpinski’s triangle in this chapter. By 

coloring different sets of triangles within it you 

can produce different patterns.

■ Use Sierpinski’s triangle to generate 

different patterns. Is this art?

“ A maximum of 

four colors 

ensures no two 

adjoining 

regions are the 

same color.

{ Sierpinski's triangle



Exploring 
randomness

CHAPTER OBJECTIVES:

5.1  Concepts of population, sample, random sample and frequency 

distribution of discrete and continuous data; grouped data: mid-interval 

values, interval width, upper and lower interval boundaries; mean, variance, 

standard deviation

5.2  Concepts of trial, outcome, equally likely outcomes, sample space (U) and event; 

the probability of an event A as P(A) = 
n A

n U

( )

( )
; the complementary events A and A′

(not A); use of Venn diagrams, tree diagrams, counting principles and tables of 

outcomes to solve problems

5.3  Combined events, the formula for P(A ∪ B); mutually exclusive events

5.4  Conditional probability; the de nition: P(A | B) = 
P A B

P(B)

( )∩

; independent events; 

the de nition: P(A | B) = P(A) = P(A | B ′); use of Bayes’ theorem for a maximum of 

three events

Before you start
You should know how to: 

1 Calculate simple statistics from discrete 

data, including mean, median, mode, 

quartiles, range, interquartile range.

 e.g. For the data set:

 6, 7, 8, 9, 11, 12, 14, 15, 15, 19, 20

 median (middle) 
n +1

2
 = 6th value, 12

 mode is 15

 mean is 12.4 (3 sf)

 Use counting techniques. e.g. A student 

must answer 7 out of  10 questions. The 

order does not matter. How many ways 

are there to answer the questions?

Number of  ways = 

10

7
= = =120

10!

7!3!

10 9 8

3 2 1

⎛

⎝
⎜

⎞

⎠
⎟

⋅ ⋅

⋅ ⋅

Skills check

1  The masses, in kg, of  the 12 members of  

a basketball team are: 94, 110, 88, 103, 

97, 85, 91, 95, 107, 103, 114, 96

 Find the

 a median b mode

 c mean d range

 e quartiles f interquartile range.

2 In a group of  20 children, 8 have blue 

eyes and 12 have brown eyes. 3 children 

are selected from the group. In how many 

ways are there to select:

 a 3 children with blue eyes

 b at least one child with blue eyes?

6
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Statistics and probability

We are bombarded with data in everyday life, in news reports, sports 

results, education, business – even the weather.

Statistics allows you to collect, analyze, interpret and present data in 

a format that is easy to understand. These basic skills, covered in 

this chapter, ensure that you can then properly understand data that 

is presented to you, and turn it into information that you can use 

to support decisions or even make predictions.

Probability allows you to calculate the likelihood of  a given 

outcome of  an event. On the whole, people’s intuition tends to let 

them down when considering probabilities. How else do you explain 

why people buy lottery tickets, when the probability of  winning 

is usually around 
1

14 000 000
?

In this chapter you 

can do most of the 

calculations on your 

GDC, but if you know 

how to do them by 

hand too it will help 

your understanding. 

The emphasis is on 

understanding and 

interpreting the results 

you obtain, in context. 

Statistical tables 

are not allowed in 

examinations – you 

will need to use your 

GDC.
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Discussion activity –  what should we do 

with our test scores?

32 students took a test scored out of 10. Their results were:

0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 

7, 7, 7, 8, 8, 8, 8, 9, 10

What should the teacher do with this data?

How could you organize the data to give a better picture of the 

scores?

.  Classifi cation and representation of 
statistical data

The study of  statistics is important because it allows us to make 

predictions.

In this section you will be looking at:

● collecting data

● organizing the data

● analyzing the data

● drawing conclusions and making predictions.

The data you collect can be qualitative or quantitative

Qualitative data Quantitative data

Qualitative data is described in 

words and is sometimes called 

categorical data.

Questions that give qualitative data 

include:

What is your favorite pen color?

How do you travel to school?

What brand of computer do you 

own?

Quantitative data is numerical: 

it can be counted or measured.

Questions that give quantitative 

data include:

How many pens do you own?

How long does it take you to 

get to school?

How many computers have you 

owned?

Is the data from the test scores in the discussion activity qualitative 

or quantitative?

Quantitative data, usually called a ‘statistical variable’, can be split 

up into two categories: discrete and continuous

➔ A discrete variable has exact numerical values.

The number of CDs that you have or the number of children in your 

family are two example of discrete variables.

[ Discrete. 

How many pairs of 

shoes do you own?
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[ Continuous. 

What is the speed of 

the train?

➔ A continuous variable can be measured. Its accuracy depends 

on the accuracy of  the measuring instrument used.

Length, weight and time, are examples of  continuous variables 

which might have fraction or decimal values.

What is the di erence between a population 
and a sample? 
When we think of  the term population, we usually think 

of  people in our town, region, state or country.

➔ In statistics, the term population includes all members of  a 

defi ned group that you are collecting data from.

➔ A part of  the population is called a sample, i.e. it is a 

selection of  members or elements from a subset of  the 

population.

If  the study is of  a small set you can collect data from every 

element and the analysis will be an accurate study of  the whole 

population. For example, if  you want to analyze the grades obtained 

in Maths HL, SL and Studies in a particular school you can use the 

grades of  every student. The students who took IB mathematics are 

the population.

Very often, however, the population is too large for you to be able to 

study every element. In this case you use a statistical sample that 

represents the whole population. For example, to predict the 

outcome of  an election data is collected from a random sample.

Random samples must have two characteristics: 

1 Every element has an equal opportunity of  being selected.

2 The sample has essentially the same characteristics as the 

population.

Once you have collected the data you can draw a graph. Diagrams 

are much easier to interpret than tables.

Population
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Example 

A student counted how many cars passed his house in one-minute 

intervals for 30 minutes. His results were:

23, 22, 22, 22, 24, 22, 21, 21, 23, 23, 27, 21, 21, 22, 23, 25, 27, 26, 23, 

23, 22, 27, 26, 25, 28, 26, 22, 20, 21, 20.

Display this data in a frequency table.

Draw a bar chart for this data.

Answer

Number of cars 

per minute

Tally Frequency

20 || 2

21 5

22  || 7

23  | 6

24 | 1

25 || 2

26 ||| 3

27 ||| 3

28 | 1

y

x230

Cars per minute

Fr
e
q
u
e
n
cy

2220 24

2

4

8

6

21 25 26 27 28

Tally each data item in the 

correct row. Write the totals in 

the frequency column.

The number 21 appears 5 

times in the data.

Use the vertical scale for the 

frequency and the horizontal 

scale for number of  cars per 

minute.

➔ When you have a lot of  data, you can organize it into groups 

in a grouped frequency table

If  the data are continuous, you can draw a histogram

A histogram is like a bar chart, but there are no gaps between the bars 

and the areas of  the bars are proportional to the frequencies of  the 

classes.

If  all the classes have the same width then the heights of  the bars are 

proportional to the frequencies.

A bar chart is 

sometimes called a 

column graph.

A bar chart is suitable 

for discrete data or 

qualitative data. It 

should have gaps 

between the bars and 

all of the bars should 

be the same width.
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Example 

The ages of  200 members of  a tennis club are: 

20, 22, 23, 24, 25, 25, 25, 26, 26, 26, 26, 28, 28, 29, 29, 29, 30, 30, 30, 30, 

30, 30, 30, 32, 32, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 

36, 36, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 

42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 

46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 

49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 

53, 54, 54, 54, 54, 55, 55, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 58, 58, 58, 59, 

59, 59, 60, 60, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 65, 65, 68, 69.

Draw a grouped frequency table and a histogram for the data.

Answer

Age Tally Frequency

20 ≤ age < 25 |||| 4

25 ≤ age < 30  || 12

30 ≤ age < 35 20

35 ≤ age < 40
 |||

18

40 ≤ age < 45

 |

26

45 ≤ age < 50

 ||

42

50 ≤ age < 55

 |

31

55 ≤ age < 60

||||

24

60 ≤ age < 65
 ||||

19

65 ≤ age < 70 |||| 4

x0

Fr
e
q
u
e
n
cy

20

Age

40 45 50 55 706560353025

15

30

45

Equal class intervals of  5 years

25 is in the class 25 ≤ age < 30

Numbers go on the edges of  the bars on an x-axis like 

scale.

No gaps between the bars

Is age data continuous 

or discrete?
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Another type of  graphical representation that you can use to 

represent grouped data is a frequency polygon

In a frequency polygon plot the midpoint of  each class against 

the frequency of  that class on a graph. Then join the points with 

straight lines. (If  the class intervals are not of  equal width, 

frequency density is used instead. You will learn more about this 

later in the chapter.)

You can draw a frequency polygon for the tennis club in Example 2.

Make a new table with three columns headed Age, Frequency and 

Midpoint.

The midpoint (or classmark) is the mid-value of  the class. For a 

graph you say ‘midpoint’ but for a table you say ‘mid-value’.

Age Frequency Midpoint

20 ≤ age < 25 4 22.5

25 ≤ age < 30 12 27.5

30 ≤ age < 35 20 32.5

35 ≤ age < 40 18 37.5

40 ≤ age < 45 26 42.5

45 ≤ age < 50 42 47.5

50 ≤ age < 55 31 52.5

55 ≤ age < 60 24 57.5

60 ≤ age < 65 19 62.5

65 ≤ age < 70 4 67.5

Plot frequency on the vertical axis against 

midpoint on the horizontal axis.

Sometimes you want to fi nd a running total 

or cumulative frequency

For example, how many members of  the 

tennis club in Example 2 are under 40?

There are 4 members under 20, 16 members 

(4 + 12) under 30 and 36 members (4 + 12 + 20) 

under 40.

To fi nd the cumulative frequency of  a class add 

the frequencies of  all the classes up to and 

including that class.

Here we have treated 

age as a continuous 

variable. Why is the 

midpoint of the  rst 

class 22.5?

y

x4035 45 50 55 60 65 70

5

10

15

20

25

30

35

40

45

50

2520 30

Age

Fr
e
q
u
e
n
cy
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Example 

Here are the exam scores for a group of  24 students. The maximum 

possible mark was 90.

47 54 63 77 23 15 66 32 56 83 16 49

52 67 44 9 62 46 38 58 37 25 55 46

Construct a frequency distribution table with mark intervals of  0–9, 

10–19, and so on, and fi nd cumulative frequencies for each mark 

interval.

Answer

Mark Midpoint Frequency Cumulative frequency

0–9 4.5 1 1

10–19 14.5 2 3

20–29 24.5 2 5

30–39 34.5 3 8

40–49 44.5 5 13

50–59 54.5 5 18

60–69 64.5 4 22

70–79 74.5 1 23

80–90 85 1 24

You can draw a histogram to represent 

the data in Example 3, using the 

frequency column.

You can draw a cumulative frequency 

diagram, using the cumulative 

frequency column.

In the next example the distribution table does not have equal-width 

intervals. You have to calculate the frequency density of  each class 

in order to draw the histogram. You use frequency density instead 

of  frequency so that the area of  each bar in the histogram 

corresponds to the frequency of  the class it represents. Frequency is 

calculated using the formula:

➔  frequency density =
frequency

interval width

3020 4010 7060 9050 80

Fr
e
q
u
e
n
cy

6

5

4

3

1

2

0

Exam scores
When drawing a 

histogram for discrete 

variables, the 

boundaries are shifted 

by half a unit to the 

left and to the right.

In this histogram, 

there are boundaries 

at −0.5, 9.5, 19.5 etc.

20

Mark

40 60 80

C
u
m

u
la

ti
ve
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re

q
u
e
n
cy

16

20

24

12

4

8

0

Notice that the 

cumulative frequency 

diagram starts 

from the minimum 

observation with a 

cumulative frequency 

of 0. Each cumulative 

frequency corresponds 

to the end-point of 

the interval, not the 

midpoint as in the 

histogram.
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Example 

These are the yearly salaries of  the employees in a small start-up company.

€12 350, €19 820, €13 540, €8 440, €11 950, €11 320, €7 840, €8 450, 

€14 550, €18 740, €12 360, €14 620, €22 380, €32 420, €36 780

a Copy and complete the table.

Salary (in thousands €) Frequency Interval width Density

7.5 ≤ x < 10

10 ≤ x < 15

15 ≤ x < 25

25 ≤ x < 40

b Draw the histogram representing the salaries in the company.

Answers

a
Salary

 (in thousands €)
Frequency

Interval 

width

Frequency  

density

7.5 ≤ x < 10 3 2.5 1.2

10 ≤ x < 15 7 5 1.4

15 ≤ x < 25 3 10 0.3

25 ≤ x < 40 2 15 0.133

b

3020

Salary

4010

fr
e
q
u
e
n
cy

 d
e
n
si

ty 2

1

0

Use the formula:

Frequency density =
frequency

interval width

Exercise 6A

1 All of  the IB students in a school were asked how many minutes a day 

they spent studying mathematics. The results are given in the table.

Time spent 

studying 

mathematics 

(minutes)

0 ≤ t < 15 15 ≤ t < 30 30 ≤ t < 45 45 ≤ t < 60 60 ≤ t < 75 75 ≤ t < 90

Number of 

students
21 32 35 41 27 11

a Is this data continuous or discrete?

b Use your GDC to help you draw a fully labeled histogram to 

represent this data.

Histograms provide a clear 

picture of the distribution 

of the data. The histogram 

in Example 2 is a typical 

symmetrical histogram showing 

that the data has a normal 

distribution. The histogram 

in Example 4 is skewed 

showing that there were more 

employees with salaries at the 

lower end of the scale.

Exploring randomness286



2 The table shows the age distribution of  mathematics teachers 

who work at Caring High School.

a Is the data discrete or continuous?

b How many mathematics teachers work at Caring High 

School?

c Use your GDC to help you draw a fully labeled histogram 

to represent this data.

3 The histogram shows data on frozen chickens in a 

supermarket. The masses in kilograms are grouped 

such that 1 ≤ w < 2, 2 ≤ w < 3 and so on. 

a Is the mass of  the chickens discrete or continuous data?

b Draw the grouped frequency table for this histogram.

c How many frozen chickens are there in the supermarket?

4 The histogram shows how many minutes it takes for students 

to return home after school.

a Is the data discrete or continuous?

b Represent the data in a grouped frequency table.

c What is the shortest time that a student takes to get home?

EXAM-STYLE QUESTION

5 These histograms show four data sets A, B, C and D

with the same number of  values and the same range.

A

a Decide which data set A, B, C, or D goes with each of  these 

cumulative frequency diagrams.

b Sketch a cumulative frequency diagram for the remaining data set.

Age
Number of 

teachers

20 ≤ x < 30 5

30 ≤ x < 40 4

40 ≤ x < 50 3

50 ≤ x < 60 2

60 ≤ x < 70 3

y

x40

Mass (kg)

N
u
m

b
e
r 

o
f 
ch

ic
ke

n
s

3 5 6

10

20
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1 2

y

x200

Time (min)
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e
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u
e
n
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15 25 30 35 40 45

1

2

4

5

3

5 10
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. Measures of central tendency

A measure of  central tendency tells you where the middle of  a set of  

data lies. The three most common measures of  central tendency 

are the mode, the mean and the median

The mode

➔ The mode is the value that occurs most frequently in a set of  

data.

In a frequency table, the mode is the group with the highest frequency.

Continuous data is grouped in intervals and to fi nd the mode you 

have to use a histogram. If  all the intervals have the same width 

then the modal interval is the one with the highest frequency. If  the 

intervals have different widths, then the modal interval is the 

interval with the highest frequency density.

Exercise 6B

1 Find the mode of  the data in each frequency table.

a 
Goals Frequency

0 4

1 7

2 3

3 3

4 1

b Height Frequency

140 ≤ h < 150 6

150 ≤ h < 160 6

160 ≤ h < 170 5

170 ≤ h < 180 10

180 ≤ h < 190 8

2 The table shows the waiting times, in minutes, of  50 customers in a bank.

2.5 1.3 2.2 1.4 5.2 3.0 7.1 4.2 1.0 0.5

3.2 2.0 5.3 3.1 1.2 1.8 4.1 2.2 1.2 1.8

3.1 2.7 0.2 6.4 2.0 3.1 1.1 4.2 4.3 0.5

1.2 1.4 2.1 5.4 3.1 4.3 2.5 4.2 5.2 0.5

1.4 0.3 4.2 2.2 2.4 0.6 3.2 4.2 0.8 0.5

a Construct a frequency distribution table with time intervals 0 ≤ t < 1.0, 

1.0 ≤ t < 2.0,... and fi nd cumulative frequencies for each time interval.

b Draw the cumulative frequency diagram and estimate the 

percentage of  customers who waited longer than 5 minutes.

c Find the mean, median and mode of  the data.

3 The histogram shows the heights of  some trees in the park.

a Find the corresponding frequencies for each class and 

construct the frequency distribution table.

b Find the cumulative frequencies and draw the cumulative 

frequency diagram.

c Estimate the percentage of  trees higher than 18 metres.

d Find the mean, median and mode of  the data. 

Another word for 

measure of central 

tendency is ‘average’. 

This is commonly used 

to mean ‘the mean’.

There can be more 

than one mode – or 

no mode at all.

Notice that if several 

intervals have 

the same highest 

frequency or frequency 

density then all of them 

are modal intervals.

A set of data is 

bimodal if it has 

two modes.

1510

Height (m)

205 3530 4025
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0
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EXAM-STYLE QUESTIONS

4 A data set contains these values

  2, 3, 3, 3, 6, 6, 7

a Write down the values of  the mode and median. 

b Suppose that a new data value a is added to the set. Find the 

value of  a that would make the mean and the median of  the 

new data set the same. Hence, state the effect of  this new data 

value on the mode of  the set.

5 Consider the sequence ln a, ln , ln , ln ,4 8a a a ... 

where a > 1

a Show that the series lna + ln , + ln , + ln +4 8a a a ... converges 

and fi nd its sum.

b A data set consists of  the fi rst n terms of  the sequence in a. 

Find an expression for its mean in terms of  n and ln a

c Hence fi nd the minimum value of  n for which the mean of  

this data set is less than 1% of  the fi rst term of  the sequence.

The mean

The arithmetic mean is usually just called the mean, and is the most 

common measure of  central tendency. 

➔ Arithmetic mean  = 
∑

i

k

i if x
=1

n

where Σ f
i  
x

i
 is the sum of  the data values and n is the number of  data 

values in the population.

To calculate the mean of  grouped data use the mid-value of  each 

class with its frequency.

The median

➔ The median is the value in the middle when the data are 

arranged in order of  size. If  the number of  data values is even, 

then the median is the mean of  the two middle values.

To fi nd the median of  grouped data you use a cumulative frequency 

curve. Take the horizontal line that passes through the midpoint of  

the range of  the variable. Then look at the point of  intersection with 

the cumulative frequency curve to make an estimation of  the 

median from the horizontal axis.

The next example shows you how to fi nd the measures of  central 

tendency for data grouped in classes of  different widths.

μ is pronounced ‘mu’, 
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Example 

The continuous variable X has a frequency distribution as 

shown in the table.

Find the:

a mode b median c mean.

Answers

a

X Frequency
Interval 

width

Frequency 

density

0 ≤ x < 100 8 100 0.08

100 ≤ x < 200 10 100 0.1

200 ≤ x < 400 22 200 0.11

400 ≤ x < 600 14 200 0.07

600 ≤ x < 1000 16 400 0.04

 The modal interval = 200 ≤ x < 400

b
X Frequency Cumulative frequency

0 ≤ x < 100 8 8

100 ≤ x < 200 10 18

200 ≤ x < 400 22 40

400 ≤ x < 600 14 54

600 ≤ x < 1000 16 70

200

x

400 600 800 1000

C
u
m

u
la

ti
ve
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q
u
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cy

80

40

50

60

70

30

10

20

0

 The median = 350

c

 Mean = 404

The intervals don’t have equal 

widths so fi nd the frequency 

densities.

Make a cumulative frequency 

table and draw a cumulative 

frequency graph.

Draw a horizontal line through 

35, the midpoint of  the range. 

Estimate the value of  the median 

on the horizontal axis.

Find the midpoints of  the 

intervals and use them as the 

values of  the variable X. On the 

GDC use the mean value feature 

from the list menu.

You can calculate the 

mean from a list on 

your GDC. See the 

GDC chapter on the 

CD. In One-Variable 

Statistics on the GDC, 

the mean is x

The GDC also 

calculates Σ x and n

X Frequency

0 ≤ x < 100 8

100 ≤ x < 200 11

200 ≤ x < 400 24

400 ≤ x < 600 15

600 ≤ x < 1000 14
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Investigation –  what happens to the measures 
of central tendency when the data 
values are adjusted?

State your conjecture, test them and then prove them.

Data Mean Mode Median

Data set
6, 7, 8, 10, 12, 14, 

14, 15, 16, 20

Add 4 to each piece of 

data in the set.

Multiply each piece of 

data by 2.

Now copy and complete these sentences to explain what happens to 

the mean, mode and median of the original data set.

a If you add 4 to each data value………………………………………

b If you multiply each data value by 2………………………………….

. Measures of dispersion

Measures of  dispersion describe the spread of  the data around a 

central value. 

Look at these sets of  data.

A = {1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7} and B = {3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5}

Notice that they both have the same mode, median and mean, but 

they have other features that are different.

➔ The range is the difference between the largest value and the 

smallest value.

The range of  set A = 7 – 1 = 6 

The range of  set B = 5 – 3 = 2

The range is the easiest measure of  dispersion to calculate but it can 

be affected by extreme values. It doesn’t tell you how the data are 

distributed within the range. 

Quartiles

When the data is arranged in order of  size the median separates the 

data into two halves.
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Quartiles separate the data into quarters. 

● One-quarter, or 25%, of  the values are less than or equal to the 

lower quartile, Q
1
. 

● Three-quarters, or 75%, of  the values are less than or equal to the 

upper quartile, Q
3

➔ The interquartile range (IQR) is the difference between the 

upper and lower quartiles.

IQR = Q
3
 − Q

1

For set A = {1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7}

Q
1

Q
2

Q
3

lower 

quartile

median upper 

quartile

 IQR = Q
3
 − Q

1
 = 5 − 3 = 2

For set B = {3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5}

Q
1

Q
2

Q
3

lower 

quartile

median upper 

quartile

 IQR = Q
3
 − Q

1
 = 4 − 4 = 0

The interquartile range tells you the spread of  the middle 50% of  

the data and is useful because it is not affected by a small number of  

extreme values.

For grouped data you use cumulative frequencies to fi nd the 

interquartile range.

Example 

The table shows the frequency distribution from Example 4. 

a Find the cumulative frequencies and draw a cumulative frequency diagram. 

b Use the cumulative frequency diagram to estimate:

i the upper quartile ii the lower quartile

iii the interquartile range (IQR).

Answers

a
Salary 

(in thousands €)

Frequency Cumulative 

frequency

7.5 ≤ x < 10 3 3

10 ≤ x < 15 7 10

15 ≤ x < 25 3 13

25 ≤ x < 40 2 15

{ Continued on next page
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b

10

Salary

20 30 40

C
u
m

u
la

ti
ve

 f
re

q
u
e
n
cy

16

8

10

12

14

6

2

4

0

i Q
1
 = 10.5

ii Q
3
 = 17.5

iii IQR = 17.5 – 10.5 = 7

Total frequency = 15 

15 ÷ 4 = 3.75, so Q
1
 is at 3.75 and Q

3
 is at 

3 × 3.75 = 11.25

Draw a horizontal line through 3.75 to the 

cumulative frequency polygon to estimate Q
1

Draw a horizontal line through 11.25 to the 

cumulative frequency polygon to estimate Q
3

Exercise 6C

EXAM-STYLE QUESTION

1 The depths of  snow at a ski resort are measured on 31st January 

every year for 12 years. All data is in centimetres.

30, 75, 125, 55, 60, 75, 65, 65, 45, 120, 70, 110

Find the a range b median c lower quartile d upper quartile 

e interquartile range.

2 The cumulative frequency diagram shows the reach in cm 

of  100 boxers.

a Estimate the median reach of  a boxer.

b What is the interquartile range?

c What does the interquartile range tell you?

3 The table shows the length of  40 fl ash drives in a 

computer store.

 Show this data on a cumulative frequency diagram.

Length 

(mm) 
f

Upper class 

boundary 

Length 

(l mm) 

Cumulative 

frequency 

6 – 10 0 10.5 l ≤ 10.5 0

11 – 15 2 15.5 l ≤ 15.5 2 

16 – 20 4 20.5 l ≤ 20.5 6 

21 – 25 8 25.5 l ≤ 25.5 14 

26 – 30 14 30.5 l ≤ 30.5 28 

31 – 35 6 35.5 l ≤ 35.5 34 

36 – 40 4 40.5 l ≤ 40.5 38 

41 – 45 2 45.5 l ≤ 45.5 40 

y

x
8075 85

25

0

50

C
u
m

u
la

ti
ve

 f
re

q
u
e
n
cy

Reach (cm)

100

75

6560 70

Plot the points at the 

upper class boundary, 

usually the midpoint 

between classes.
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4 a The table shows the cumulative frequency distribution for the 

times taken by 100 students to eat lunch.

Time (min) Number of students

2 and under 0

4 and under 6

6 and under 18

8 and under 24

10 and under 40

12 and under 60

14 and under 78

16 and under 92

18 and under 100

Using a scale of  1 cm for 10 students on the vertical axis and 

1 cm for 2 minutes on the horizontal axis, plot and draw a 

cumulative frequency diagram.

Use your graph to estimate 

i the median  ii the interquartile range.

b The data in a can be represented in the form of  a table. Find 

the values of  p and q

Time 2 < t 8 8 < t  12 12 < t  16 16 < t  20

Frequency 24 36 p q

EXAM-STYLE QUESTION

5 An IB exam marked out of  120 is taken by 4200 students. 

 Here is a cumulative frequency graph of  the marks.

y

x0

2000

4000

10 20 30 40 50

Score

N
u
m

b
e
r 

o
f 
s
tr

u
d
e
n
ts

60 70 80 90 100

a Estimate the number of  students who scored 40 marks or 

fewer on the test.

b The middle 50% of  test results lie between marks a and b, 

where a < b. Estimate the values of  a and b

c If  80 marks is the minimum score to be awarded a grade 7, 

estimate the percentage of  students in the group who achieved 

this grade.
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EXAM-STYLE QUESTION

6 The graph shows the time that students listen to music during school.
y

x2015 25 30 35 40 450

50

100

200

150

5 10

Time (minutes)

C
u
m

u
la

ti
ve

 f
re

q
u
e
n
cy

 Estimate

a the median time that students listen to music

b the interquartile range

c  the time a student must spend listening to music to be in the 

top 10% of  listening times.

Variance and standard deviation

Variance and standard deviation are measures of  dispersion. 

The symbol for variance is 2

To fi nd the variance of  a set of  data:

● calculate the mean, 

● calculate the difference, x
i
 − , between each data value, x

i
, and 

the mean, 

● fi nd the sum of  the squares of  the differences

● divide this sum by n, the number of  data values

The formula for the variance is:

➔

2

2 1

1

( )

,  where 

k

i i k
i

i

i

f x

n
n f






 




You can use algebraic manipulations to deduce a simplifi ed form of  

this formula:

     

  

  

 
 

2 2 2

2 1 1

2
n n

i i i

i i

x x x

n n

     
  2

21 1 1

1

2

n n n

i i

i i i

x x

n n n

      
 2

21 2

n

i

i

x
n

n n

       
 2 2

2 2 21 12

n n

i i

i i

x x

n n

 is pronounced 

sigma.

Expand the square of 

the difference.

Use distributive 

properties.

Use the de nition of 

the mean and simplify 

the third sum.
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➔

2 2

2 21 1

( )
k k

i i i i

i i

f x f x

n n



   
 

Standard deviation, , is the square root of  the variance. 

➔

 
      

 
2 2

2 21 1

n n

i i

i i

x x

n n

Although you will usually calculate the variance on the GDC the 

next example shows you how to calculate the variance step by 

step using the formula.

Example 

The table shows the distribution of  broken eggs in 40 

boxes, each with 10 eggs.

Find the variance and standard deviation of  the number 

of  broken eggs per box.

Answer

x
i

f
i

x
i
× f

i
x

i
2 × f

i

0 22 0 0

1 12 12 12

2 4 8 16

3 2 6 18

n = ∑  f
i
 = 40

26

40 40
= = = 0.65

 i ix f 
2

ix f
i

46
=

40 40

= 1.15


2 = 1.15 – 0.652 = 0.7275   =  2 = 0.7275 = 0.853

The GDC uses 

n – 1 instead of n

in the formulae for 

estimating population 

variance and 

standard deviation 

from a sample. 

This correction was 

introduced by Friedrich 

Wilhelm Bessel 

(1784–1846), to 

correct bias in the 

estimations. On the 

GDC, in One Variable 

Statistics, the 

standard deviation is 

denoted by σ
x

x
i

f
i

0 22

1 12

2 4

3 2

The standard 

deviation shows how 

much variation there 

is from the mean 

and gives an idea 

of the shape of the 

distribution. 

● A low standard 

deviation shows 

that most of the 

data are close to 

the mean.

● A high standard 

deviation indicates 

that the data is 

spread out over 

a large range of 

values.

y

x

Low sd

High sd
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The next example shows you how to use your GDC to fi nd the 

variance and standard deviation of  a data set.

Example 

Find the variance and the 

standard deviation of the 

continuous data in the table.

X Frequency

     0 ≤ x < 100 8

100 ≤ x < 200 11

200 ≤ x < 400 24

400 ≤ x < 600 15

  600 ≤ x < 1000 14

Answer

x
mi

f
i

50 8

150 11

300 24

500 15

800 14

 = 245   
2 = 64 600

When data is grouped, use the 

midpoints of  the interval.

Now use the GDC where 

you have already stored the 

frequency distribution and use 

“One Variable Statistics”.

Notice that both answers are 

given correct to 3 signifi cant 

fi gures.

Exercise 6D

1 The mean value of  six numbers a, b, 2, 3, 5, 5 is 3 and the 

variance is 
7

3
. Find the values of  a and b given that a < b

2 a For the set of  data {a –1, a, a + 2, a + 3}, a ∈:

 fi nd the mean and the variance in terms of  a

b Each number in the set is now decreased by 3.

 Find the mean and the variance of  the new set in terms of  a

3 A small employment agency is processing applications. 

In the table are the numbers of  applications processed in June.

Number of applications Number of days

8 7

9 12

10 6

11 4

15 1

a Find the mean and standard deviation of  the number of  job 

applications

b Find the interquartile range of  the number of  job applications.
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EXAM-STYLE QUESTIONS

4 Two dice are rolled four times and the sums of  their scores are: 

2, 3, 6 and 9. Then the dice are rolled twice more. If  the new 

mean score sum was 6 and the standard deviation of  the score 

sum was 10 fi nd the values of  the two last score sums. Hence 

fi nd the range  and interquartile range of  the distribution of  the 

score sums.

5 The data set A = {4k – 2, k, k + 1, 2k + 4, 3k}, where k ∈

a Find the mean of  set A in terms of  k

b Hence, fi nd an expression for the variance of  set A in the form 

of  ak2 + bk + c where a, b, c ∈

 Each number in the set A is now decreased by 2.

c Find the mean of  this new data set in terms in k

d Explain the effect of  this change on the variance of  set A

6 The data set B = {a, 3a, 5a,...., (2n – 1)}a where a ∈+

a Show that the mean of  this data set is given by an

b Given that 

k 2
n

k

n n n

=

∑ =
+ +

1

1 2 1

6

( )( )
 for all n ∈ +

show that (2 1)2k
n

k

n n

=

∑ =
1

24 1

3

( )
 for all n ∈ +

c Write down the data set obtained when a = 1. Use the result 

obtained in c to fi nd an expression for the variance of  this 

data set in the form pn2 + qn

Investigation – variance and constants

What is the effect on the variance and standard deviation of a set of 

data when:

a a constant is added to all the values. 

b all the values are multiplied by a constant?

The investigation leads to the general rule:

➔ If  you add a constant value k to all the numbers in a set, the 

mean increases by k but the standard deviation remains the 

same

If  you multiply all the numbers in a set by a positive value k, 

both the mean and the standard deviation are multiplied by k

If  k is negative, the mean is multiplied by k, but the standard 

deviation is multiplied by −k.

k can be positive or 

negative, but not zero.

k can be greater or 

less than 1.
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. Theoretical probability

Investigation – a dice problem

During the mid-1600s, mathematicians Blaise Pascal, Pierre 

de Fermat and Antoine Gombaud puzzled over this simple 

gambling problem:

Which is more likely–rolling a ‘six’ on four throws of one dice, 

or rolling a ‘double six’ on 24 throws with two dice?

Which option do you think is the most likely? Why?

Probability gives a numerical value that represents the chance or 

likelihood of  a certain event occurring.

➔ An experiment is the process by which you obtain an 

observation.

A trial is an experiment that you conduct a number of times 

under the same conditions.

 An event is an outcome or outcomes from a trial.

A random experiment is one where there is uncertainty over 

which event may occur.

A random experiment can have a number of  different equally likely 

outcomes. 

One outcome or several outcomes form an event.

Some examples of  random experiments are:

● rolling a dice three times

● tossing a coin once 

● picking two cards from a pack of  52 playing cards

● recording the number of  cars that pass the school gate in a 

5-minute period.

Write P (A) to represent the probability of  an event A

occurring, where 0 ≤ P(A) ≤ 1.

A theoretical probability can be calculated from previous 

knowledge, for example, when a coin is thrown

P(head) = 
1

2

A set of  all possible outcomes is called the sample space, U. For 

example, when you roll a dice, the sample space can be 1, 2, 3, 4, 

5, 6. The notation n(U  ) = 6 shows that there are six members of  

the sample space. 

If  event A is ‘the number 6’ then n(A) = 1 and

P( )
( )

( )
A

A

U
= =

n

n

1

6

Even though the 

foundations of 

probability were 

laid down in the 

correspondence 

between Blaise 

Pascal (1623–62) 

and Pierre de 

Fermat (1601–65), 

the  rst published 

work on probability 

was made by 

Christiaan 

Huygens (1629–95). 

He was encouraged 

by Pascal to publish 

his work. Huygens 

was also known for 

his work in astronomy 

(discovering Titan, 

one of Saturn’s 

moons) and horology 

(inventing a pendulum 

clock). 

Probabilities are 

measured on a scale 

from 0–1.

P( ) =
number of outcomes that are 6

total number of outcomes
A
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Example 

Two unbiased dice are rolled. Event A is that the numbers on the upper 

face are equal and event B is that both numbers are odd.

Find these probabilities:

a P(A)

b P(B)

c P(A ∩ B)

d P(A ∪ B)

Answers

1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

a P A( ) ==
6

36

1

6

b P B( ) ==
9

36

1

4

c P A B∩ =( ) =
3

36

1

12

d P A B∪ =( ) + − =
+ −

= =
1

6

1

4

1

12

2 3 1

12

4

12

1

3

Draw a sample space 

diagam.

Notice that there are 36 

possible outcomes, 6 on 

the fi rst die and 6 on the 

second dice.

There are 6 favorable 

outcomes {(1, 1), 

(2, 2),... (6, 6)}.

There are 9 favorable 

outcomes {(1, 1), 

(1, 3),... (5, 5)}.

There are 3 favorable 

outcomes {(1, 1), 

(3, 3),(5, 5)} that saytisfy 

both conditions.

Apply the formula 

P(A ) =  P (A) + P(B) 

− P(A )

➔ The theoretical probability of  an event A is 

( )

( )
P( )

n A

n U
A

 where n(A) is the number of  outcomes that give event A

and n(U ) is the total number of  equally likely possible 

outcomes.

This formula was 

introduced by Pierre-

Simon Laplace

(1749–1827). Even 

though he was 

primarily a physicist 

who proved the 

stability of the solar 

system, Laplace 

also put the theory 

of probability on a 

sound footing in his 

second edition of 

Théorie Analytique des 

Probabilités published 

in 1814.

‘Probability a priori’ (before the experience) is another way of saying 

‘theoretical probability’.
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Example 

A fair coin is tossed three times.

a Find the sample space U.

b Hence write down the probability of  obtaining exactly one tail.

Answers

a U =   {HHH, HHT, HTH, HTT, 

THH, THT, TTH, TTT}

b P(tail once) = P(THH, HTH, 

HHT) = 
3

8

List all the outcomes

Number of favorable outcomes

Total number of outcomes

Exercise 6E

1 A fair octahedral (eight-sided) dice is thrown. The faces are 

numbered 1 to 8. What is the probability that the number thrown is:

a an even number

b a multiple of  3

c a multiple of  4

d not a multiple of  4

e less than 4?

2 A used car dealer has 150 used cars on his lot. The dealer knows 

that 30 of  the cars are defective. One of  the 150 cars is selected at 

random. What is the probability that it is defective?

3 A fair coin was tossed and a dice rolled. The table shows all 

possible outcomes of  this experiment 

Head

H (1, H) (2, H) (3, H) (4, H) (5, H) (6, H)

Tail

T (1, T) (2, T) (3, T) (4, T) (5, T) (6, T)

1 2 3 4 5 6

Rolling a die

Let A be the event a tail was obtained and B be the event the dice 

score was at least 3.

 Find

a P(A ) b P(B ) c P(A ∪ B )

d P(A ∩ B ) e P(A′ ∪ B ).

‘At random’ means 

that any car has an 

equal chance of being 

selected. One of the 

30 defective cars is 

as likely to be chosen 

as one of the cars 

that is not defective.
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4 In a certain road 
1

3
 of  the houses have no newspapers delivered.

If  
1

4
 have a national paper delivered and 

3

5
 have a local paper

delivered, what is the probability that a house chosen at random 

has both?

5 Two fair dice are rolled. Let A be the event the product of  the 

scores is even and B the event the sum of  the scores is odd.

Find

a P(A )

b P(B )

c P(A ∪ B )

d P(A ∩ B )

e P(A′ ∪ B ′ ).

Venn diagrams

To solve probability problems you need to use diagrams. Venn 

diagrams are useful in solving theoretical probability problems 

involving two or more events.

In a Venn diagram, the rectangle always represents the sample space 

U, which is the set of  all of  the possible outcomes of  an experiment. 

If  you use a circle to represent an event A, the part of  the rectangle 

outside the circle represents A ′, the complement of  this event, i.e., the 

set of  the elements of  the sample space that are not elements of  A

Example 

In a group of  50 students, 10 have blue eyes and blond hair and 12 

have neither blue eyes nor blond hair. If  the total number of  students 

with blond hair is 34, fi nd the total number of  students with blue eyes.

Answer

12
U

The number of  students with blue 

eyes = 50 – (24 + 12) = 14

Draw a Venn diagram.

Look back at the 

sample space diagram 

for two dice in 

Example 9.

John Venn was 

born in Hull, England 

in 1834. His father 

and grandfather 

were priests and 

John was also 

encouraged to follow 

in their footsteps. 

In 1853 he went to 

Gonville and Caius 

College, Cambridge 

and graduated in 

1857, becoming a 

fellow of the college. 

For the next  ve 

years he went into 

the priesthood and 

returned to Cambridge 

in 1862 to teach logic 

and probability theory. 

John Venn developed 

a graphical way to 

look at sets. This 

graph became known 

as a Venn diagram.
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Example 

At New Blue Bay International School, 15% of  the diploma students 

take Mathematics HL, 20% of  these students also take Physics HL and 

21% take Physics HL but not Mathematics HL.

If  you select a diploma student from this school, what is the 

probability that the student takes

a both Mathematics HL and Physics HL

b neither Mathematics HL nor Physics HL.

Answers

a P(M ∩ P ) = 0.2 × 0.15 = 0.03

64%
U

b P(M ′ ∩ P ′ ) 

= 1 – (0.12 – 0.03 – 0.21) 

= 0.64

Find 20% of  15%.

Use a Venn diagram to display all the 

information.

A

A'

U

Clearly, P(A ′) = 1 – P(A)

Suppose that you are asked to pick a card from a pack of  52. 

Let A be the event ‘red card is obtained’ and B the event ‘club 

card is obtained’. A and B are examples of  mutually exclusive 

events as a club is a black card and therefore you cannot pick a 

red card and a club at the same time.

Two events, A and B, are mutually exclusive if  whenever A occurs it 

is impossible for B to occur and, similarly, whenever B occurs it is 

impossible for A to occur.

For example, in 

tossing a coin, the 

events ‘a head’ and

‘a tail’ are also 

mutually exclusive.
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Events A and A′ are the most obvious example of  mutually exclusive 

events – either one or the other must occur, but A and A′ cannot occur 

at the same time.

Here is the Venn diagram for mutually exclusive events A and B

The two sets do not overlap, A ∩ B = ∅.

➔ Events A and B are mutually exclusive if  and only if  P(A ∩ B) = 0

Exercise 6F

1 In a class of  25 students, 15 study French, 13 study Malay and 

5 study neither language.

One of  these students is chosen at random. What is the 

probability that student studies both French and Malay?

2 Of the 32 students in a class, 18 play golf, 16 play the piano and 

7 play both. How many play neither? One person is chosen at 

random. Find the probability that:

a the student plays golf  but not the piano,

b the student plays the piano but not golf.

3 In a town, 40% of  the population read newspaper ‘

A’, 30% read newspaper ‘B’, 10% read newspaper 

‘C’. It is found that 5% read both ‘A’ and ‘B’, 4% 

read both ‘A’ and ‘C’ and 3% read both ‘B’ and ‘C’. 

Also, 2% of  the people read all three newspapers. 

Find the probability that a person chosen at 

random from the town

a reads only ‘A’  b reads only ‘B’ 

c reads none of  the three newspapers.

4 If  X and Y are two events such that P(X  ) = 
1

4
 and 

P(Y  ) = 
1

8
 and P(X ∩ Y  ) = 

1

8
, fi nd 

a P(X ∪ Y  ) b P(X ∪ Y  )′

5 If  P(A) = 0.2 and P(B ) = 0.5 and P(A ∩ B ) = 0.1, fi nd 

a P(A ∪ B ) b P(A ∪ B )′ c P(A′ ∪ B ).

Counting techniques and probability

In Chapter 1 you looked at systematic ways of  counting and learnt about 

the number of  permutations and combinations of  r objects selected from a 

group of  n. Now you are going to use these techniques to solve probability 

problems involving large numbers of  possible events.

A B
U

For this question you will need to use 

three circles in the Venn dia gram – one 

to represent each newspaper.

U

C

Recall that 

(A ∪ B)′ = A′ ∩ B′

Use a Venn diagram to solve these 

problems. Write the probability of 

each set in the diagram instead of the 

number of elements.
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The next example is typical of  a probability problem where you 

need to count the number of  possible subsets of  a given set meeting 

specifi c requirements.

Example 

There are 14 girls and 11 boys in a class. Two students are selected to 

represent the class in the school assembly.

a In how many different ways can the two students be selected?

b Find the probability that the selected students are:

i both girls ii both boys iii of  different genders.

Answers

a
25

2
300

25 24

1 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

×
×

= =

b i P Bi( )

⎛

⎝
⎜

⎞

⎠
⎟ ×

×= = =

14

2

300

14 13

1 2

300

91

300

ii P Bii( )

⎛

⎝
⎜

⎞

⎠
⎟ ×

×= = =

11

2

300

11 10

1 2

300

55

300

iii P Biii( ) ×= =14 11

300

154

300

There are 14 + 11 = 25 students in 

the class out of  which we choose 2.

There are 14 girls and we choose 

2 over the number of  all possible 

outcomes.

There are 11 boys and we choose 

2 over the number of  all possible 

outcomes.

Choose 1 girl and 1 boy out of  14 

girls and 11 boys over the number of  

all possible outcomes.

Exercise 6G

1 Four students from a group of  ten are selected randomly to form 

a team. What is the probability that both the students Sophie and 

Jerome are in the chosen team?

2 There are 5 lemons and 3 limes in a fruit bowl. Two pieces of  

fruit are selected at random. Find the probability that the selected 

fruit are:

a two limes b two different pieces of  fruit.

3 There are 7 red and 5 yellow fi sh in an aquarium. Three fi sh 

are randomly caught in a net. Find the probability that the fi sh 

caught were:

a all red b not all of  the same color.

4 There are 4 green, 5 orange and 6 purple marbles in a jar. Three 

marbles are randomly drawn from the jar. Find the probability 

that the marbles selected are:

a all orange b all of  a different color

c at least one green.
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5 Two archers Bill and Bob shoot a target in turns. The game 

fi nishes when one of  them scores the centre. Bill is a better archer 

and he starts fi rst. The probability that Bill scores centre is 0.3, 

while the probability that Bob scores centre is 0.25 

a Find the probability that:

 i Bob scores on his fi rst shoot

 ii Bill scores on his third shoot

 iii Bob scores on his nth shoot.

b If  p is the probability that Bill wins the game, show that 

p = 0.3 + 0.525 p

c Hence or otherwise fi nd the probability that Bob wins the game.

. Probability properties

In this section you learn some useful probability 

properties and use Venn diagrams to illustrate them.

➔ Two events A and B  U have these properties:

i 0 ≤ P (A) ≤ 1

ii P (U ) = 1

iii P (A B ) = P (A) + P (B ), A 

iv P () = 0

v P (A′ ) = 1 PA

vi If  A B then P (B\A) = P (B) P (A)

An event that has a probability of  0 is an impossible event, while 

an event that has a probability of  1 is a certain event

Example 

Use the fi rst three properties of  the probability function to show these 

properties:

a P (Ø) = 0 b P (A′ ) = 1 − P (A).

Answers

a P (A) = P (A ∪ Ø)

⇒ P (A) = P (A) + P (Ø)

⇒ 0 = P (Ø)

b P ( U ) = P (A ∪ A′)

⇒ 1 = P (A) + P (A′)

⇒ 1 − P (A) = P (A′)

A set can be written as the union of  the 

empty set and itself.

A set is disjoint with the empty set so 

apply property iii

Subtract P(A) from both sides.

Universal set can be written as the 

union of  a set and its complement.

A set is disjoint with its complement 

so apply properties ii and iii

Subtract P(A) from both sides.

In probability theory, the  rst three 

properties (with a slight modi cation 

of property iii) are called probability 

axioms. All the other properties can 

be proved by using the  rst three.

B\A means the set 

B – A which contains 

all the elements of B

that are not in B ∩ A

A ⊆ B means A is a 

subset of B.

Andrey Nikolaevich 

Kolmogorov

(1903–87) published 

his work in 1933 

in which he built up 

probability theory in 

a rigorous way using 

fundamental axioms, 

comparable to 

Euclid’s treatment of 

geometry. 

There are just three 

probability axioms. 

Research other 

axiomatic theories 

and discuss their 

characteristics. What 

characteristics do they 

have in common?
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This property is very useful: P (A ∪ B) = P (A) + P (B ) − P (A ∩ B )

Proof

If  A ∩ B = Ø then apply property iv to obtain the exact property iii

P (A ∪ B)  = P(A) + P (B ) – P(A ∩ B) = P(A) + P(B ) – P(Ø) 

= P(A) + P (B )

Now examine the case when A B ≠ Ø.

To visualize the events use a Venn diagram.

U

Rewrite the union: A ∪ B = A ∪ (B\(A B))

Notice that the two sets are disjoint, therefore you can apply the 

probability properties.

P (A B ) = P (A B \ (A B ))) Apply property iii

 = P (A) + P B \ (A B ))

 = P (A) + P B ) P(A B)

Disjoint sets have no 

member in common.

A ∩ B is a complete subset of  

B, so we can apply property iv

Paul Erdős (1913–96) was a Hungarian mathematician, who published 

more papers than any other mathematician in history. He wrote a total of 

1525 mathematical articles during his lifetime, working with 511 different 

collaborators. After having been awarded a doctorate in mathematics at 

the age of just 21, Erdos worked on problems from a wide range of  elds, 

including combinatorics, number theory, and classical analysis.  

Paul Erdős is known for his ‘legendarily eccentric’ personality. 

Possessions meant very little to him – awards and other earnings were 

generally donated to people in need and other worthy causes. Most of his 

life was spent traveling between scienti c conferences and the homes of 

colleagues all over the world. He would typically show up on a colleague’s 

doorstep and announce “my brain is open”, staying long enough to 

collaborate on a few papers, before moving on to his next challenge 

a few days later.
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Exercise 6H

EXAM-STYLE QUESTIONS

1  The events A and B are such that P (A) = 0.4, P (B ) = 0.6 and 

P (A B. Find these probabilities:

a P(A B ) b P (A B ′ ) c P (A ′ B ′ )

2 Of the students in a class, 80% are taller than 160 cm and 75% 

are not taller than 180 cm. If  a student is randomly selected from 

the class, fi nd the probability that his height is a value between 

160 cm and 180 cm.

3 If  P (A) = 0.6, P (B ) = 0.55 and P (A B) = 0.2 fi nd

a P(A B )

b P(A′ B )

c P((A B )\ (A B ))

4 If  P (A B ′ ) = 0.5, P (A B) = 0.2 and P (A B ) = 0.85 fi nd

a P (A)

b P (B)

c P(A ′ B )

5 Show that for any two events A and B that are not impossible

P (A B ) × P (A B ) ≤ P (A) × P (B)

6 Prove this formula for three events A, B and C

P(A B  C ) 

=  P (A ) + P (B ) + P (C ) – P (A B ) – P (A C ) – P (B C ) + P (A B  C )

7  Use the properties of  the probability function to show the last 

property:      P( \ ) ( ) ( )A B B A P B P A

. Experimental probability 

You can also fi nd a probability by doing an experiment.

For example, each member of  a class of  20 students tossed a coin 

10 times. 

There are only two possible outcomes of  the experiment, head or tail.

The sample space U = {number of  heads} = {0, 1, 2, …, 8, 9, 10}

The numbers of  heads the students obtained were:

4, 5, 5, 3, 4, 4, 6, 8, 7, 3, 5, 4, 7, 8, 3, 4, 5, 4, 6, 7

Construct a frequency table. 

Number of heads 3 4 5 6 7 8

Frequency 3 6 4 2 3 2

The range is 8 − 3 = 5 which is quite large, but half  of  the results are 

either 4 or 5 heads.
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When you are estimating a probability by experiment you need to 

perform the experiment a large number of  times to get a reliable 

answer. 

For example, to fi nd the probability of  getting a head the result 

will be more reliable if  you toss the coin 100 times rather than 

10 times. This can be time consuming so you can use your GDC to 

simulate the results.

The relative frequency of  the number of  heads is the proportion of  

heads in the total number of  throws.

➔ Relative frequency = 
Frequency of occurrenceof event

Number of trials

A

To simulate 20 students each tossing a coin 100 times use the 

random integer feature on the GDC with 1 to represent ‘head’ and 

0 to represent ‘tail’. Then add all the 1’s in the list to fi nd the 

number of  heads.

Here is a typical result.

The number of  heads obtained was:

50, 41, 50, 50, 51, 52, 51, 45, 51, 43, 

50, 48, 44, 53, 65, 50, 45, 54, 49, 44

Notice that the relative frequency (number of  heads ÷ number 

of  trials) ranges from 0.41 to 0.65, which is smaller than the range 

obtained (0.3 to 0.8) when the coin was tossed only 10 times. 

The mean relative frequency = 
total number of heads

total number of trials
=

986

2000
= 0.493

Next use the GDC to simulate 20 students each tossing a coin 1000 

times. Suppose the results are:

x
i

50 41 50 50 51 52 51 45 51 43 50 48 44 53 65 50 45 54 49 44

r
i

0.5 0.41 0.5 0.5 0.51 0.52 0.51 0.45 0.51 0.43 0.5 0.48 0.44 0.53 0.65 0.5 0.45 0.54 0.49 0.44
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The results can be analyzed on the GDC.

Notice that the range of  relative frequencies is now even narrower, 

from 0.471 to 0.517, and the mean relative frequency is 0.4999. 

It seems that the more times you repeat the experiment the more the 

relative frequencies tend towards 0.5. This result is an experimental 

probability

➔ You can use relative frequency as an estimate of  probability.

The larger the number of  trials, the closer the relative frequency 

is to the probability.

The next example shows a useful application of  experimental 

probability – deciding whether or not a dice is fair.

Example 

Use an Excel spreadsheet to simulate an experiment in which 100 

people roll an unbiased six-sided dice 1000 times each.

a For each person, fi nd the relative frequency of  obtaining a score of  

6 on the upper face.

b Find the total number of  times the score 6 was obtained by the whole 

group of  100 people, i.e. the average of  all the relative frequencies.

c Comment on your answer in b and compare it with the theoretical 

value for the probability of getting a score of 6 when rolling a fair dice.

Answers

In the fi rst cell A1 put Rand 

Between(1, 6). Copy the cell in 

column A to obtain 1000 rolls.

At the end of  the column in 

cell A1001 use function 

Count If(A1:A1000;6)

In the cell A1002 calculate relative 

frequency of  “6” occurring in 

1000 rolls.

Extend the number of  columns to 

fi nd results for 100 people.

a The relative frequencies range 

from 0.137 to 0.195.

This gives a random integer number 

between 1 and 6 (outcome of  one 

roll).

This counts the number of  sixes in 

the column.

Relative frequencies are in the yellow 

cells.

Is mathematics 

an experimental 

science? Is probability 

mathematics? How 

can we deal with 

two de nitions of 

probability, experimental 

and theoretical? Are 

they consistent?

‘Probability a posteriori’ 

(after the experience) 

is another way of 

saying ‘experimental 

probability’.

The US National 

Weather Service 

used this method to 

 nd the probability 

of being struck by 

lightning, using 

No of people struck

No of people in population

{ Continued on next page
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b Average relative frequency = 0.16688

c This is the experimental probability of getting a ‘6’ when 100 people 

do 1000 rolls each.

P( 
1

6
 ) = 0.166667 (3 sf) so the result is close to the theoretical 

probability.

Exercise 6I

1 The table shows the relative frequencies 

of  the ages of  the students at a high 

school.

 a  A student is randomly selected. 

Find the probability that the 

student is:

i 15 years old

ii 16 years of  age or older.

There are 1200 students at this school.

b Calculate the number of  15-year-old 

students.

2 The sides of  a 6-sided spinner are numbered from 1 to 6. 

The table shows the results for 100 spins.

Number on spinner 1 2 3 4 5 6

Frequency 27 18 17 15 16 7

a What is the relative frequency of  getting a 1?

b Do you think the spinner is fair? Give a reason for your 

answer.

c  The spinner is spun 3000 times. Estimate the number of  

times the result will be a 4.

Age

(in years)

Relative

frequency

13 0.15

14 0.31

15 0.21

16 0.19

17 0.14

Total 1
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3 Two dice are thrown 500 times. For each throw, the sum of  the 

two numbers shown on the dice is written down.

The table shows the result.

Sum 2 3 4 5 6 7 8 9 10 11 12

Frequencies 6 8 21 34 65 80 63 77 68 36 42

Using these frequencies, calculate the probability of:

a the sum being exactly divisible by 5

b the sum being an even number

c the sum being exactly divisible by 5 or being an even number.

4 A 10-sided dice, with faces 1 to 10, is rolled. Calculate the 

probability that the number scored is:

a a prime number

b either a prime number or a multiple of  4

c either a multiple of  4 or a multiple of  3.

. Conditional probability

The Monty Hall dilemma

This is a famous probability puzzle based on the 

American television game show ‘Let’s Make a Deal’. 

The name comes from the show’s original host, Monty Hall.

Contestants on the game 

show are given the choice of 

three doors. 

Behind one door is the main prize 

(a car) and behind the other two doors 

there are unwanted prizes. The car 

and the unwanted prizes are placed randomly 

behind the doors before the show.

The rules of the game are: After they have chosen a door, the door remains closed for the 

time being. Monty Hall, who knows what is behind the doors, then opens one of the two 

remaining doors and always reveals an unwanted prize. After he has opened one of the 

doors, Monty Hall asks the participants whether they want to stay with their  rst choice 

or to switch to the last remaining door. 

What should they do? 

a Stick with their  rst choice.

b Switch to the other remaining closed door

c It does not matter. Chances are even.

We will revisit this 

problem later in the 

chapter.

1 2 3
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Here is a Venn diagram showing students who do archery and 

badminton.

48

U

If  you know that a particular student does badminton how does this 

affect the probability that the student also does archery?

Altogether 30 students do badminton; of  these 16 also do archery.

You write the probability that a student does archery, given that they 

do badminton, as P A B|( )

Note that 

P A B|( ) = 
( )

( )

n A B

n B
 = 

16

30
 = 

8

15

This is known as conditional probability

It also follows that P A B|( ) = 
P( )

P( )

A B

B
 = 

16

100
30

100

= 
16

30
 = 

8

15

➔ For two events A and B the probability of  A occurring 

given that B has occurred can be found using 

P A B|( ) = 
P( )

P( )

A B

B

Rearranging the formula gives P(A ∩ B) = P A B|( ) × P(B)

 This is known as the multiplicative probability law

When solving probability problem, a tree diagram can help organize 

your working. We will see more of  these later on.

Example 

Shuyi rolls a fair dice. Let A be the event 

‘obtain a score of  at least 4’ and B the 

event ‘obtain an even score’.

a Write down P(A) and P(B).

b Draw the tree diagram.

 Use it to show that 

P   = P PA B A B B∩( ) ( ) ( )×

B

(2, 4, 6)

not B

(1, 3, 5)

dice

rolled

1

2
not A

(2)

A

(4 or 6)

2

3

{ Continued on next page
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Answers

a P = = =
4, 5, 6

1, 2, 3, 4, 5, 6

3

6

1

2
A

n

n
( )

{ }( )
{ }( )

and P =
2, 4,6

1,2,3, 4,5,6
= =

3

6

1

2
B

n

n
( )

{ }( )

{ }( )

=
n (A)

P(A)
n (U)

=
n(A)

P(B)
n(U)

b P  = =
2

6

1

3
A B∩ ( )

P =
1

2
B( )  and P =

2

3
A B( )

So P(A|B ) × P(B ) =
2

3

1

2

1

3
× = = P(A ∩ B)

For P(A ∩ B) move 

along the top branch 

Here the sample space 

is reduced to B

The next example shows how to use a Venn diagram to organize the 

information and fi nd the missing values needed to calculate the 

probabilities.

Example 

Of the 53 staff  at a school, 36 drink tea, 18 drink coffee, and 

10 drink neither tea nor coffee. 

a How many staff  drink both tea and coffee? 

One member of  staff  is chosen at random. Find the probability that:

b this teacher drinks tea but not coffee

c the teacher is a tea drinker who also drinks coffee

d the teacher is a tea drinker who does not drink coffee.

Answers

a

10

36 – 18 – x

U 

Let n (T ∩ C ) = x

so

36 – x + x + 18 – x + 10 = 53

64 – x = 53

x = 11

11 staff  drink both tea and 

coffee.

Therefore P(T ∩ C ) = 
11

53

n( T ∩ C ) This is the number who 

drink both tea and coffee.

53 is the total number of  staff  on the 

Venn diagram.

Solve for x.

Since x = 11 and total = 53.

{ Continued on next page
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b P(T ∩ C ′) = 
25

53

Probability that staff  member 

drinks tea but not coffee is 
25

53

36 – 11 = 25

c P(C|T ) = 
P(C T)

P(T)

∩
 = 

11

53

36

53

= 
11

53

53

56

11

36
=×

Probability that staff  

member is a tea drinker who 

drinks coffee is 
11

36

d P(C ′|T )  = 
P(C T)

P(T)

′ ∩
 = 

25

53

36

53

= 
25

53

53

36

25

36
=×

P (C ′ ∩ T ) = P (T ∩ C ′)

Exercise 6J

EXAM-STYLE QUESTIONS

1 There are 27 students in a class. 15 take art and 20 take drama. 

Four do neither subject. How many students do both subjects? 

One person is chosen at random. Find the probability that

a he or she takes drama but not art

b he or she takes at least one of  the two subjects

c he or she takes drama, given that he takes art.

2 For events A and B it is known that: P(A′ ∩ B ′) = 0.35, 

P(A) = 0.25 and P(B) = 0.6 Find 

a P(A ∩ B) b P(A|B) c P(B ′|A′)

3 48% of  all teenagers own a skateboard and 39% of  all teenagers 

own a skateboard and roller blades. What is the probability that 

a teenager owns roller blades given that the teenager owns a 

skateboard?

4 A number is chosen at random from this list of  eight numbers: 

 1  2  4  7  11  16  22  29

 Find:

a P (it is even | it is not a multiple of  4)

b P (it is less than 15 | it is greater than 5)

c P (it is less than 5 | it is less than 15)

d P (it lies between 10 and 20 | it lies between 5 and 25)
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5 In my town 95% of  all households have a desktop computer. 

61% of  all households have a desktop computer and a laptop 

computer. What is the probability that a household has a laptop 

computer given that it has a desktop computer?

6 The probability that a student takes technology and Spanish 

is 0.1. The probability that a student takes technology is 0.6. 

What is the probability that a student takes Spanish given that 

the student is taking technology?

7 U and V are mutually exclusive events. P (U  ) = 0.26 and 

P (V  ) = 0.37. Find:

a P(U and V  ) 

b P(U |V  ) 

c P(U or V  )

8 A teacher gave her class an IB Paper 1 and an IB Paper 2. 

35% of  the class passed both tests and 52% of  the class passed 

the fi rst test. What percent of  those who passed the fi rst test 

also passed the second test? 

9 A jar contains black and white marbles. Two marbles are chosen 

without replacement. The probability of selecting a black marble 

and then a white marble is 0.34, and the probability of selecting a 

black marble on the fi rst draw is 0.47. What is the probability of  

selecting a white marble on the second draw, given that the fi rst 

marble drawn was black?

EXAM-STYLE QUESTION

10  The table shows the number of  left- and right-handed table-

tennis players in a sample of  50 males and females. 

Left-handed Right-handed Total

Male 5 32 37

Female 2 11 13

Total 7 43 50

A table-tennis player was selected at random from the group. 

Find the probability that the player is:

a male and left-handed 

b right-handed

c right-handed, given that the player selected is female.

11  Your neighbour has two children. You learn that he has a 

son, Sam. What is the probability that Sam’s sibling is a 

brother? 

This is not as obvious 

as it might seem!
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The Monty Hall problem revisited!

Take a typical situation in the game. Suppose the 

contestant has chosen Door 3 and Monty Hall reveals 

that there is an unwanted prize behind Door 2. 

What is the conditional probability that the car is 

behind Door 1?

Let A stand for the condition that there is a car 

behind Door 1 and the contestant has chosen Door 3. 

Let B stand for the condition that

Monty Hall has revealed that there is an unwanted prize behind 

Door 2 given that the contestant has chosen Door 3.

The probability of A and B (P(A ∩ B)) is just 
1

3

1

3

1

9
× =  because if 

the car is behind Door 1 and the contestant has chosen Door 3 

Monty Hall has to show what is behind Door 2. 

The problem is the computation of the probability of being shown 

an unwanted prize behind Door 2 given that the choice was Door 3. 

This situation can arise in two ways: 

1 when the car is behind Door 1 

2 when the car is behind Door 3. 

The  rst way has a probability of 
1

9
, as shown above. 

In the second way, the host could reveal either what is behind 

Door 1 or Door 2. If he is equally likely to choose either of these 

doors then the probability of showing what is behind Door 2 is 
1

2

1

9
=

1

18
× . 

Therefore the probability of there being revealed an unwanted prize 

behind Door 2 when the contestant has chosen Door 3 is 
1

9
+
1

2

1

9
=

3

18
×

This is P(B), the probability of B

We want the conditional probability, P A B|( ). This is given by 

P A B|( ) = 

P

P

( )

( )

A B

B

∩
 = 

1

9
3

18

 = 

2

3

This means that the conditional probability that the car is behind 

Door 3 given that the contestant has chosen Door 3 and has 

been shown that there is an unwanted prize behind Door 2 is only 
1

3
. 

Therefore it is worthwhile to switch! 

1 2 3

Analysis of 

the Monty Hall 

problem using 

conditional 

probability.
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. Independent events

When two events are not infl uenced by each other, they are called 

independent events

Consider this example: 

Luka is playing darts and Hannah is swimming in a pool.

Events A and B are:

A: ‘Luka scores a bullseye’

B: ‘Hannah swims 50 metres in under 30 seconds’

The corresponding probabilities are:

P(A ) = 0.45, P(B ) = 0.72

The occurrence of  one of  the events will not infl uence the 

 occurrence of  the other. So,

P (A  B ) = 0.45 will remain the same as P (A), 

while P (B  A ),= 0.72 will remain the same as P (B).

It follows that

➔     

     

      

P( P( ) P( ) P( )

P( P( ) P( ) P( )

P( P( ) P( ) P( )

A B A A B A

A B A A B A

A B A A B A

These three formulae mean that the probability that A or its 

complement A′ occurs is independent of  B or its complement B′

occuring.

Using the multiplicative probability law, you can obtain another 

very important probability formula that is only valid for 

independent events:

➔ For independent events A and B

                 P P P P P PA B B A B A B A B

This formulae can be generalized for three more three or more 

events for example, if  A, B and C are independent events

P (A ∩ B ∩ C ) 

= P (A) × P (B ) × P (C ) 

if A, B, C are 

independent.
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Example 

For these events:

A:‘Luka scores a bullseye’

B:‘Hannah swims 50 metres in under 30 seconds’

Assign the corresponding probabilities.

a Find the probability that Luka scores a bullseye and Hannah is 

going to swim 50 metres in under 30 seconds.

b Find the probability that exactly one of  the events happens.

Answers

a P (A B )  = 0.45 × 0.72 

= 0.324

b P ((A B ′ A′  B 

 =  0.45 × (1–0.72) + (1–0.45) 

× 0.72

 = 0.522

Apply the formula P (A B ) 

= P(A) × P(B )

Apply the multiplicative probability 

law for independent events and 

probability function property  iii

The next example shows you how to combine the properties studied 

so far to fi nd probabilities. 

Example 

Independent events A and B are such that P (B ) = 0.4 and 

P (A B ) = 0.75. Find these probabilities:

a P (A)

b P (A B ′ )

Answers

a              P P P P PA B A B A B

      0.75 P 0.4 P 0.4A A

  0.35 0.6 P A

  P 0.583A

b        P ' P P 'A B A B

       P ' 0.583 1 0.4 0.233A B

Apply the additional 

and multiplicative 

probability laws for 

independent events.

Given that A and B are 

independent events 

then A and B ′are 

independent too.

The next example is about an event that takes place n times with 

each outcome independent of  the previous ones. 

Luka scores and 

Hannah doesn’t swim  

her distance in under 

30 seconds or Luka 

doesn’t score and 

Hannah  nishes in 

under 30 seconds.
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Example 

Maika goes on a photo safari. The probability that Maika takes a photo 

of  a cheetah on any day is 0.3. Find how many days the safari must last 

so that the probability that Maika takes at least one photo of  a cheetah 

will exceed 95%.

Answer

If  the safari is for n days

1 0.7 0.95n 

0.05 0.7n

Use the complementary event, ‘Maika did 

not take a photo of  cheetah in n days’.

   log 0.7 log 0.05n 

 

 

log 0.05
8.40

log 0.7
n  

The safari should last at least 9 

days.

Take logarithms on both sides. Both 

logs are negative.

The inequality can be solved 

immediately by a GDC.

Exercise 6K

1 If  P P PA B C( ) ( ) ( )= = =0 4 0 6 0 3. . , ., , 

P P PA B B C A C∩ = ∩ = ∪ =( ) ( ) ( )0 24 0 15 0 82. , . . , and 

which of  the events A, B and C are independent? 

Give reasons for your answers.

2 A card is drawn from a standard deck of  52 cards. 

Of  these events:

 ● A ‘the card is a Queen’,

● B ‘the color of  the card is red’

● C ‘the card is a face card’

 which are independent? Explain your answer.

3 Given that A and B are independent events, show that:

a A and B ′ are independent

b A′ and B are independent

c A′ and B ′ are independent.

4 Given that P P PA A B B A( ) ( ) ( )= ∪ = =
1

3

5

6

3

4
,  and , fi nd P (B).

Are the events A and B independent?

5 Independent events A and B are such that P (A) = 0.45 and 

P (A B . Find these probabilities:

a P(B ) b P (A B  c P (A′ B ′ 

6 Independent events A and B are such that 

        
5

8
P , P 2 and PA a B a A B . 

Find P (A) and P (B).
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7 In a game the players fl ip a coin and roll a dice. Draw a tree diagram 

to represent the game, and fi nd the probabilities of these events:

a ‘a tail on the coin and a 6 on the dice’

b ‘a head on the coin and an even number on the dice’

c ‘no tail on the coin and a multiple of  3 on the dice.’

8 A combination lock on a suitcase consists of  four digits. Notice 

that the leading digits can be zeros. Norbu is setting up the

combination. What is the probability that his combination will

be divisible by:

a 2 b 5 c 4?

9 A set contains a large number of  integers. How many integers 

must you select so that the probability of  selecting at least one

odd integer is at least 0.92?

10 Julia plays tennis. She can score a point from the base line with

a probability 0.55. How many times does she need to hit the ball

so that the probability of  Julia scoring a point exceeds 0.999?

. Probability tree diagrams

“Solving problems is a practical art, like swimming, or skiing, or playing the 

piano . . . if  you wish to learn swimming you have to go in the water, and if  

you wish to become a problem solver you have to solve problems.” – George 

Polya, Mathematical Discovery (1981). 

George Polya (1887–1985) was born and educated in 

Hungary. He obtained a PhD in mathematics from 

Budapest and taught in Switzerland and at Brown, Smith 

and Stanford Universities in the United States. He was 

granted numerous honors and awards in mathematics, 

and taught and lectured in virtually every country of the 

world. He was encouraged the use of problem solving 

techniques in learning mathematics and is best known 

for his outstanding book, the classic How to Solve 

It (1945).

Tree diagrams are useful tools for tackling probability problems 

involving two or more events. The next set of  examples will show 

you how to use them.

Example 21 is a problem ‘with replacement’, i.e. the conditions 

for the second event are exactly the same as they were for the fi rst 

event.

B

P(B)

P(A|B)

P(B)

P(A'|B)

B

A ∩B

A∩B

A ∩B

A∩B
P(A|B')

P(A'|B')

Research Polya’s 

steps to problem 

solving, which he 

outlines in How To 

Solve It
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Example 

The probability that Samuel, a keen member of  the school Archery 

Club, hits the bullseye is 0.8. Samuel takes two shots. Assume that 

success with each shot is independent from the previous shot.

Represent this information on a tree diagram.

Find the probability that Samuel 

a hits two bullseyes 

b hits only one bullseye

c hits at least one bullseye.

Answers

HIT

MISS

0.8

0.2

HIT

MISS

0.8

0.2

HIT

MISS

0.8

0.2

HIT

MISS

0.8

0.2

a Probability of  2 bullseyes 

= P(H and H ).

So P(H and H )  = 0.8 × 0.8 

= 0.64 

The fi rst section of  the tree diagram 

represents Samuel's fi rst shot. He will 

either hit the bullseye or miss it. The 

probability that he misses is 

1 – 0.8 = 0.2

The second shot will also either hit or 

miss the bullseye.

There are therefore four possible 

outcomes of  this ‘experiment’: 

● a hit followed by a hit (H and H) 

● a hit followed by a miss (H and M) 

● a miss followed by a hit (M and H)

● a miss followed by a miss (M and M).

Since a hit with the fi rst shot is 

independent of  getting a hit with the 

second shot, multiply the probabilities 

together (the product rule).  

b P(H and M ) + P(M and H ) 

= (0.8 × 0.2) + (0.2 × 0.8) 

= 0.32

c = 1 – (0.2 × 0.2) 

 = 1 – 0.04

 = 0.96

Just one bullseye could be either a hit 

on the fi rst or a hit on the second and 

missing the other one.

These two events, (H and M) and (M 

and H) are mutually exclusive: they 

can’t both happen at the same time. 

Multiply along each branch (as again 

events are independent) and then 

add (as the 2 outcomes are mutually 

exclusive).

P(at least one bullseye) 

= 1 – P(miss the bullseye both times)

= 1 – P(M and M)

Write the probabilities 

of the given events 

on the branches of the 

tree and then multiply 

the probabilities 

along the branches to 

obtain the probability 

of the event at the 

end of the branches.
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In the next example the events are not independent.

Example 

There are 3 white and 7 black balls in a box. One ball is taken from the 

box, its color noted and then it is left outside the box. Another ball is 

taken from the box and its color noted.

a Draw the probability tree diagram that represents this information.

b Find these probabilities:

i both balls are white

ii both balls are black.

Answers

a

White

Black

3

10

7

10

Black

White

Black
6

9

White

First ball Second ball

2

9

7

9

3

9

b i P WW( ) × ==
3

10

2

9

1

15

ii P BB( ) × ==
7

10

6

9

7

15

 or i P WW( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

==

3

2

10

2

1

15

ii P BB( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

==

7

2

10

2

7

15

Use conditional probability:

P( W ∩ W ) = P( W|W ) × P( W )

Notice that to fi nd these probabilities 

you can also use combinations, e.g. 

 
 
 


 
 
 

( )

3

2

10

2

P WW

The multiplicative probability law can be extended to three or even 

more events.

P (A B C ) = P (A) P (B A) P (C (A B )).

Event A occurs fi rst, then event B given that A has already occurred, 

and fi nally event C given that both A and B have occurred.

The next example shows this formula in action.
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Example 

A shelf  has 12 toys on it. There are 7 cars and 5 trucks. A child can take 

3 toys from the shelf.

a Draw a tree diagram to represent this information.

b Find the probability that:

i all the toys are cars

ii the child picks at least one car.

Answers

a

6

11

5

11

Car

Car

Truck

Truck

Car

Truck

7

11

4

11

5

12

5

10

5

10

Car

Truck

Car

Truck

Car

Truck

Car

Truck

5

10

5

10

7

12

b i P CCC( ) × × == 7

12

6

11

5

10

7

44

ii 1 1
5

12

4

11

3

10
− =( ) − × ×P TTT

=1
1

22
=

21

22

The complementary 

event of  “at least one 

car” is “all three toys 

are trucks”.

or

i P CCC( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

==

7

3

12

3

7

44

ii P CCC( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

== −1

5

3

12

3

21

22

To fi nd these 

probabilities we can 

also use combinations.
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In the next example some branches of  the tree diagram are shorter than 

others. Subsequent events depend on the outcomes of  previous ones. 

Example 

Toby is a rising star of  the school tennis club. He has found that 

when he gets his fi rst serve in the probability that he wins that point 

is 0.75. When he uses his second serve there is a 0.45 chance of  

him winning the point. He is successful at getting his fi rst serve 

in on 3 out of  5 occasions and his second serve in on 3 out of  4 

occasions.

a Find the probability that the next time it is Toby’s turn to serve he 

wins the point.

b Given that Toby wins the point, what is the probability that he got 

his fi rst serve in?

Answers

In

Win

Lose

In

Out

Win

LoseOut

0.25

0.55

0.45

0.75

2

5

3

5

3

4

1

4

a P (win) = (get fi rst serve in and 

win) + (miss fi rst serve, get 

second serve in and win)

3

5

2

5

3

4
0.75 + 0.45× × ×⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

 = 0.45 + 0.135

 = 0.585

On this tree diagram, it is 

not necessary to continue the 

branches once the point has been 

won.

Multiply along the branches.

b P(fi rst serve in|win)

P(fi rst serve in and win 

point|win point)

= = 0.769 (3 sf)

3

5
0.75

0.585

×⎛
⎝
⎜

⎞
⎠
⎟

Both of  these values have been 

found in part a

Exercise 6L

1 The probability that it will rain on a certain day is 0.2. The 

probability that Shikma arrives late for work if  it’s raining is 0.4, 

while the probability that she will be late for work when it’s not 

raining is 0.1. Find the probability that on a given day it will rain 

and Shikma will not be late for work.
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2 Shankari performs blood tests on a virus. The probability that 

the test gives a positive result is 0.85. The probability that the 

person does have the virus given that the test was positive is 0.98, 

and the probability that the person doesn’t have the virus given 

that the test was negative is 0.12. What is the probability that 

Shankari’s diagnosis is correct?

3 Jan shoots two free throws in a basketball game. The probability 

that he scores the fi rst shot is 0.75. The probability that he misses 

the second shot given that he scored the fi rst shot is 0.15. The 

probability that he is going to score the second shot given that he 

missed the fi rst shot is 0.8. What is the probability that Jan scores 

only one shot?

4 Given that P P PA B A B A( ) ( ) ( )= = =
1

3

3

5

1

2
,  and ′  fi nd

a P(B ′)

b P(A′ ∪ B ′)

5 There are 12 purple and 18 orange chips in a bag. We draw three 

chips from the bag without replacing them. Find the probability 

that:

a all the chips are orange

b there is at least one purple chip

c there are more orange chips.

6 Sam draws three cards from a standard deck of  52 cards without 

replacing them. Find the probability that all three cards are:

a red

b hearts

c of  the same suit

d faces cards in the same suit. 

. Bayes’ theorem

As you will see, Bayes’ theorem enables you to solve more diffi cult 

probability problems where you need to analyze different 

possibilities. To visualize the situation you can use a Venn diagram.

B'

A

B

The Venn diagram shows that event A may occur when event B 

occurs or A may occur when B does not occur. These are mutually 

exclusive situations. You can use this fact to write P(A) as the sum 

of  two expressions which correspond to the two situations.

                        P P P P P PA A B A B B A B B A B

Face cards are King, 

Queen, Jack.

This formula is called 

the total probability 

formula
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➔ The events B and B ′ are called hypotheses since we don’t 

know whether they have occurred or not.

The next example uses the total probability formula in a real-life 

context.

Example 

In a computer factory each mouse is checked by one of  two 

controllers. The fi rst controller checks 55% of  the mouses and fi nds 

4% of  them to be defective. The second controller fi nds that 3% of  

his mouses are defective. What is the probability that a mouse will be 

found to be defective by the controllers?

Answer

Let the events ‘mouse checked by fi rst controller’ and ‘mouse checked 

by second controller’ be called F and S respectively. Let D be the event 

‘mouse is defective’. Use a probability tree diagram.

F

0.55

0.04

0.45

0.96

S

D

D

D

D
0.03

0.97

P P P P PD F D F S D S( ) = ( )× ( ) + ( )× ( )

    0.55 0.04 0.45 0.03 0.0355

Sometimes instead of  only two hypotheses we have three or even 

more hypotheses. In that case you use a similar calculation.

Let H
1
, H

2
 and H

3
 be events such that:

i 1 2 1 3

2 3

, andH H H H

H H

   

 

ii H H H U1 2 3∪ ∪ =

H3H2

A

H1

        1 2 3P PA A H A H A H     

= × + × + ×( ) ( ) ( ) ( ) ( ) ( )P P P P P PH A H H A H H A H1 1 2 2 3 3

In exams you will not 

be asked questions 

that involve more than 

three hypotheses.
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Example 

There are two jars containing green and purple marbles. In jar A there are 4 green and 6 purple 

marbles, while jar B contains 1 green and 2 purple marbles. We transfer 2 marbles from jar A to 

jar B and then draw a marble from jar B. What is the probability that the marble drawn from jar B 

is green?

Answer

Let H
1
 be the event ‘we transfer two green 

marbles’ H
2
 be the event ‘we transfer one green 

and one purple marble’ H
3
 be the event ‘we 

transfer two purple marbles’.

 

   
    

 
   

1

2

15

4 4 3
2 1 2P

10 910

1 22

H

   
  

 
   

2

4 6 4 6 8
P

10 910 15

1 22

H

 

   
    

 
   

3

1

3

6 6 5
2 1 2P

10 910

1 22

H

H1: Jar B

H2: Jar B

H3: Jar B
G

P

G

P

G

P

2

15

3

5

2

5

2

5

3

5

1

5

4

5

8

15

1

3

P(G ) =  P(H
1
) × P(G|H

1
) + P(H

2
) × P(G|H

2
) 

+ P(H
3
) × P(G|H

3
)

= × + × + ×
2

15

3

5

8

15

2

5

1

3

1

5

 
  

27 9

75 25

6 16 5

75

There are three different hypotheses and the content 

of  jar B is different with respect to each of  them.

There are 10 marbles in total and we choose 2.

Out of  4 green marbles we choose 2 from jar A.

Out of  4 green and 6 purple marbles we choose one 

of  each color from jar A.

Out of  6 purple marbles we choose 2 from jar A.

Draw the probability tree diagram.

Notice that the sum of 

the three probabilities 

is 1. Give a reason for 

this.
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Here is Bayes’ theorem, which allows you to calculate conditional 

probabilities:

➔ Bayes’ theorem

P
P

P

P P

P P P P
B A

B A

A

B A B

B A B B A B
( )

∩( )

( )
=

( )× ( )

( )× ( ) + ( )× ( )
=

’ ’

Thomas Bayes (1702–61) was an English mathematician. He studied 

logic and theology at the University of Edinburgh since, as a non-conformist, 

he was not allowed to study at either Oxford or Cambridge. He set out his 

probability theory in the Essays towards solving a problem in the doctrine of

chances which were published in 1764, after his death.

Example 

At a university there are 65% female and 35% male students. Only 

25% of  the female students are taking statistics, whist 60% of  the male 

students are taking the course. A randomly selected student from the 

university is taking statistics. Find the probability that the student is 

female.

Answer

Let F denote that the randomly 

selected student is female, and 

M that the student is male. Let S

denote that the student is taking 

statistics.

 
 

 




P F S
P F S

P S

   
       




  

P F P S F

P F P S F P M P S M

=
×

× + ×

=
+

=

0 65 0 25

0 65 0 25 0 35 0 60

0 1625

0 1625 0 21
0 436 3

. .

. . . .

. .
. ( )sf

F

0.65

0.25

0.35

0.75

M

S'

S

S'

S
0.60

0.40

Apply the conditional probability 

formula.

Apply the total probability 

formula.

Now look at Example 26 again and calculate the probability 

that an event had occurred fi rst, given that we know what 

happened next.

Bayes’ theorem has 

made remarkable 

contributions to 

history. It has been 

used to search for 

nuclear weapons, 

create actuarial 

tables, improve low-

resolution computer 

images, and to help 

determine who really 

wrote the Federalist 

papers (a series of 

articles promoting 

the rati cation 

of the American 

constitution). It 

was used by Alan 

Turing and others 

during World War II 

in performing cypto-

analytic work, and 

most recently, is 

helping to determine 

the false positive rate 

to mammograms.

Notice that we were 

taking the favourable 

branch divided by 

the sum of all the 

possible branches for 

the given event.
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Example 

There are two jars with purple and green marbles. In jar A there are 4 green and 6 purple marbles. 

Jar B contains 1 green and 2 purple marbles. We transfer 2 marbles from jar A to jar B and 

then draw a marble from jar B. A randomly drawn marble from the jar B is green. What is the 

probability that 2 marbles of  different colors were transferred from jar A?

Answer

H1: Jar B

H2: Jar B

H3: Jar B
Y

G

Y

G

Y

G

2

15

3

5

2

5

2

5

3

5

1

5

4

5

8

15

1

3

Draw at the probability tree 

diagram

P
P

P
H G

H G

G
2

2( ) =
( )

( )

∩

=
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

×

× + × + ×

P P

P P P P P P

H G H

H G H H G H H G H

2 2

1 1 2 2 3 3

= = =

×

× × ×

8

15

2

5

2

15

3

5

8

15

2

5

1

3

1

5

16

75

27

75

16

27
+ +

Apply the conditional probability 

formula.

Apply the total probability 

formula.

Exercise 6M

EXAM-STYLE QUESTION

1 Two boxes contain cards. In the fi rst box there are 9 cards with 

numbers 1 to 9 written on them, and in the second box there are 

5 cards with numbers 4 to 8 written on them. A box is randomly 

selected and a card is drawn from it.

a What is the probability that the card will show an even number?

b What is the probability that an even card was drawn from the 

fi rst box?
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EXAM-STYLE QUESTIONS

2 In a factory two machines produce bolts and the bolts are stored 

in a warehouse. The fi rst machine produces 60% of  all the bolts 

but 5% of  them are defective while 2% of  the bolts produced by 

the second machine are defective. A bolt is randomly selected 

from the warehouse.

a What is the probability that the bolt will be defective?

b What is the probability that the bolt was produced on the fi rst 

machine given that it was defective?

3 40% of  the children attending a summer camp are girls and 

60% are boys. The children vote for their favorite sport. 75% of  

the girls and 35% of  the boys vote for beach volleyball as their 

favorite sport. A child is randomly selected.

a What is the probability the child voted for beach volleyball as 

their favorite sport?

b What is the probability that beach volleyball was not their 

favorite sport given that the child was a girl?

4 In one box there are 14 white and 16 black balls, while in a 

second box there are 7 white and 12 black balls. A ball is drawn 

from the fi rst box and placed in the second box, and then two 

balls are drawn from the second box. 

a What is the probability that both balls are black?

b What is the probability that the ball drawn from the fi rst box 

was white, given that both balls drawn from the second box 

were white?

5 A sample space U contains the events A and B. These 

probabilities are given: P P PB A B A B( ) ( ) ( )= = =
2

3

5

6

1

4
,  and ′ ′

a Draw a probability tree diagram representing this information

b Find: i P(A) ii P(B|A) iii P(B ′|A′).

6 A pair of  dice is in a non-transparent bag. One dice is biased and 

the probability of  obtaining a 6 on that dice is 
2

3
, while the other 

dice is unbiased. A dice is taken from the bag at random and 

roll it.

a What is the probability of  obtaining a 6?

b What is the probability that the unbiased dice was taken given 

that you did not obtain a 6?
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EXAM-STYLE QUESTIONS

7 A survey of  a large group of  adults shows that 18% have lung 

problems. Of  these it is found that 70% are heavy smokers, 20% 

smoke occasionally and 10% are non-smokers. Of  those who 

don’t have lung problems it is found that 5% are heavy smokers, 

15% smoke occasionally and 80% are non-smokers. An adult is 

selected at random from the group.

a Find the probability that the selected person is a non-smoker.

b Find the probability that the selected person has lung 

problems given that they are a heavy smoker.

8 There are three urns labelled A, B and C. In urn A there are 2 

white and 4 red cubes, in urn B there are 5 white and 3 red cubes 

and urn C contains 4 white and 6 red cubes. An urn is selected at 

random and a cube is drawn from it.  

a Find the probability that a red cube is drawn.

b Given that a red cube is drawn, fi nd the probability that it is 

drawn from urn C

9 On her way to school in the morning Anne can take three 

different routes, A, B and C. The probabilities that she takes 

routes A, B and C are 0.45, 0.20 and 0.35 respectively.

The probability that she will get to school on time if  she takes 

route A is 0.95. If  she takes route B it is 0.90 and the probability 

if  she takes route C is 0.80. 

a Find the probability that Anne will get to school on time.

b Find the probability that Anne took route A, given that she 

got to school on time.

c Find the probability that Anne took route B, given that she did 

not get to school on time.

10 There are two jars containing pink and brown marbles. In the 

fi rst jar there are 5 pink and 10 brown marbles while in the 

second jar there are 4 pink and 5 brown marbles. We transfer 

2 marbles from the fi rst jar to the second jar and then draw a 

marble from the second jar. 

a What is the probability that the marble drawn from the 

second jar is brown?

b What is the probability that we transferred 2 pink marbles 

from the fi rst jar, given that a pink marble is drawn from the 

second jar?

c What is the probability that we transferred 2 brown marbles 

from the fi rst jar, given that a pink marble is drawn from the 

second jar?
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EXAM-STYLE QUESTIONS

11 In a company employees are organized in the following sections: 

management, production and marketing. 10% of  all the 

employees are in management and 25% are in marketing. The 

percentages of  female employees in management, production 

and marketing are 40%, 30% and 70% respectively. 

a Find the probability that a randomly selected employee from 

this company is male.

b Given that a randomly selected employee is male fi nd the 

probability that he works in the management section.

c Given that a randomly selected employee is female fi nd the 

probability that she works in the marketing section.

12 Three machines produce nuts. The fi rst machine produces 

50% of  all the nuts, the second machine produces 35% and 

the third machine produces 15%. Of  the nuts produced by 

the fi rst machine 4% are defective, versus 3% from the second 

machine and 6% from the third machine. Given that a randomly 

selected nut is not defective, fi nd the probability that the nut was 

produced by the second machine.

13 There are 20 laptops in a classroom. 12 have a hard disk with a 

capacity of  160 GB and 8 with a capacity of  320 GB. A teacher 

randomly takes two laptops away to be tested. A student then 

takes a laptop for her project. What is the probability that the 

teacher takes both laptops with 320 GB given that the student 

takes one with 160 GB?

14 In a football team there are 11 players who can perform a penalty 

kick. 4 players are excellent and they score with a probability 

of  0.9, 4 have medium ability and they score with a probability 

of  0.6, whilst the remaining 3 are poor and they score with a 

probability of  0.2. A randomly selected player shoots the penalty 

kick. What is the probability that the player will score?

15 Two letters are drawn from the set {a, b, c, d, e, f, o} without 

replacement. Then another letter is drawn. What is the 

probability that the third letter drawn is a vowel?
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Review exercise

EXAM-STYLE QUESTIONS

1 The mode, median and mean of  a set of  positive integers are 6, 

7 and 8 respectively. Find the smallest possible set of  positive 

integers with the smallest variance that satisfi es these conditions.

2 A and B are two independent events. Given that P B A( ) =
1

3

and A B∪ =( )
11

12
 fi nd P(A).

3 The weight, in kilograms, of  students in a class is measured 

and the cumulative frequency diagram is shown.

a Estimate the median weight of  the students.

b Estimate the middle 50% of  the weight of  the students.

c How many students are in the class?

d Construct the frequency distribution table and fi nd the 

modal weight of  the students in the group.

4 There are 7 boys and 5 girls in an environmental activity group. 

A committee of  three members is selected from the group.

a How many different committees can be selected?

b Find the probability that Agatha and Jacob (two students 

from the group) are not both on the committee.

c What is the probability that there will be more girls than boys 

on the committee?

5 Bassel invests in different companies. The probability that 

he invests in company X is 
1

3
 and in company Y is 

5

9
. The 

probability that he doesn’t invest is 
1

9
. The probability that 

the investments in companies X and Y yield a dividend are 
3

7

and 
3

5
 respectively. The performances of  the companies are 

independent.

a Draw a probability tree diagram with the corresponding 

probabilities of  all possible outcomes.

b What is the probability that Bassel receives a dividend?

c Find the probability that the dividend Bassel receives is from 

company Y

6 There are 3 yellow, 4 blue and 5 green marbles in a bag. We 

randomly draw a marble from the bag and, without 

replacement, draw another marble. Given that the second 

marble drawn is green, what is the probability that the fi rst 

marble was green too?

✗

y

x

0

10
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C
u
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q
u
e
n
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60 70 80 90 100
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EXAM-STYLE QUESTIONS

7 A pair of  unbiased dice is rolled and the product of  the numbers 

showing on the upper faces is noted. Find the probabilities that 

the product is:

a A prime number

b An even number

c A number divisible by 3

d A number divisible by 6 given that it is an even number.

8 A class of  30 students takes a test on statistics and their results 

are such that:
30 30

2

1 1

540 and 9990
i i

i i

m m

 

    where m
i
 represents the 

mark of  an individual student. Calculate:

a i the mean mark in the test

 ii the standard deviation of  the marks in the test;

b Given that the pass mark for the test is 8, do you expect a 

student to fail the test?

 9 Each odd number from 1 to 3n, where n is odd, is written on a 

card and the cards are placed in a bag.

a How many cards are placed in the bag?

b What is the probability, in terms of  n, that a card drawn 

randomly from the bag has a number divisible by 3?

Review exercise

 1 There are four groups at a science conference. The heights of  

participants in each group are measured and the following 

mean heights of  the groups are obtained.

Subject Number of participants Mean height(cm)

Biology 23 168

Chemistry 17 171

Environmental systems 8 163

Physics 20 177

Find the mean height of  all the participants at the science 

conference.

2 a From the word STATISTICS how many arrangements of  all 

the letters can be formed?

b What is the probability that the arrangement will start with 

the letter S?

c What is the probability that the arrangement will not end with 

a vowel?
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3 A code lock consists of  three digits. What is the probability that 

the randomly chosen code is:

a an even three-digit number

b a number divisible by 7

c a perfect square?

4 The probability that it rains on a particular day during July 

on the island of  Hvar is 0.07. The hotel owner will give a 50% 

discount for a room on a rainy day in the month of  July. David 

rents a room in the hotel for two days. Given that the rate for 

a room in the hotel is €85 per day, fi nd the probability that for 

those two days David will pay less than €170.

5 Electric car batteries are tested and the distances obtained on a 

single charge are given in the table.

Distance (km) Frequency

0 ≤ d <100 2

100 ≤ d <200 5

200 ≤ d <300 7

300 ≤ d <400 12

400 ≤ d <500 10

500 ≤ d <600 4

a Find an estimate of  the mean distance travelled on the 

batteries.

b Find estimate of  the standard deviation of  the distance 

travelled on the batteries. Estimate the maximum distance the 

manufacturer can claim with 95% certainty that the car would 

travel on a single charge. 

6 A group of  140 competitors were each given a puzzle to 

complete. The times taken to do this were recorded. 

The diagram is the histogram of  the scores.

a Construct a frequency distribution table.

b Two competitors from the group were selected at random. 

Find the probability that:

 i both managed to assemble the puzzle within 20 seconds

 ii no competitor was able to do it in less than 10 seconds.

c Find the estimations of  the mean and standard deviation of  

times taken to assemble the puzzle.

7 How many times would you need to roll a pair of  dice so that 

the probability of  obtaining a sum of  7 at least once is greater 

than 0.95?

3020

Time (s)

x

y

4010 706050
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3
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2

0
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8 The red blood cell (RBC) count is a blood test which determines 

the number of  red blood cells per micro-litre in a blood sample. 

The normal range for children is typically between 3.8 and 5.5 

million per micro-litre. The results of  the blood test for 120 

children are given in the table.

RBC Frequency

3.4 < n ≤ 3.8 7

3.8 < n ≤ 4.2 15

4.2 < n ≤ 4.6 36

4.6 < n ≤ 5.0 22

5.0 < n ≤ 5.4 27

5.4 < n ≤ 5.8 13

a Find the mean and the standard deviation of  the RBC count.

b Construct the cumulative frequency distribution and draw the 

cumulative frequency diagram to estimate the median result 

of  the RBC count.

c It is known that a higher RBC count is found in people who 

live at high altitudes. Given that all the children are healthy 

use your graph in b to estimate how many tested children live 

at high altitudes.

9 A school buys 20 new books. There are 6 books on statistics, 7 

books on calculus, 4 books on geometry and 3 books on discrete 

mathematics. Given that the books are randomly put on the shelf  

in a classroom, fi nd the probability that

a all the books on statistics will be at the beginning of  the shelf

b all the books on calculus will be together.

10 The local basketball league consists of  12 teams. Team A is 

ranked fi fth and the probability it will win against any of  the 

higher ranked teams is 0.4. The probability it will win against 

the teams ranked in sixth to eighth place is 0.55 and of  winning 

against the teams ranked ninth to twelfth is 0.75. Keith doesn’t 

know which team team A will play against in the next game, but 

he would like to bet on A winning.

a What is the probability that Keith will win the bet?

b Given that Keith has lost the bet, what is the probability that 

team A played against a team with a better rank? 
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CHAPTER 6 SUMMARY

Classifi cation and representation of statistical data

● A  discrete variable has exact numerical values.

● A continuous variable can be measured. Its accuracy depends on 

the accuracy of  the measuring instrument used.

● In statistics, the term population includes all members of  a 

defi ned group that you are collecting data from.

● A part of  the population is called a sample, i.e. it is a selection 

of  members or elements from a subset of  the population.

● When you have a lot of  data, you can organize it into groups 

in a grouped frequency table

If  the data are continuous, you can draw a histogram

● frequency density = 
frequency

interval width

Measures of central tendency

● The mode is the value that occurs most frequently in a set of  data.

● Arithmetic mean  = 
∑

i

k

i if x
=1

n

● The median is the value in the middle when the data are arranged 

in order of  size. If  the number of  data values is even, then the 

median is the mean of  the two middle values.

Measures of dispersion

● The range is the difference between the largest value and the 

smallest value.

● The interquartile range (IQR) is the difference between the 

upper and lower quartiles.

IQR = Q
3
 − Q

1

● 

2 2

2 21 1

( )
k k

i i i i

i i

f x f x

n n



   
 

● 

 

     
 

2 2

2 21 1

n n

i i

i i

x x

n n

● If  you add a constant value k to all the numbers in a set, the 

mean increases by k but the standard deviation remains the same

● If  you multiply all the numbers in a set by a positive value k, 

both the mean and the standard deviation are multiplied by k

● If  k is negative, the mean is multiplied by k, but the standard 

deviation is multiplied by −k.

Continued on next page
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Theoretical probability

● An experiment is the process by which you obtain an observation.

A trial is an experiment that you conduct a number of times under the same conditions.

 An event is an outcome or outcomes from a trial.

A random experiment is one where there is uncertainty over 

which event may occur.

● The theoretical probability of  an event A is 
( )

( )
P( )

n A

n U
A

 where n(A) is the number of  outcomes that give event A

and n(U ) is the total number of  equally likely possible outcomes.

● Events A and B are mutually exclusive if  and only if  P(A ∩ B ) = 0

Probability properties

● Two events A and B ⊆ U have these properties:

i 0 ≤ P (A) ≤ 1

ii P (U ) = 1

iii P (A B ) = P (A) + P (B ), A B

iv P () = 0

v P (A′ ) = 1 PA

vi If  A B then P (B\A) = P (B) P (A)

Conditional probability

● For two events A and B the probability of  A occurring given 

that B has occurred can be found using P A B|( ) = 
P( )

P( )

A B

B

Rearranging the formula gives P(A ∩ B) = P A B|( ) × P(B)

 This is known as the multiplicative probability law

Independent events

●     

     

      

P( P( ) P( ) P( )

P( P( ) P( ) P( )

P( P( ) P( ) P( )

A B A A B A

A B A A B A

A B A A B A

● For independent events A and B 

                 P P P P P PA B B A B A B A B

Bayes' theorem

● Total probability theorem:

                        P P P P P PA A B A B B A B B A B

● The events B and B ′ are called hypotheses since we don’t 

know whether they have occurred or not.

● P
P

P

P P

P P P P
B A

B A

A

B A B

B A B B A B
( )

∩( )

( )
=

( )× ( )

( )× ( ) + ( )× ( )
=

’ ’
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Can you use statistics to prove anything?
Results of statistical experiments or 

analyses are often given within a 

con dence interval of, say, 95%.

■ Discuss these statements:

■ Are there aspects of mathematics you 

can choose whether or not to believe?

340

Statistics and probability —
but is it mathematics? 

Theory of knowledge

Is statistics part of mathematics?
Statistics is about interpreting data. 

Calculating mean, standard deviation, etc. 

involves mathematics, but is interpreting 

what they mean in the context of the 

problem mathematics?

Statistics uses a lot of mathematics, and 

so it is a mathematical science. But just 

because it uses mathematics, this doesn’t 

make it mathematics! Tax accountants use 

mathematics too, but we don’t consider 

accountancy to be a branch of 

mathematics.

Mathematical statistics is a separate 

discipline that overlaps with statistics and 

focuses on the theoretical basis of 

statistics, using tools such as probability 

theory and decision theory.

■ Mathematics is an axiomatic system. 

Is statistics an axiomatic system too?

An axiom is a statement which is assumed 

to be true without proof, used as a basis for 

developing an argument. 

■ Is probability mathematics?

■ How is mathematical language useful in 

statistics and probability?

Theory of knowledge: Statistics and probability – but is it mathematics? 

”Statistics is a systematic method for 
finding a wrong answer with a 95% 
confidence interval.“ Anonymous

”Statistics may be defined as a body 
of methods for making wise decisions in 
the face of uncertainty.“ W. Allen Wallis, 
American economist and statistician, 
(1912–88)

”I could prove God statistically. Take the 
human body alone – the chances that all 
the functions of an individual would just 
happen is a statistical monstrosity.“ George 
Gallup, American statistician and father of 
the ’Gallup Poll‘, (1901–84)

”An unsophisticated forecaster uses 
statistics as a drunken man uses 
lamp-posts, for support rather than 
illumination.“ Andrew Lang, Scottish poet, 
(1844–1912)
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Information and data
Find the dictionary de nitions of 

‘information’ and ‘data’.

■ Do we derive data from information, or 

information from data? 

■ Is data always true? 

■ Is information always true?

 “There are Five kinds of  lies: Lies, Damned Lies, Statistics, 

Politicians quoting Statistics and Novelists quoting Politicians on Statistics.”

Stephen K. Tagg, University of Strathclyde Business School

1

6
. When you do a probability 

times, and collecting data on the number 

of sixes, you are using statistics.

Suppose you roll the dice 60 times and get 

8 sixes, is the dice fair? Statistics uses 

probability theory (that P(6) = 
1

6
) to help 

answer this question. A statistician could 

decide whether the dice is fair and give 

con dence limits for this decision.

You cannot carry out statistics without the 

theoretical base of probability, but you can 

study probability without using data. 

However, for many situations the best 

estimate of probability is the relative 

frequency of the event, based on real data.

■ Think of real-life situations where 

{ the best estimate of probability has 

to come from real data

{ the best estimate of probability is 

based on probability theory.

Probability and intuition

Most of the time formal de nitions of 

probability seem to agree with our intuitive 

understanding. If we pick a ball from a bag 

with with eight red and two green counters, 

we understand that we are more likely to 

pick a red one, but a green one is unlikely, 

not impossible.

Sometimes our intuition leads us to wrong 

conclusions.

The birthday problem 

■ What do you think? 1%? Maybe 5%, or 

even as much as 10%?

■ Find the solution to this classic problem 

– either work it out yourself or  nd one 

online or in a book. 

In probability theory, independence is 

de ned as:

P (A ∩ B) = P (A) × P(A)     

■ Can we understand this independence 

intuitively? 

Ch
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The evolution 

of calculus

CHAPTER OBJECTIVES:

6.4  Inde nite integration as anti-differentiation

6.5  Anti-differentiation with a boundary condition to determine the constant of 

integration; de nite integrals; area of the region enclosed by a curve and the 

x-axis or y-axis in a given interval; areas of regions enclosed by curves; volumes 

of revolution about the x-axis or y-axis

6.6  Kinematic problems involving displacement, velocity and acceleration; total 

distance travelled

You should know how to: 

1 Find the derivatives of  linear, polynomial, 

rational, exponential and logarithmic 

functions. e. g. Differentiate 

y = e 2x+3 ln(1 − x)2

d

d

y

x
= 2e 2x+3 ln(1 − x)2 

− e 2x+3
2 1

1 2

( )

( )

x

x

Using the product and chain rules

d

d

y

x

x x

x

x

=

+

− − +2 1 1 1

1

2 3 2e (( ) ln(( ) ) )

2 Find points of  intersection between the 

graphs of  two functions. e. g. fi nd the 

point where the graphs of  the functions 

y = e
x

2  and y = e x +1 intersect.

 At this point e
x

2 = e x +1 therefore 
x

2
 = x + 1

x = 
2

3
, y = e

1

3

 so point of  intersection is (
2

3
, e

1

3)

3 Find the velocity and acceleration given 

the displacement. e. g. For a displacement 

function s(t), velocity is the fi rst derivative 

and acceleration is the second derivative.

Skills check

1 Find the derivatives of  these functions.

a y = xln(x)

b y = 
e2 3

2

x

x

c y = 
x

4

4

1

2 Find the point(s) of  intersection of  the 

graphs of  these functions.

a y = 3x – 2 and y = x2 – 2x + 4

b y = 1 – x and y = 2 1x +

c y = 
6

x
 + 3x and y = x3 – 5x

3 A particle moves along a line so that 

its displacement at any time t is 

s(t) = 3t4 – t3 + t. Find expressions for the 

velocity and acceleration of  the particle 

at any time t

Use the differentiation 

rules from Chapter 4.

7

Before you start
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   Integral calculus

How to calculate surface areas and volumes of  regular shapes 

such as rectangles and cylinders has been common 

knowledge for thousands of  years; but how do architects 

and engineers calculate areas and volumes of  curved 

spaces, such as the aquarium in Valencia, Spain? 

About 2000 years ago, Archimedes was one of  the fi rst 

mathematicians to attempt to fi nd the area between a 

parabola and a chord. His method was to fi ll the area 

with shapes whose areas were known, for example 

triangles. He did this until the space not covered 

was so small as to be negligible, or in the 

words of  Newton and Leibniz, infi nitesimally small. 

Modern-day mathematicians call this the method 

of  ‘exhaustion’.

This chapter looks at integral calculas. In section 7.3 you 

will see how integration is related to areas under curves.

Although we study the derivative 

 rst, some of the concepts of 

integration were known long before 

differentiation. These ideas were 

important in the beginnings of fair 

trade, which depended in part on 

knowing how to work out areas of 

regular and irregular shapes. 

[ Valencia Aquarium
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. Integration as anti-di erentiation

The process of  fi nding a function f  (x) whose derivative 

is f  ′(x) is called anti-differentiation, which relates to integration. 

For example, you know that the derivative of  x2 with respect 

to x is 2x, hence when you anti-differentiate 2x with respect to 

x you obtain x2. This, however, is not the only answer, since, 

for example, y = x2 + 3 also has a derivative of  2x. 

You can easily see that 2x is the derivative for any function of  

the form y = x2 + c, where c is any real number. This set, or family, 

of  all anti-derivatives of  a function is called the indefi nite integral

of  the function, and c is called the constant of  integration. 

This can be written using symbols as 2x dx = x2 + c, c ∈ 

Mathematical models 

provide solutions to real-

world problems. Analyze 

mathematical models 

used to approximate 

areas and volumes of 

irregular shapes. Discuss 

how welll these models 

approximate the actual 

areas and volumes of the 

shapes found through 

calculus methods.

The integration symbol is 

an elongated S, and was 

 rst used by Leibniz.

Method of exhaustion 

Take a circle and start  lling it with isosceles triangles from its center.

The sides of the triangles are radii. The altitude, CD = h, is shorter than the 

radius, CB. If we create n such triangles, then the sum of the areas of the 

triangles approximates the area of the circle, A b h
i

i i

n
≈

1

21=

∑

As we increase the number of triangles, the altitudes of the triangles 

get closer to the length of the radius, and the sum of the bases of the 

triangles approaches the actual circumference of the circle, so we can write 

A r b r r ri

n

≈ ≈ ≈
1

2

1

2
2 2

i = 1
( ) ( )∑ p p . We can see that as we increase the number 

of triangles, the sum of their areas gets closer to the actual area of the 

circle, until lim ( )
1

2

2

1
n

i
i

n

r b r
→∞

=
∑ = p

This is an example of the method of exhaustion.

Archimedes  gured out the area between a parabola and a chord. 

How did he do it? 

Choose a convenient shape whose area you know how to  nd, and  ll 

the space between the chord and the parabola with these shapes, to 

‘exhaustion’! 

Perhaps this prompted Leibniz to say, “He who understands Archimedes 

and Apollonius will admire less the achievements of the foremost men of 

later times.”

rr

r

C

D

A
B

Archimedes did not 

use coordinate 

axes – this system 

was invented by Rene 

Descartes in the 

17th century.
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Notice the lines in the background of  the 

graphs. They form a slope fi eld for the 

family of  curves y = x2 + c, i.e., they show 

the direction of  the tangent lines at the 

different values of  x. 

The tangent lines are parallel for 

corresponding values of  x. 

Slope fi elds is a topic in the calculus option.

[ Graph of family of 

curves of y = x 2 + c for 

different values of c

0
3

4

4–3–4
x

y

In general terms

➔ f  (x)dx = F (x) + c, c ∈ 

f  (x) is called the integrand, and x is the variable of  integration.

Differentiating x n:

x n → multiply the coeffi cient of  x by n → decrease the power of  n by 1 → nx n−1

Reversing the process:

nx n−1 → increase the 

exponent by 1
 → divide by the 

new exponent
 → 

add a constant 

of  integration, c
 → x n + c

In general

➔ x n dx = 
x

n
n

n

+

+

≠ −

1

1
1,

Recall from chapter 4 the constant multiple rule for differentiation, 

for c a real number, f  ′(cx) = cf  ′(x) provided f  ′(x) exists. 

The reverse is also true, i.e., cf  (x) dx = c f (x) dx

Example 

a Find the indefi nite integral of  – 4x3 b Find 
5

7
d

x
x

Answers

a 4x3 dx = 4 x3 dx

 = −4
4

4

x
 + c

= −x4 + c

Differentiate your answer mentally to 

check your result, differentiating –x 4

gives – 4x 3. Don’t forget the constant 

of  integration.

{ Continued on next page
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b
5

7
d

x
x = 5 x 7 dx 

 = 5  
x 6

6
 + c

 = 
5

6 6x
 + c

Again, differentiate your answer to 

check your result.

Example 

Integrate f x( ) = x 23

Answer

x x23 d = x x c x
x

2

3

5

3 5

3

5

3

3

5
d = + = + c Change the radical to a rational 

exponent and use the power rule.

Exercise 7A

Find these indefi nite integrals, with respect to x

1 –2x 2 3x8

3 –5x4 4
1

5x

5 x 3 6
1

3x

7 
2x

x
8 −

x

x

54

37

There is another rule that is useful in integrating functions. It is the 

reverse of  the sum and difference differentiation rule.

➔  [  f  (x) ± g(x)]dx = f  (x) dx ±  g (x) dx

Example 

Integrate 1 4 x  with respect to x

Answer

1 4 x  = 1−  x

1 d
1

4x x
⎛

⎝

⎜
⎜⎜

⎞

⎠
⎟⎟⎟  = x

x
5

4

5

4

 + c

  = x x c
4

5

5

4 +

Change radicals to exponents.

Integrate term by term.

Note that

1 dx =  1 × x0 dx = 
x1

1
 = x + c

From the family of  curves, you can fi nd a specifi c curve that passes 

through a given point.
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Example 

If  
d

d
=

1
1

2

2
y

x x

⎛
⎝
⎜

⎞
⎠
⎟

fi nd y given that the graph of  the function passes through the 

point (1, 0).

Answer

1 1

=1 2 +

1
=

2
+

1
2

2

2 4

2 4

− −

− −

x x x

x x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⎟

d

d

y

x
= 1  2x 2 + x 4 + c

⇒ y = x + 
2 1

3 3x x
 + c

At (1, 0), 0 = 1 + 2 – 
1

3
 + c

hence c = 2
2

3

∴ − −y x
x x

= +
3

2
2 1 2

33

Expand.

Use properties of  indices, and 

integrate term by term. Don’t forget 

the constant of  integration.

Substitute (1, 0) into the equation 

for y, and fi nd c.

Rewrite y with the value of  c.

Exercise 7B

1 Integrate these with respect to x

a 5x2 −
1

5 2x
b (x + 3)(2x – 1) c

x

x

2

4

1

d x
x

+⎛
⎝
⎜

⎞
⎠
⎟

1
2

e
( )( )x x

x

+ −3 4
5

f x
x

5
3

2 If  
d

y

x
 = (3x2 − 4), fi nd y given that the function passes through the 

 point (2, –1).

3 If  f  ′(t) = t + 3 – 
1
2t
, fi nd f given that the curve goes through the 

point (1, –
1

2
).

4 If  
d

d

y

x
 = (2x + 3)3, fi nd y if  y = 2 when x = –1.

5 Find A in terms of  x if  
d

d

A

x
 = (2x + 1)(x2 − 1), and A = 0 when x = 1.

6 Find s in terms of  t if  
d

d

s

t
 = 3t −

8
2t
, and s = 1.5 when t = 1.

7 Find y in terms of  x given that 
2

2

d

d

y

x
 = 6x − 1, and when x = 2, 

d

y

x
 = 4 and y = 0.

EXAM-STYLE QUESTION

8 A particle moves in a straight line such that at time t seconds, its 

acceleration a(t) = 6t + 1. When t = 0, the velocity is 2 m s–1, and 

its displacement from the origin is 1 m. Find expressions for the 

velocity and the displacement.
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In question 4 of  exercise 7B, you found the integral of  (2x + 3)3 by fi rst 

expanding and then integrating each term. It would be more effi cient to 

fi nd a method of  integration without needing to expand the expression, 

especially if  the power is large.

Investigation – integrating (ax + b)n

Integrate different expressions of the form (ax + b)n, where a, b and n are 

real numbers, and a ≠ 0, n ≠ –1. Predict the integral of all 

expressions of this form. Prove your conjecture by differentiating 

your result.

Use the form from the investigation to integrate question 4 of  

exercise 7B, and then apply your prediction from the investigation.

In order to integrate (2x + 3)3, let u = 2x + 3, and hence 
d

d

u

x
= 2, so 

d = d
2

x u . You can therefore write

(2x + 3)3 dx = u3
d

2

u
 = 

1

2
u3 du

Integrating u3 with respect to u,

1

2
u3 du = 

1

2 4 8

2 3

8

4 4 4( )u u x
c c c+ + += =

+

Substitute the original expression for u

The result obtained from the investigation is called the compound formula.

➔ (ax + b)n dx = 
1

1a n( )+
 (ax + b)n+1 + c, a ≠ 0

Example 

Integrate 1 2x  with respect to x

Answer

Solution 1:

Let u = 1 – 2x, then 
d

d

u

x
= –2, and dx = 

d

2

u
. Hence

1 2 dx x   = 
1

2
u

1

2  du = − −1

2 3

2

1

3

3

2 3

2 =
u

+ c u + c

1 2 dx x  = − −1

3
(1 2 ) +

3

2x c

By substitution

Solution 2:

(1 2 ) = (1 2 ) +

= (1 2 ) +

1

2 d
1

2
3

2

1

3

3

2

3

2− −

x x x c

x c

⎛
⎝
⎜

⎞
⎠
⎟

Use the compound 

formula.

Although, strictly 

speaking 
d

d

u

x
 is 

not a fraction, it 

conveniently behaves 

as one, See chapter 4, 

the chain rule.

The variable in the 

integrand must be the 

same as the variable 

of integration, i.e. here 

you have u3 and du

The compound 

formula can be used 

for linear functions 

only.

There is a more 

advanced integration 

by substitution method 

in chapter 9.
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Using the compound formula is quicker and easier than using the 

method of  substitution.

Example 

Find 
3

4 53 x
dx.

Answer

3

4 53 x
dx = 3 (4 5 ) d

1

3x x

=

− ⋅

+
3

5
2

(4 5 )
2

3x c

= − − +
9

10
4 5

2

3( )x c

Apply compound formula.

Exercise 7C

Integrate these with respect to x

1 (3x – 1)7 2 −2 2 1x 3
5

1

(4 1)x

4 
4

2

3 x
5 

3

1

3

2

(2 5 )

1

x

x 6   

2

34 2 3 6(3 2)x x

Integration of exponential functions

In chapter 5 you learned how to differentiate exponential functions. 

In particular, 
d

dx

x( )e  = ex

y = ex is the only function whose gradient function is equal to the 

function itself  for all x in the domain.

Therefore

➔ e x dx = e x + c

Furthermore, it is easy to confi rm that 

➔ e a x + b dx = 
1

a e a x + b + c

Use substitution:

let u = ax + b, then 
d

d

u

x
= a, or dx = 

du

a

Hence e ax+b dx = eu 
du

a
 = 

1

a
e u du = 

1

a
eu + c = 

1

a
e ax+b + c
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Example 

Find 4e 2x dx

Answer

4e 2x dx = 4 e 2x dx = 
4

2
e 2x + c = −2e 2x + c

Example 

Integrate e5 3x  with respect to x

Answer

e e e5 3 5 3

1

2

5

2

3

2
= =

x x
x

( )

e e
5

2

3

2

5

2

3

2
2

3

− −

= − +

x x

x cd

Write e5 3 x  using exponents.

Recall also that 
d

dx

x( )2  = 2x ln(2) 

Hence, 2x ln(2) dx = ln(2) 2x dx = 2x + c

If  you now want to integrate 2x, you need to divide by ln(2), since 

ln(2) is not part of  the integral. That is, 2x dx = 
1

2
ln(2)

x c

If  you now differentiate the result, you obtain 2x

Using the compound formula, you can also integrate 23 x –1 with 

respect to x. In particular

➔  max+b dx = 
1

ln( )

ax+b

a m
m c, where m is a positive real

number, a ≠ 0.

Example 

Find 2 3 x − 1 dx

Answer

23 x 1 dx = 
1

3 2
23 1

ln( )

x c−

+
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Exercise 7D

In questions 1 to 6, integrate with respect to x

1 –5e – 2 x 2
1

3 2e x +
3 e

e e

x

x

3

2

2

4 3x 5
1

32x
6 41− x

7 Use the method of  substitution to derive the compound rule for 

exponential functions, to show that for a real positive number m, 

for a ≠ 0 max+b dx = 
1

a m

b c
ln( )

max +

+

Integration and logarithmic functions

In chapter 5 you differentiated logarithmic functions.

For x > 0, 
d

dx
x(ln ) = 

1

x
 so for x > 0, 1

x
 dx = ln x + c

For x < 0, 
dx

 ln(−x) = 
1

x
  (−1) = 

1

x
 so for x < 0, 

1

x
 dx = ln(−x) + c

The two above statements can be combined into 

➔ 
1

x
 dx = ln x c

Similarly, using the compound formula,

➔ 
1 1

ax b a
x ax b c

+( )
= + +d ln , a ≠ 0

You can confi rm this result by differentiation

Example 

Find 
3

1 2
d

x
x

Answer

3

1 2
d

x
x = 3

1

1 2

3

2
1 2= − − +

x
x x cd ln

Exercise 7E

Integrate with respect to x, x ≠ 0.

1 
1

3x
2

6

x
3

1

2 3x

4 


5

3 5x
5 –2(4 + 3x)–1
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. Defi nite integration

As you have seen in the previous section, the result of  indefi nite 

integration is a family of  functions. The process of  defi nite

integration, however, results in a numerical answer. 

In chapter 4 you worked on kinematic problems. Since velocity 

is the rate of  change of  the displacement with respect to time, to 

obtain the velocity you differentiate the displacement function. 

Hence, to obtain the displacement from the velocity function, 

you reverse the process, and anti-differentiate, or integrate the 

velocity function. 

Consider an example. The velocity of  a particle at any time t, in 

seconds, is given by 3t2 + t m s–1. Find the total distance traveled 

from t = 1 s to t = 2 s. 

In order to fi nd the total distance traveled, see if  the particle 

changed direction anywhere in the interval [1, 2]. The graph 

of  the function f  (t) = 3t 2 + t shows that the velocity is positive 

throughout this interval, so the particle did not change direction.

You can evaluate the displacement at t = 1 and t = 2, and the 

distance traveled will be the difference of  these two values.

Integrate the velocity function to get the displacement function:

d

d

s

t
 = 3t 2 + t ⇒ s = t 3 + 

2

2

t
 + c

Evaluate the displacement at t = 1 and t = 2:

When t = 1, s = 1.5 + c, and when t = 2, s = 10 + c

Subtracting these two values for s gives 8.5 m as the total distance 

traveled between t = 1 and t = 2. 

The constant of  integration cancels out when subtracting.

There is a special notation for evaluating a defi nite integral in this 

manner.

2

1

(3t2 + t) dt = 

     
         

2
2 2

3

1

2 1

2 2 2
8 1 8.5

t
t

If  a function f  is continuous on an interval [a, b], then its defi nite 

integral exists over this interval. Here are some properties of  defi nite 

integrals.

All applications of the 

de nite integral used 

later in this chapter 

require the numerical 

evaluation of an 

integral.

See Chapter 4, 

Example 36.

642
0

–2

4

6

8

10

12

14

8–2–4–6–8
t

v

v = 3t2 + t

10 + c (1.5 + c) 

= 8.5

You will study more 

applications of de nite 

integration later in the 

chapter. 

upper limit

lower limit evaluate 

at upper 

limit

evaluate 

at lower 

limit

Write the integral in 

square brackets, with 

upper and lower limits 

as shown. Since c

always cancels out, 

you don’t need to 

write it.

The proofs of some of 

these properties are 

beyond the scope of 

this course.
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Properties of defi nite integrals

If  the integral of  f with respect to x in the interval [a, b] exists, then

➔ 

b

a

f  (x) dx = −

a

b

f  (x) dx



a

a

f  (x) dx = 0



b

a

kf  (x) dx = k

b

a

f  (x) dx



b

a

(f  (x) ± g (x)) dx = 

b

a

f  (x) dx ± 

b

a

g (x) dx



b

a

f  (x) dx + 

c

b

f  (x) dx = 

c

a

f  (x) dx

You can test these properties using the particle example. 

For example, testing the fi rst property, 
1

2

(3t2 + t) dt =        
  

     
1

2
3 3

2

1

2 2
1 2 2 8.5

t
t

Example 

Evaluate 

1

0

(x2 + 4x + 2) dx

Answer

1

0

(x2 + 4x + 2) dx = 
x

x x
3

2

0

1

3
2 2+ +

⎡

⎣
⎢

⎤

⎦
⎥

= + + −⎛
⎝
⎜

⎞
⎠
⎟

1

3
2 2 0

= 4
1

3

Use property 4.

Example 

Evaluate 

0

1

3

1 2x
xd

Answer

0

1

3

1 2

3

2
1 2

1

0

⎡⎣ ⎤⎦= −
x

x xd ln

 = − −[ ]3

2
1 3ln ln

 = 
3

2
3ln( )

Take out 
3

2
 as a factor.

Use property 3.

ln(1) = 0

Use the particle 

example to test 

properties 2 to 5 of 

de nite integrals. 

You can con rm the 

results of Examples 

11 and 12 on a GDC:
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Exercise 7F

Evaluate these defi nite integrals. Check your results using a GDC.

1 

3

1

( ) ,3
1

0
2

x
x

x x+ ≠d  2

2

0

3 4 1x x+ d 3

2

1

−2e1 3x dx

4 

3

1

3(2x +1)dx 5

0

2

2(1 − 3x)5 dx 6

4

1

1 x

x
xd , x ≠ 0

The properties of  the defi nite integral are based on the assumption 

that the integral exists the specifi c bounds of  integration. 

Before integrating you need to check if  f  within is continuous in the 

given interval.

Example 

Evaluate 

0

1

1

1 2x
xd

Answer

f is continuous in the interval [–1, 0].
0

1

1

1 2

1

2

1

2

3

2

1 2

1 3

1

0

⎡⎣ ⎤⎦= − −

= − − =

x
x xd ln

[ln( ) ln( )]
ln

Confi rming on the GDC:

If  f is not continuous in the interval of  integration, it is possible to 

obtain a numerical answer, but this answer is invalid.

Example 

Evaluate 

e

e

1

1 2x
xd

Answer

f  (x) has a vertical asymptote at x = 
1

2

f is not continuous in the interval [−e, e], since 

1

2
∈ −[ , ]e e . 

This integral has no solution.

Graph of  
1

1 2x

0

2

4

6

–2

–4

–6

2 4 6–2–4–6–8
x

y

f(x) =
1

1 – 2x

{ Continued on next page
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e

e

1

1 2

1

2

1

2

1

2

1 2

1 2

1 2

1 2 1 2

+

= −

= − − +

=

x
x xd [ ln ]

( ln ln )

ln

e

e

e e

e

e

This result, however, is meaningless since the 

basic condition necessary is not met, namely, 

continuity throughout the integrating interval.

The GDC integrates it numerically, so the GDC 

has made a mistake! It does state though that 

the accuracy is questionable. Some GDCs may 

give a ‘divide by zero’ error here.

Although the integral has no solution, you could still 

proceed and integrate and get a number.

Exercise 7G

Evaluate these integrals, if  possible.

1 

0

1

(2r − 1)4 dr 2

4

0

1
d

s

s
s

3 

2

0


2

1

1
d

x

x
x 4

1

0

d

(2 1)3

x

x +

5 

1

2 

1

1
d

x
x 6

1

0

 
 

  

3 2

3 4 1
d

x x
x

7 

1

1

e

e

x

x
x

+ 4
d 8

2

0

10x dx

.  Geometric signifi cance of the defi nite 
integral

Areas between graphs of functions and the axes

Consider a rectangle in the fi rst quadrant formed by the 

lines y = h, x = b, and the points (b, h) and the x- and y-axes.

The area of  the rectangle is bh. The defi nite integral of  y = h 

between x = 0 and x = b is
b

0

h dx = 0[ ]bh x hb

Integration gives the area under the line y = h between 

x = 0 and x =b

0 x

y

h

b

y = h

x = b
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Now, consider a right-angled triangle in the fi rst quadrant formed 

by the lines y = 
b

h
x , x = b, and the points (b, h) and the x-axis.

The geometric formula for the area is
2

1
bh. 

The defi nite integral of  y between x = 0 and x = b is
b

0

h

b
x xd  = 

h

b

b

0

x dx = 
h

b

x h

b

b
b

bh
2 2

2 2

1

2
0

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ =

0

Integration gives the area of  the triangle.

Consider △OBC formed by the line y = 2x, 

the x-axis, and the line x = 5. 

Find the area enclosed by the lines x = 5 and x = 2.

Geometrically it is clear that the area 

of  the shaded part is the difference between the 

areas of  △OBC and △OAD.

Area of  △OBC is 
2

1
(5 × 10) = 25 

Area of  △OAD is 
2

1
 (2 ×  4) = 4

The difference of  the areas is 25 − 4 = 21 square units. 

Use integration:
5

2

     
5

2 2 2

2
2 d 5 2 21x x x

Consider the area under the curve of  the graph of  y = 24 x

You may recognize this as the equation of  a semicircle whose center 

is the origin, and whose radius is 2. 

Using the formula for the area of  a semicircle, 

A
r

=

 2

2
, then A = =

4

2
2




Now, compare this to the result of  

2

2

4 2
- x xd , using the GDC.

x

y

h

h

b

y =    x
h

b

3210

1

3

4–1–2–3–4 x

y

(2, 0)(–2, 0)

f(x) = √4 – x2

The examples show 

the relationship 

between the de nite 

integral and areas of 

familiar shapes.

In Chapter 9 you will 

learn how to integrate 

integrals of this kind 

analytically.
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You are now ready to formalize one of  the most astonishing and 

important results of  Newton’s and Leibniz’s work: the connection 

between differentiation and integration. The theorem justifi es the 

procedures for evaluating defi nite integrals, and is still regarded as one 

of  the most signifi cant developments of  modern-day mathematics.

➔ The fundamental theorem of  calculus

If  f is continuous in [a, b] and if  F is any anti-derivative of  f on 

[a, b] then 

b

a

f  (x) dx = F (b) − F (a)

Both Newton and Leibniz approached the calculus intuitively. 

The fundamental theorem of  calculus, however, was actually 

formalized and proved by Augustin-Louis Cauchy (1789–1857). 

His proof  elegantly joined the two branches of  differential and 

integral calculus. Cauchy’s last words before he died were indeed 

self-prophetic, “Men pass away, but their deeds abide”.

Areas of irregular shapes

Look at the area under the curve y = x2 from x = 0 to x = 1 in the 

diagrams. On the left is the actual area and on the right is an 

approximation of  this area, using rectangles of  base 0.125 and 

height x2. Notice that the error in the approximation is the total area 

of  the white space between the curve and the rectangles. You can 

use the method of  exhaustion to fi ll the space 

with more rectangles of  smaller width.

0

1

0.5

1.5

1 1.50.5
x

y

0

1

0.5

1.5

1 1.50.5
x

y

Using graphing software, it is easy to change n, the number 

of  rectangles under the curve. 

Using 15 similar rectangles, the approximation of  the area under 

the curve is 0.3 square units.

Newton approached the problem 

of  nding areas by viewing the 

area function as the inverse of 

the tangent, i.e., the area function 

depended on the ratio of the 

difference of the y-values to the 

x-values, 
d

d

y

x
, and employed the use 

of innite series. Leibniz, on the 

other hand, approached the problem 

by summing the of areas of in nitely 

thin rectangles, hence the use of an 

elongated S, the integral symbol.

 [ Augustin-Lewis 

Cauchy (1789–1857) 
formalized the 
fundamental theorem 
of calculus.
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0

2

1

3

1 1.50.5–0.5–1
x

y

a = 0.3

f

using n = 15

0

2

1

3

1 1.50.5–0.5–1
x

y

a = 0.33

f

using n = 75

0

2

1

3

1 1.50.5–0.5–1
x

y

f

using n = 10000

a = 0.33328

We get a better 

approximation when n = 75.

When n = 10 000, the area is 

about 0.333 sq. units.

You have considered rectangles below the curve, the so-called lower 

bound sum. You can also approximate the area by drawing rectangles 

above the curve, the upper bound sum. This time, the error in the 

approximation is the sum of  the areas of  the purple spaces above the curve.

   Again, consider the upper bound sum with 15, 75 and then 10 000 rectangles:

0

2

1

3

1 1.50.5–0.5–1
x

y

b = 0.36741

f

n = 15

0

2

1

3

1 1.50.5–0.5–1
x

y

f

n = 75

b = 0.34003

0

2

1

3

1 1.50.5–0.5–1
x

y

f

n = 10000

b = 0.33338

When n = 15, the area is 

approximately 0.367 sq. units.

When n = 75, the area is 

approximately 0.340 sq. units.

When n = 10 000, the area is 

approximately 0.333 sq. units.

As the number of  rectangles increases, the approximate 

area approaches the actual area.

This method of approximating the area 

under a curve is called Riemann sums, 

after the German mathematician 

Georg Friedrich Bernhard Riemann

(1826–1866).

Mathematicians 

developed different 

methods to 

approximate the area 

under the curve of a 

graph. Explore some 

of these methods, 

and analyze the error 

of the approximations 

of the areas that 

these methods 

produce.
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If  f  is continuous in the interval [a, b], to 

fi nd the area under the curve of  f  (x) from 

x  =  a to x  =  b, you can divide [a, b] into n

sub-intervals of  equal length,  b a

n
, 

and call this △x. In each sub-interval, 

select the height of  the rectangle such 

that a corner of  the rectangle is on the 

curve, and call this f  (c).

Then, the area under the curve of  i such sub-intervals is 

approximated by 
i

n

=
∑

1

f  (c
i
) △x

i

x

y

0

As △ x approaches 0, the number of  rectangles n approaches 

infi nity and the approximate area approaches the actual area.

You can now ready to defi ne the area under a curve as a 

defi nite integral.

➔  If  the integral of  f  exists in the interval [a, b], and f  is 

non-negative in this interval, then the area A under the 

curve y = f  (x) from a to b is A = 
b

a

f (x) dx

Example 

Find the area bounded by the graph of y = x3, x = 0, x = 2, and the x-axis.

Answer

Since y = x3 is non-negative in the interval [0, 2]

A = 

2

0

x x
x3

4

0

2
4

4

2

4

16

4
d = = =

⎡

⎣
⎢

⎤

⎦
⎥  = 4 sq. units

Area = 4 sq. units

Confi rm on the GDC.

The area is entirely 

below the x-axis.

0 x

y

c

(c, f(c))

Δx

△ is the Greek upper 

case ‘delta’ . △x is 

“delta x”.
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Example 

Find the area of  a triangle formed by f (x) = 
x x

x x

+ − ≤ ≤−
− − ≤ ≤

⎧
⎨
⎩

4 4 1

2 1 2

,

,

a using the formula for the area of  a triangle 

b by integration.

Answers

a

0
21

1

2

3

4

5

54–2–3–4
x

y

y = 2 – xy = x + 4

D(–1, 0)A(–4, 0)

C(–1, 3)

B(2, 0)

A = 
1

2
× 6 × 3 = 9 sq. units

b Since both functions are non-negative in the interval [–4, 2]

 Area of  ΔACD 

= 

1

4

( ) ( ) ( )
( ) ( )

x x x
x+ = + = + − + −

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
4 4 4 1 4 4

2

4

1
2 2

2

1

2

4

2
d ⎜⎜

⎞

⎠
⎟

= − + =3 5 8 4 5. .  sq. units

Sketch the graph.

Area = 
1

2
 bh

Divide the triangle into two smaller 

triangles.

Area of  ΔBCD 

=

2

− 1

( ) ( ) ( )
( ) ( )

2 2 2 2 2 1
2

1

2
2

2

1

2

2

2

2

1

2
− = − − − −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝− −

x x x
x

d ⎜⎜
⎞

⎠
⎟

= + =

2

1

2 2 5 4 5. . sq. units

Hence, area of  ΔABC = 4.5 + 4.5 = 9 sq. units

Alternative solution

ΔACD ≡ ΔBCD (RHS), so area of  ΔABC = 2 × Area of  ΔACD 

Area of  ΔACD = 4.5 sq. units

Area of  ΔABC = 2 × 4.5 = 9 sq. units

Integrate to fi nd the area of  each 

triangle.

Add the areas.

Notice that the triangle is 

symmetrical about the line CD.

Now look at areas below the x-axis, 

for example, the area above the graph of  

y = x3, between x = –1 and x = 0.

Calculating the integral 

A = 

0

1

x3 dx = 
 

  
 

0
4

1

1

4 4

x

Since area is positive, take the absolute 

value: A = 
1

4
 sq. unit 

0

1

0.5

–0.5

–1

–1.5

1.5

x

y

f(x) = x3

x = –1
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➔  When f  is negative for all x ∈[a, b], then the area bounded by

the curve and the lines x = a and x = b is 

b

a

f (x)dx 

For the area below the x-axis for y = x 3

A = 
0

−1

x3dx = = − =
⎡

⎣
⎢

⎤

⎦
⎥

x 4

1

0

4
0 25 0 25. .

Confi rming this result on the GDC:

This confi rms numerically using the absolute value of  the function.

Now look at the area bounded by the graph of  y = x3, 

x = – 1, x = 1, and the x-axis.

Since the area is partly above and partly below the x-axis, 

you have to integrate the functions in the two intervals separately.

A = 
0

− 1

x 3dx + 
1

0

x 3dx = |−0.25| + 0.25 = 0.5

You can also evaluate this area graphically on the GDC by graphing 

y = |x 3|. To evaluate the integral numerically on the GDC, enter the 

integral of  the absolute value of  the function. This eliminates the 

need for separating the integrals.

0

1

0.5

–0.5

–1

–1.5

1.5

x

y

f(x) = x3
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Example 

Find the area of  the region bounded by the graph of  the function 

y = 
1

2
 (x – 1)(x + 2)(x – 3) and the x-axis and confi rm your answer graphically on the GDC.

Answer

0

1

–1

–2

–3

–4

–5

2

3

5

4 5–1–3–4
x

y

–5

Graph the function on your 

GDC. Since part of  the graph 

lies below the x-axis, integrate 

the function separately in the 

intervals where it is above and 

below the x-axis.

A = 

1

−2

1

2
( 1)( +2)( 3) dx x x x− −⎛

⎝
⎜

⎞
⎠
⎟ +

3

1

1

2
1 2 3( )( )( )x x x x− + −⎛

⎝
⎜

⎞
⎠
⎟ d

A = 

1

−2

1

2

5

2

3 2 3x x x x− − +⎛
⎝
⎜

⎞
⎠
⎟ d + 

3

1

1

2

5

2

3 2 3x x x x− − +⎛
⎝
⎜

⎞
⎠
⎟ d

= − − +
⎡

⎣
⎢

⎤

⎦
⎥

x x x
x

4 3 2

2

1

8 3

5

4
3 + +− −

⎡

⎣
⎢

⎤

⎦
⎥

x x x
x

4 3 2

1

3

8 3

5

4
3

= + − =63

8

8

3

253

24
= 10.5 sq. units to 3 sf.

A = 10.5 sq. units

On the GDC, enter the absolute 

value of  the function and the 

interval itself  as the lower and 

upper bound.

➔  The total area of  f  (x) in an interval [a, b], where its graph is 

partly above and partly below the x-axis is A = 
h

a

  f  (x) dx.
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Investigation – odd and even functions

In Example 15 f  (x) = x 3 is an odd function. 

Choose different odd functions continuous in an interval [a, b]

For your examples,  nd 

a

a

f  (x)dx

Make a conjecture and justify it. 

Does your conjecture hold when applying this de nite integral to areas? Explain.

Do the same for even functions continuous in an interval [a, b ]

Exercise 7H

Find the area of  the region bounded by the graph of  the function, 

the x-axis, and the given lines.

 y = x 4 – x, x = –1 and x = 1

 y = x 2 – 2x – 3, x = –1 and x = –3

3 y = x 2 – 2x – 3, x = –3 and x = 1

In questions 4–11, fi nd the area of  the region bounded by the graph 

of  the function, the x-axis, and the given lines.

4 y = e x – 3, x = 0, x = 3

5 y = x 4 + 3x 3 – 3x 2 – 7x + 6, x = –3; x = 1

6 y = 4 x , x = 0, x = 4

7 y = 
2

1

x
 + 1, x = 

1

2
, x = 5

8 y = 2x, x = 1, x = 2

9 y = 2e–x+1 – 1, x = 0, x = 3

10 y = 


1

2x
, x = –1, x = 2

11 y = 
2

3 4x
, x = 1, x = 3

12 Find the area of  the region bounded by the graph of  

y = −x3 + 6x2 + x – 30, its x-intercepts, and the x-axis.

13 Find the area of  the region enclosed by y = 
x x

x x

2 0 1

2 1 2

,

,

≤ <

− ≤ ≤

⎧
⎨
⎩

 and 

the x-axis.

14 Find the area of  the region enclosed by y = 
x x

x x

,

,

0 1

1 22

≤ <

≤ ≤

⎧
⎨
⎪

⎩⎪and the x-axis.

Graph the functions 

on your GDC. Find the 

areas by integration. 

Then check your 

answer on your GDC.
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The graph shows the region bounded 

by the graph of  the function y = ex; 

the y-axis, and the line y = e.

You can fi nd this area by fi rst fi nding the area of  the region 

below the curve bounded by the graph of  the function, 

the x-axis, and the lines x = 0 and x = 1. 

Then subtract this area from that of  the rectangle OABC, which 

is e sq. units. 

Hence, the area of  the desired region is 

e−

1

0

e e e e ex xxd sq. unit= − = − − =⎡⎣ ⎤⎦0

1

1 1( )

You can also obtain the result by rearranging to make x 

the subject and then integrating with respect to y, from 

y = 1 to y = e. 

If  y = ex then x = ln( y), and, A = 

e

1

ln( y)dy = 1 sq. unit

Since you don’t yet know how to integrate ln( y) analytically (this 

will be covered in chapter 9), use the GDC to confi rm the result.

Example 

Find the area of  the region bounded by the graph of  the function 

y
x

=
1

2
and the lines y = 1 and y = 4.

Answer

3210 4 5–1–2–3–4
x

y

–5

y = 4
Area

y = 1
y =

1

x2

Graph the function.

1

y
x 

A = 2

4

1

1

y
dy

A y= = −

=

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟2 4 12 4

1

2

1

4
1

2

4 sq. units

Make x the subject.

Integrate with respect to y.

1

y
dy gives the area to the right of  

the y-axis.

By symmetry, A is double the area on 

the right of  the y-axis.

Confi rm on the GDC.

2

1

3

1 1.50.50–0.5–1
x

y

y = eA B

CO

x = 1

f(x) = ex

Why does the 

alternative method 

used here not work for 

Example 18?
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Example 

Find the area of  the region bounded by the graph of  the function 

y = x3 + 1, the y-axis, and the lines y = 1 and y = 9.

Answer

0
321

6

4

2

–2

–4

8

10

4 5–1–2
x

y

Area

y = x3 
+ 1

x y= −13

A = 

9

1

( )y 1
1

3 dy

=

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −

3 1

4

3 8

4

4

3

1

9

4

3

0 12

( )

( )

y

sq. units

Alternative solution

Area of  rectangle 

OABC = 9 × 2 = 18

Area above curve 

= 18 

2

0

(x3 + 1) dx

= − = −+
⎡

⎣
⎢

⎤

⎦
⎥18 18 6

4

0

2

4

x
x

=12 sq. units

Graph the function on your GDC 

and identify the area.

Make x the subject.

Integrate with respect to y.

Confi rm on the GDC.

0
321

6

4

2

–2

–4

8

10

–1–2
x

y
y = x3 

+ 1

A B

CO

Exercise 7I

Find the areas of  the regions bounded by the function, the y-axis, 

and the given lines.

1 y = x2 + 1, y = 1, y = 10 2 y = x , y = 0, y = 4

3 y = 4 x , y = 0, y = 2 4 y = 4 − x2, y = 3, y = 4

5 y = 
1

4x 

, y = 
1

2
, y = 2
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Areas of regions between curves

The graph shows two curves f  (x) and g (x).

The regions bounded by the two curves are shaded.

0 x

y

f(x)

g(x)

Translate both graphs vertically so that both areas are 

above the x-axis.

0 x

y

f(x)

g(x)

C

A

B

The area between points A and B is the difference of  the areas 

under the curves f  (x) and g (x) from A to B. 

➔  If  functions f and g are continuous in the interval [a, b], and 

f  (x) ≥ g (x) for all x ∈[a, b], then the area between the graphs of  

f and g is 

A =

b

a

f (x) dx −

b

a

g (x) dx = 

b

a

(f (x) − g (x)) dx

   Similarly the area between points B and C is the difference of  the 

areas under the curves g (x) and f  (x) between points B and C, 

A = 

c

b

g (x) dx −

c

b

f (x) dx = 

c

b

(g (x) − f (x)) dx

To fi nd the total area between A and C, add the areas of  the 

two regions.

A translation of both 

graphs by the same 

amount in the same 

direction preserves 

the original area.
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Example 

Find the area enclosed by the graphs of  the curves 

f  (x) = 
1

2
x3 + 2x2 +2x

1

2
 and g(x) = 

1

2
 + 3x + 2x2

− 
1

2
x3

Answer

1

2
x3 + 2x2 + 2x − 

1

2
 = 

1

2
 + 3x + 2x2 1

2
x3

x3 x = 0 ⇒ x(x + 1)(x  1) = 0

x = 0, ±1

A = 

0

−1

[f  (x) g(x)] dx + 

1

0

[g(x) f  (x) dx]

A = 

0

−1

(x3 x) dx + 

1

0

(x x3) dx

A = 
x x x x4 2

1

0
2 4

0

1

4 2 2 4

⎡

⎣
⎢

⎤

⎦
⎥ + −

⎡

⎣
⎢

⎤

⎦
⎥

A = 
1

4

1

4

1

4
sq.+ =  unit

Let f(x) = g(x) to 

find the points of  

intersection of  the two 

curves.

Since the leading 

coeffi cient of  f(x) is 

positive and the leading 

coeffi cient of  g(x) is 

negative, we know that 

in the interval [–1, 0], 

f(x) > g(x) and in the 

interval [0, 1], g(x) > 

f(x).

If  we are not sure which 

function is greater in 

the given interval, it is 

suffi cient to place the 

integrals in an absolute 

value sign.

Check your answers on 

the GDC.

The total area of  the regions enclosed by the graphs of  two 

functions f and g that intersect at x = a, x = b and 

x = c, a < b < c is 

A = 

c

a

  f (x) − g (x) dx

In area problems, a region may be not be entirely enclosed between 

two functions. The next example highlights this case.
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Example 

Find the area of  the region in the fi rst quadrant that is enclosed by 

y = x , the x-axis, and the line y = x – 2.

Answer

A = R
1

+ R
2

R
1
 = 

2

0

x  dx = 
2

3

3

2

0

2

x
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 = 
4 2

3

R
2
 = 

4

2

( x  (x  2)) dx 

= 
2

3 2

3

2 2

2

4

2
x x

x

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

=
2 4

3

4

2

3

2 2( )
+ 2(4) 

2 2

3

2

2

3

2 2

2 2
( )

( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+

= 
16

3

4 2

3
2+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 

10 4 2

3

∴ A =
4 2

3
 + 

10 4 2

3

  = 
10

3

 = 3.33 sq. units to 3 sf

Sketch the graph.

32 40 1 5 f

g

R
1

R
2

2

1

3
g(x) = x – 2

f(x) = √x
(4, 2)

(2, 0)

Check on a GDC.

Exercise 7J

 In questions 1–11, fi nd the area of  the region enclosed by the graphs 

of  the curves.

Do not use a GDC for questions 1–6.

1 y = 2 – x2 and y + x = 0 

2 y = x3 and y = x2

3 y = 4 – x2 and y = 2 – x

4 y = x  and y = 
2

3x

5 y = 16 – x2 and y = x2 – 4x

✗
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6 y = x4 – 2x2 and y = 2x2

7 y = 2x3 + 5x2 + x – 2 and y = 8 – 4x – 20x2 – 8x3

8 y = x4 – 4 and y = 


1

1 x
, for x > 0

9 y = e1–x – 1; y = x ; x = 4

EXAM-STYLE QUESTION

10  In this graph, the regions bounded by the curve y = x2 and the 

lines y = 4 and y = a is equal to the region bounded by the curve 

y = x2 and y = a. Find the value of  a

3210

1

2

3

5

4–1–2–3–4
x

y

y = x2

y = a

y = 4

In questions 11–13, fi nd the area of  the region whose boundary is 

defi ned by the functions or lines.

11 y = 2 – x and y = x2

12 y = ex, y = e x, x = ±1

13 y = 
1

x
, y = 

2

3x , x-axis and x = 3

Areas and kinematics

At the beginning of  section 7.2, you found the total distance 

traveled by a particle in a given time interval by integrating the 

velocity function, evaluating the displacement at the end points of  

the interval, and then subtracting these results. The velocity in this 

case was positive throughout this interval.

Consider a similar problem where the velocity changes direction 

within the given interval. The velocity function will be partly above 

and partly below the t-axis.
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Example 

A particle moves in a straight line such that its velocity at any time t can be 

modeled by v (t) = t – t 3 ms –1. 

Find the total distance traveled by the particle in the time interval [1, 2]

Answer

Sketch the function to see if  it is 

entirely above or below the t-axis, 

or if  part of  the graph is below 

and part above the t-axis.

(1, 0)

(2, 6)

0

1

–1

–2

–3

–4

–5

–6

2

t

v

v(t) = t – t3

d(t) = 

1

0

(t t3) dt + 

2

1

(t t 3) dt  

Integrate the parts separately 

above and below the x-axis

=
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥− −t t t t2 4

0

1
2 4

1

2

2 4 2 4

= + −⎛
⎝
⎜

⎞
⎠
⎟ =− −1

4

1

2

1

4
2 52 . m

Graphically:

Numerically:

The total distance is the integral of  the 

absolute value of  the function on the 

interval [0, 2].

From example 22, you can see that:

➔  If  v is a velocity function in terms of  t, then the total distance 

traveled between times t
1
 and t

2
 = 

t
2

t
1

|v| dt
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Exercise 7K

1 A particle starts from rest and moves in a straight line. 

Its velocity at any time t seconds is given by v (t) = t (t – 4) m s–1

Find the distance traveled between the two times when the 

particle is at rest.

2 A particle moves in a straight line so that after t seconds its 

velocity is v (t) = 5 + 4t – t2 m. 

Find the total distance traveled by the particle 

a in the fi rst second

b between the fi rst second and the sixth second.

3 A particle starts from rest and its acceleration, in m s–2, can be 

modeled by a(t) = 1 – e –2t, 0 ≤ t ≤ 3. 

Find the distance traveled in the fi rst 3 seconds.

EXAM-STYLE QUESTION

4 The velocity of  a particle moving in a straight line is given by 

v(t) = 10 + 5e–0.5t m s–1

a Show that the acceleration of  the particle at any time t is 

always negative.

b Find the total distance covered in the fi rst 2 seconds.

Volumes of solids of revolution

A lathe is a machine that rotates material on its axis to make objects 

with circular cross-sections and curved sides, such as vases. 

A variety of  materials, such as metal or plastic, may be used.

In mathematics, objects like those made with a lathe are called 

solids of revolution. A solid fi gure with curved sides is obtained by 

rotating the curve through 360° about a line; for example, the x-axis.

Here is the graph of  y = 2x between x = 0 and x = 2. Rotating the 

line y = 2x about the x-axis gives a cone.

0
1.510.5

3

2

1

–2

–3

–4

4

5

2
x

y

y = 2x

–2

–3

–4

–1

3

2

1

4

5

0

y

x 0

–4

–2

6

4

2

y

y = 2x

31 2
x
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To fi nd the volume of  the cone in an interval [a, b], take cross-

sectional slices, as with the area and inscribed rectangles. These 

slices are 3-D cylinders each with radius y, and height tending to dx 

so each has volume πy2 dx. Then, to fi nd the volume of  the cone, add 

the volume of  all the cylinders, i.e., ∑π y2dx. When dx is 

infi nitesimally small,

then v = 

b

a

πy2 dx = π 

b

a

y2 dx

➔  The volume of  a solid formed when a function y = f  (x), 

continuous in the interval [a, b], is rotated 2π radians about the 

x-axis is V = π

b

a

y2 dx

The volume of  the cone obtained by rotating the line y = 2x in the 

interval [0, 2] through 2π radians about the x-axis is 

V = π

2

0

(2x)2 dx = 4π 

2

0

x2 dx = 4π 
 
 
 

2
3

0
3

x
= 4π 

 
 
 

8

3
=

32

3


cubic units

Compare this to the result obtained using the formula 

for the volume of a cone, V =  21

3
r h

V = 
 2

3
(4 )(2) = 

32

3
 cu. units

Similarly, you can fi nd the volume of  the cone formed when the line 

y = 2x is rotated 2π radians about the y-axis in the same interval.

The cylinders have radius x and height dy. 

➔  The volume of  a solid of  revolution formed when y = f  (x) in 

the interval y = c to y = d is rotated 2π radians about the y-axis 

is V = π 

d

c

x2 dy f (a) = c f  (b) = d

To fi nd the volume of  the cone formed by rotating the line 

y = 2x about the y-axis, rearrange to give x = 
2

y
. The interval [0, 2] 

on the x-axis corresponds to [0, 4] on the y axis. Then

V = π

4

0

 
 
 

2

2

y dy = 
   

   
   

4
3 3

0

4

4 3 4 3

y 
 = 

16

3


 cu. units.

y

dx

2π radians = 360°

0

–4

–2

6

4

2

y

y = 2x

31 2
x

10

2

4

2–1–2
x

y

dyx
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Example 

Find the volume of  the solid formed when the graph of  the curve y = x  in the interval [1, 4] is 

rotated 2π radians about a the x-axis b the y-axis.

Answers

a V = π 

4

1

   
   

  
  

  
4

22

1

16 1 15

2 2 2 2
d

x
x x  cu. units

b y = x ⇒ x = y2; when x = 1, y = 1; when x = 4, y = 2

V = π 

2

1

y4 dy = π 

2
5

1

32 1 31

5 3 5 5

y 
       

  
  cu.units

Use V = π 

b

a

y 2dx

Rearrange to make x the subject and 

fi nd the values of  y when x = 1 and 

x = 4

Use V = π

d

c

y2dy

Example 

Find the volume of  the solid formed when the graph of  the curve 

y = e1–x is rotated 2π radians about the x-axis between x = 0 and x = 1.

Answer

Sketch the graph.

3210

1

2

3

4 5–1
x

y

f(x) = e1 – x

(1, 1)

(0, e)

V = π 

1

0

(e1−x)2 dx = π 

1

0

e2(1−x) dx

= 2(1 ) 1

0[ ]
2

e x

= 
p

2
(1  e2)

= 
p

2
(e2

− 1) cu. units

= 10.0 (3 sf  ) cu. units

Exercise 7L

In questions 1 and 2, fi nd the volume of  the solid formed by rotating 

the region enclosed by the graph of  the function and the x-axis, 

through 2π radians about the x-axis, in the given interval.

1 y = (x – 1)2 – 1, [0, 1]

2 y = 1 + x , [0, 2]

Sangaku are Japanese 

geometrical puzzles 

in Euclidean geometry 

on wooden tablets. 

They were placed as 

offerings at Shinto 

shrines or Buddhist 

temples during the 

Edo period (1603–

1867) as offerings 

to the gods .The 

tablets were created 

using only Japanese 

mathematics. 

For example, the 

connection between 

an integral and 

its derivative (the 

fundamental theorem 

of calculus) was 

unknown, so Sangaku 

problems on areas and 

volumes were solved 

by expansions in 

in nite series and term-

by-term calculation.

You may wish to select 

a Sangaku puzzle, 

and through research 

investigate their 

method of calculating 

areas and volumes.
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3 When the graph of  the function y = 
2

2

x
 is revolved 2π radians 

about the y-axis, it models the shape of  a bowl. 

Find the volume of  the bowl between y = 0 and y = 2.

4 A paperweight is modeled by the graph of  the function 

y = 22x x  when it is revolved 2π radians about the x-axis 

between x = 1 and x = 2. 

Find the volume of  the paperweight.

   5 Find the volume of  the solid of  revolution formed when the 

graph of  the function y = 
3

2x  is revolved about the y-axis 

between y = 1 and y = 3.

6 A wine bottle stopper is modeled by the function y = 
2

12
36

x
x

Find the volume of  the stopper when it is rotated 2π radians 

about the x-axis between x = 0 and x = 6.

Now look at the volume of  a solid formed by the region 

between two curves. The graph shows the region formed 

between the curves y = 
2

x
 and y = 

2

4

x

Geometrically, the volume of  the region between the two curves 

rotated 2π radians about the x-axis is the difference in the 

volumes of  the solids formed by the curve and the x-axis. 

➔  Hence, if  f  (x) ≥ g (x) for all x in the interval [a, b], then the 

volume of  revolution formed when rotating the region between 

the two curves 2π radians about the x-axis in the interval [a, b] is 

V = π 

b

a

(  f  (x))2 dx − π 

b

a

( g (x))2 dx, or 

V = π 

b

a

 ([  f  (x)]2
− [g (x)]2  )dx

For the two curves y y
x x

= =
2 4

2

and , 

V = π

2

0

x

2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ dx − π

2

0

x
2

2

4

⎛

⎝
⎜

⎞

⎠
⎟  dx

 = π

2

0

x

2
 dx − π

2

0

x 4

16
 dx = 

  
 
 

2
2

0
2 2

x
−

  
 
 

2
5

0
16 5

x

 = 
p p p p

2
2

16

32

5 5 5

2 3( ) ⎛
⎝
⎜

⎞
⎠
⎟ = =− −p cu. units.

There are several 

methods to  nd the 

volume of a solid of 

revolution. Investigate 

the different methods, 

such as disc, shell 

and washer methods, 

and explore the 

conditions under which 

the various methods 

are employed.

3210

1

2

3

4

5

4 5–1–2
x

y

(2, 1)

y = √ x

2

y =
x
2

4

It is easy enough 

to  nd the points 

of intersection 

analytically by setting 

the two equations 

equal to each other, 

and solving for x
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Now rotate the region about the y-axis in the same interval. 

Rearrange both equations to make x the subject: 

x = 2y2 and x = 2 y

For both functions, when x = 0, y = 0 and when x = 2, y = 1, so the 

curves intersect at (0, 0) and (2, 1).

Hence, V = π

1

0

(2 y )2dy − π 

1

0

(2y2)2dy

V = 4π

1

0

ydy − 4π

1

0

y4 dy  = 4π 
y2

0

1

2

⎡

⎣
⎢

⎤

⎦
⎥ − 4π 

y5

0

1

5

⎡

⎣
⎢

⎤

⎦
⎥

= π

4

2
 − π 

4

5
= 

6

5


cu. units

➔  If  x
1
 and x

2
 are relations in y such that x

1
 ≥ x

2
for all 

y in the interval [c, d  ], then the volume formed 

when rotating the region between the two curves 2π

radians about the y-axis in the interval [c, d  ] is 

V = π

c

d 

x
1

2dy − π

c

d

x
2

2dy

or V = π

d

c

( x
1

2 − x
2

2)dy

Example  

The graphs of  x = 
y4

4
– 

y2

2
 and x = 

y2

2
 completely enclose a region. Find the volume of  the solid 

formed when this region is rotated 2π radians about the y-axis in the interval [c, d  ], c, d ≥ 0.

Answer

y y y y y
y y y y

4 2 2 4
2 2

2

4 2 2 4 4
0 1 0 0 2− = ⇒ − ⎛

⎝
⎜

⎞
⎠
⎟= ⇒ = ⇒ = = ±,

Without a graph it is safer to use the absolute value in the 

interval.

V = 

2

0

   
   
   

2 2
4 2 2

4 2 2
dy y y y  = 

2

0

y8 6

16 4

⎛
⎝
⎜

⎞
⎠
⎟

y
yd

V = π 

2
9 79 7

0

2 2 64

144 28 63144 28

y y 


 
  

 


The volume formed from y = −2 to y = 0 is twice the 

volume from y = 0 to y = 2, hence the total volume is 

64 128

63 63
2 = 6.38 cu. units

 


Confi rm on a GDC:

The astronomer Johann Kepler

(1571–1630) expanded upon 

Archimedes’ work on  nding 

volumes of irregular shapes. 

Legend has it that at his wedding, 

Kepler was distracted by the 

problem of how much wine was 

in the barrels his guests were 

being served from. The problem so 

fascinated him that he dedicated 

an entire book to its solution. 

The book, published in 1615, 

was entitled Nova stereometria 

doliorum vinariorum’ or New volume 

measurements of wine barrels. 
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Exercise 7M

1 Find the volume of  the solid formed when the region between 

the graphs of  the functions y = x and y = 
2

x
 is rotated through 

2π radians about the x-axis between x = 2 and x = 5.

2 Find the volume of  the solid formed when the region between 

the graphs of  the functions y = x – 4 and y = x2 – 4x is revolved 

2π radians about the x-axis.

3 Find the volume of  the solid formed when the region between 

the graphs of  y = x and y2 = 2x is revolved 2π radians about the 

y-axis.

4 Find the volume of  the solid formed when the region between 

the graphs of  the functions y = 2x – 1, y = x
1

2 , and x = 0 is 

revolved 2π radians about the y-axis.

Review exercise

EXAM-STYLE QUESTION

1 The gradient function of  a curve is  
2

d

d

y b

x x
ax . The curve 

passes through the point (–1,2), and has a point whose gradient 

is 0 at (–2, 0). Find the equation of  the curve.

2 Calculate the area enclosed by the graphs of  y = x2 and y2 = x

3  The region enclosed by y = 1 + 3x – x2 and y = 2

x
 for x > 0 is rotated 

2π radians about the x-axis. Find the volume of the solid formed.

4 Evaluate

a 

2

1

x
x x

+ −⎛
⎝
⎜

⎞
⎠
⎟

1 1
2 4

 dx

b

4

1

25 4x

x
 dx

c 

2

1

1

3
d

x
x

d

e

1

1

1 4
d

x
x

✗
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Review exercise

1 A particle moves in a straight line so that its velocity after 

t seconds is v (t) = t3 – 4t m s–1

Find the total distance traveled in the fi rst 3 seconds.

EXAM-STYLE QUESTION

2 The velocity of  a particle moving in a straight line is 

v(t) = t3 – 3t2 + 2 m s–1

Find the total distance traveled between the maximum and 

minimum velocities.

3 Find the total area of  the region enclosed by the graph of  

y = x2 – 4 + 
3

2
x

 and the x-axis.

4 Integrate these where possible with respect to x. 

a 

4

2

3 6x

x


b

1 1

x x
x x

  
  
  

 

c 
1

2 3x
d

2

1 4x

e 2 3 3e e+x x

5 Find the quotient when 2x 2 + 3x is divided by 2x – 1. 

Hence, evaluate 

2

1

22 3

2 1

x x

x

 
 
 

dx

6 Find the area enclosed by the graph of  y = 
1

1x +( )
, the y-axis, and 

the line y = 5.

7 Find the area enclosed by the graph of  y x= +1, and the x- and 

y-axes.

EXAM-STYLE QUESTION

8  The area enclosed by the curve y = 3x(a – x) and the x-axis is 

4 units2. Find the value of  a

9  The region between the graphs of  y = 3
x
, y = 3 x, and the lines 

x = –1 and x = 1 is rotated 2π radians about the x-axis. Find the 

volume of  the solid formed.
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CHAPTER 7 SUMMARY

Integration

● f (x)dx = F (x) + c, c ∈ 

● x n dx = 
1

1

nx

n





, n ≠ –1

● [f  (x) ± g(x)]dx = f (x)dx ± g(x)dx

● (ax + b)n dx = 
1

( 1)a n 

 (ax + b)n+1 + c, a ≠ 0

● ex dx = e x + c

● eax+b dx = 
1

a
e ax+b + c, a ≠ 0

● max+b dx = 
1

a m
c

l ( )n
max b+

+ , where m is a positive real number, a ≠ 0.

● 
1

x
x x cd = +ln| |

● 
1 1

)
ln| |

ax b a
x ax b c

+

= + +d , a ≠ 0

Defi nite integration

● 

b

a

f  (x) dx = – 

a

b

f  (x) dx

● 

a

b

f  (x) dx = 0

● 

b

a

kf  (x) dx = k 

b

a

f  (x) dx

● 

b

a

(  f  (x) ± g (x) dx = 

b

a

f  (x) dx ± 

b

a

g(x) dx

● 

b

a

f (x)dx + 

c

b

f (x)dx = 

c

b

f (x)dx

The fundamental theorem of calculus

● If  f is continuous in [a, b] and if  F is any anti-derivative of  f on [a, b] 

then 

b

a

f  (x) dx = F (b) – F (a)

Continued on next page
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Areas between graphs of functions and the axes

● If  the integral of  f  exists in the interval [a, b], and f is non-negative 

in this interval, then the area A under the curve y = f  (x) from a to b is

  A = 

b

a

f (x)  dx

● When f is negative for all x ∈ [a, b], then the area bounded by 

the curve and the lines x = a and x = b is |

b

a

f  (x) dx|

● If  functions f and g are continuous in the interval [a, b], and 

f  (x) ≥ g(x) for all x ∈ [a, b], then the area between the graphs 

of  f and g is A = 

b

a

( f (x)  – g(x))dx

Kinematics 

● If  v is a velocity function in terms of  t, then the total distance 

traveled between times t
1
 and t

2
 is 

t
2

t

|v|dt

Volumes of revolution

● The volume of  a solid formed when a function y = f  (x), 

continuous in the interval [a, b], is rotated 2π radians about 

the x-axis is V = π

b

a

y2 dx

● The volume of  a solid of  revolution formed when x = f  (y) in 

the interval y = c to y = d is rotated 2π radians about the y-axis 

is V = π

d

c
x2dy

● If  f (x) ≥ g(x) for all x in the interval [a,b], then the volume formed 

when rotating the region between the two curves 2π radians about 

the x-axis in the interval [a, b] is 

V = π
b

a

( f  (x))2dx – π

b

a

(g(x))2dx, or V = π

b

a

    ([f  (x)]2 – [g(x)]2 ) dx

●  If  x
1
 and x

2
 are relations in y such that x

1
 ≥ x

2
for all y in the 

interval [c, d  ], then the volume formed when rotating the 

region between the two curves 2π radians about the y-axis in 

the interval [c, d  ] is V = π

c

d 

x
1

2dy − π

c

d

x
2

2dy

or V = π

d

c

( x
1

2 − x
2

2)dy
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Theory of knowledge: The power of calculus380

Theory of knowledge

The power of calculus

Calculus wars
The two ‘fathers of  calculus’ were the 

British mathematician Isaac Newton and 

the German mathematician Gottfried 

Leibniz. The original dispute over who 

fi rst invented, or discovered, calculus has 

been settled in favor of  both men. The 

evidence shows that they came upon 

calculus independently of  each other, 

and within the same ten-year period.

This dispute, however, gravely affected 

them and also the further development 

of  mathematics in the early 18th century. 

It also highlighted how infl uential the 

Royal Society was in Britain and 

throughout Europe.

 What role did the Swiss 

mathematician Nicolas Fatio de 

Duillier play in this dispute? 

Were his actions ethical? 

 What was the Royal Society? 

What role did it take in resolving

the dispute? Did any organization 

in Germany support Leibniz? 

Were their actions ethical?

 What was Isaac Newton’s role in the 

Royal Society’s commission? Were 

there any ethical issues with this? 

Although several centuries would pass 

before Leibniz was fi nally acquitted of  

plagiarizing Newton’s work, it was one 

of  Newton’s supporters, Samuel Clarke, 

who together with Leibniz paved the way 

for Einstein’s Theory of  Relativity. 

Perhaps this was history’s way of  

vindicating Leibniz for his unjust 

treatment during the calculus dispute.

Expert opinion

In our search for knowledge, we often rely 

on the ‘experts’ and their experience and 

opinions. 

 How can we judge the experts’ 

expertise?

 What obligations do experts in the same 

 eld have to each other?

 What are experts’ ethical 

responsibilities in the dissemination of 

their knowledge?

Isaac Newton Gottfried Leibniz
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“Even when the experts all agree, they may well be mistaken.”

Bertrand Russell, mathematician and philosopher (1872–1970)

From calculus to chaos

Before calculus, mathematicians could use 

geometry to analyse 2-D and 3-D shapes 

such as circles, ellipses, cones and 

spheres. Calculus provided a powerful tool 

for analyzing any type of smooth curve, and 

scientists used it to model the world and 

the universe in  elds such as oceanography, 

astronomy, materials science, physics and 

engineering. The two great 20th century 

scienti c theories – relativity and quantum 

mechanics – were based on analytical 

calculus. 

But calculus only works on smooth curves 

– and in the real world not all curves are 

smooth. Chaos theory is a way of solving 

physical problems that cannot be solved by 

calculus. Although many mathematicians 

had been working on chaos theory since 

the late 19th century, it did not develop 

more fully until later in the 20th century 

when computers became available, as 

formulae.

Fractals
Fractals are an example of chaos in space. 

They are geometric shapes that do not 

become simpler the more closely you look 

at them or analyze them. They look the 

same in close up as they do from far away.

Sierpinski’s triangle, which you saw in 

Chapter 1, is an example of a fractal.

 Where else do fractals occur in nature?

 How are fractals used to create realistic 

‘natural’ environments for animated 

 lms, computer games 

and screensavers?

“Chaos is the rediscovery that calculus does not have infi nite power.”

ogy 

” A fern leaf is a fractal. Under a microscope 

its structure is more complex than you see 

with the naked eye.

{ Rocks are fractals. You 

cannot tell if you are 

looking at a close-up of 

a small boulder, or a 

mountain

lves

tical

 What is the ‘butter y effect’? 

How is this an example of 

time-chaos?



Ancient 

mathematics 

and modern 

methods 

CHAPTER OBJECTIVES:

3.2 De nition of cos θ, sin θ and tan θ in terms of the unit circle;

exact values of sin, cos and tan of 
   
, , ,

6 4 3 2
0,  and their multiples;

de nition of the reciprocal trigonometric ratios sec θ, csc θ and cot θ;

pythagorean identities: cos2θ + sin2θ = 1; 1 + tan2θ = sec2θ; 1 + cot2θ = csc2θ

3.3  Compound angle identities; double angle identities

3.4  The circular functions sin x, cos x and tan x; their domains and ranges; 

their periodic nature; their graphs; composite functions of the form 

f  (x) = asin[b(x + c) + d ]; applications

3.5  The inverse functions x → arcsin x, x → arccos x, x → arctan x; their domains 

and ranges; their graphs

3.6  Algebraic and graphical methods of solving trigonometric equations in a  nite 

interval including the use of trigonometric identities and factorization

3.7  The cosine rule; the sine rule including the ambiguous case; area of a triangle 

as 
1

2
ab Csin ; applications in two and three dimensions

8

Before you start
You should know how to:

1 Work with similar triangles,

e.g. for the shape ABCD, use similar 

triangles to fi nd the height of  C above AD.

 Construct a perpendicular from C to 

AD and draw a horizontal line through B.

 In triangle ABD, BD2 = 62 + 82 ⇒ BD = 10

 ∠ADB = ∠ DBL and ∠ DBL = ∠ BCL

 Therefore, triangles BCL and BAD 

are similar.

⇒ = ⇒ =
CL

AD

CB

BD

CL

8

5

10

 So, CL = 4.

 LM = BA = 6.

 Therefore, CM = 6 + 4 = 10.

A

B

C

D

6

8

5

A

B

C

M D

L

6

8

5

Skills check

1 Three vertical 

poles, AB, CD and 

EF, form part of  a 

hanging bridge. AC 

is horizontal. Given 

that AB = 6.5 m and 

CD = 4 m, use similar 

triangles to calculate 

the height EF.

F

A C

B

6.5m

E

D

4m
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Trigonometry and its multiple 
applications

‘How did the Egyptians plan the construction of  the pyramids 

without the aid of  trigonometry?’

The answer is that they must have had some 

knowledge of  the properties of  similar triangles, 

which lead to the development of  trigonometric 

ratios in right-angled triangles. The Ancient 

Greeks calculated the diameter of  the Earth by 

measuring the distance of  the horizon, and Thales 

determined the height of  the Cheops pyramid by 

comparing the length of  its shadow to that of  

the shadow of  a rod of  known length.

Cartography and navigation in the early 

15th century are said to have fl ourished 

because of  trigonometry and methods of  

triangulation. One could argue that we no 

longer need these antiquated methods for 

map making and navigation because in the 

21st century a click of  a button does it all 

for us. We can take a photograph with our camera and when we 

view it we not only get its image but its geographical coordinates 

and position on a map. It can also be argued that having paper maps 

in cars is no longer necessary due to the increase in use of  GPS 

(Global Positioning System) receivers. The GPS consists of  27 

satellites orbiting the Earth so that at any point on the Earth’s 

The word trigonometry

comes from the 

Greek words trigonon

meaning ‘triangle’ 

and metria meaning 

‘measure’.

Pedro Nunes,

(1502–1578) 

Portuguese 

mathematician 

Discovered a method 

to  nd the latitude 

of a point by the 

height of the sun 

and how to indicate 

this as a chart. This 

helped Portuguese 

discoverers become 

some of the best 

technical navigators of 

their era.
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surface at least four of  them are visible, and if  

one is equipped with a GPS receiver a vehicle’s 

location can be instantly calculated. So is 

trigonometry obsolete? Not at all, since a 

GPS satellite has to be accurately positioned 

in its orbit using trigonometrical calculations.

In this chapter you will approach trigonometry 

from two different perspectives. The fi rst 

considers functions of  angles where trigonometric 

functions will be defi ned in terms of  the ratios of  

the sides of  right-angled triangles. The second considers functions 

of  real numbers where trigonometric functions will be defi ned in 

terms of  real numbers.

.  The right-angled triangle and 
trigonometric ratios

The trigonometric ratios for acute angle θ in triangle ABC are:

A

C

Badjacent

opposite
hypotenuse

i

➔   
BC opposite

AC hypotenuse
sin

  
AB adjacent

AC hypotenuse
cos

  
BC opposite

AB adjacent
tan

You can use the properties of  similar triangles to show that 

the above trigonometric ratios hold for a right-angled triangle 

of  any size.

Consider the triangle ABC with a right angle at B and vertex A 

placed at the origin as shown below.

Triangles ABC and AQP are similar since they have equal 

angles – each has a right angle and an angle θ. It follows 

therefore that  
PQ BC

AP AC
sin  by our defi nition above. 

Similarly,  
AQ AB

AP AC
cos  and  

PQ BC

AQ AB
tan .

We refer to the sides 

of the triangle as 

opposite, adjacent and 

hypotenuse because 

we need the sides and 

their relative position 

to the acute angle θ

i

A

P

Q

C

B
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With these defi nitions, together with a calculator, you are now 

equipped to solve right-angled triangles as follows:

● Given any angle (other than the right angle) and the length of  

one side, you can fi nd the third angle and the lengths of  the other 

two sides.

● Given any two sides of  the triangle, you can fi nd the length of  

the third side and the sizes of  the two unknown angles.

If you want to  nd the angle, θ, whose trigonometric ratio we know 

e.g.  
5

7

sin , we use the notation 
5

7

arcsin . On the GDC this is 

denoted by sin−1

Therefore, 


   
     

   

1 1

sin

sin arcsin .
p p
q q

Example 

For each triangle, solve for unknown angles and sides.

a

Q R

7cm

72°

P b

X

Z

11cm

15cm

Y

Answers

a In triangle PQR:
QPR = 90° − 72° = 18°


   



PQ 7

PR sin72
sin72 PR

7.36 cm

QR = (7.36) 7 = 2.27 cm2 2

b In triangle XYZ:

XZ = 11 +15 =18.6 cm2 2

tan YXZ
15

11
 = ⇒

YXZ = = °⎛
⎝
⎜

⎞
⎠
⎟arctan .

15

11
53 7

YZX  = 90° − 53.7° = 36.3° 

Use the sine ratio to fi nd PR given 

PR = hyp and PQ = opp.

Use Pythagoras’ theorem to fi nd QR.

Use Pythagoras’ theorem to fi nd XZ.

Use the tangent ratio to fi nd Y XZ

given YZ = opp and YX = adj.

The GDC can calculate 

trigonometric ratios of 

any angle measured 

in either degrees or 

radians. You must 

ensure that the mode 

setting for angle 

measurement is set 

correctly.

When using a previous 

answer in a new 

calculation, make 

sure you don’t use the 

approximate answer 

to 3 sf.
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Example 

The photo shows the river Rhine and 

the building known as Langer Eugen in 

Bonn which houses the United Nations. 

The building is 114 m high.

The angles α and β from the top of  the 

tower to the edges of  the river are measured. 

Given that α = 75° and β = 19°, calculate 

the width of  the river, DC, giving 

your answer to the nearest metre.

Answer

BAC AB = °90 114, = m

AD

AB
 = tan β

 AD = 114 tan 19° ≈ 39.25 m

AC

AB
 = tan α

 AC = 114 tan 75° ≈ 425.25 m

DC = 425.45  39.25 = 386.2

Therefore, the river has a width of  

386 m.

In triangle ABD, use the tangent 

ratio to fi nd AD given 

AD = opp and AB = adj.

In triangle ABC, use the tangent ratio 

to fi nd AC given 

AC = opp and AB = adj.

The earliest mathematician to use trigonometry was a Greek 

mathematician, Hipparchus, in the second century BCE. He produced 

Chord Tables to aid in the  nding of the heights and distances of 

inaccessible objects. Ptolemy cited and used this concept about 300 

years later, but it was Aryabhatta who  rst de ned trigonometric ratios in 

terms of right-angled triangles.

Aryabhatta's book, written around 499 CE in India, contains mathematical 

rules of arithmetic, algebra and trigonometry. He talks of the "jya" meaning 

half chord. This was translated later into Latin as "sinus", which means cove 

or bay. This became the sine ratio you use today.

A D

B

C

a

b
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Example 

The solid below is made up of  a cone and a 

hemisphere.

a Find the height of  the solid.

b Show that the surface area of  the 

hemispherical base is equal to the curved 

surface area of  the cone.

Answers

a Let the height of  the cone 

be h and the radius of  the 

hemisphere be r
h

14
  = sin 60° ⇒ h

= 14sin 60° 

 = 12.12 cm
r

14
  = cos 60° ⇒ r

= 14cos 60° = 7 cm

Total height of solid  = 12.12 + 7 

= 19.12 cm

b Surface area of  solid = curved 

surface area of  hemisphere + 

area of  sector.

Length of  arc L  = 2πr

= 43.98 cm

 But L = ⇒ =

= =

q qR
L

R

43 98

14
3 14. radians

Area of  sector 

= 1

2

2 307 72q R = . cm2

Curved surface area of  

hemisphere

 = 2πr 2 = 307.87 cm2

Use the sine ratio to fi nd h given opp 

= h and hyp = 14.

Use the cosine ratio to fi nd r given adj 

= r and hyp = 14.

A cone opens up into a sector of  a 

circle when cut along a slanting edge.

The length of  the arc is equal to the 

circumference (L) of  the base of  the 

cone.

length of

arc = L

14cm

i

60°

14cm

See Section 5.8.

The formula for arc 

length, l = r and area 

of a sector, 
21

2
=A r , 

are only true when 

θis in radians.
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Exercise 8A

1 For each triangle, solve for unknown angles and sides:

a 

A

8cm

B

C

28°

b
P

7cm

4.2cm
Q

R

2 The image below illustrates how triangulation was used to 

measure the width of  a river. 

The diagram is a simplifi ed representation.

A

T

B

a

The distance AB = 30 m and the angle α = 52.3°.

Find the width of  the river.

3 The cone in the diagram below is made from the sector shown 

on the right.

r

i

15cm

{

Given that θ = 1.23 radians, fi nd φ.
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4 Milk is transported in stainless steel cylindrical 

containers mounted on trucks. The diagram below 

shows the cross-section of such a cylinder containing 

milk. The radius of  the cylinder is 1.5m and the 

height of  milk inside the cylinder is 1.8 m.

h=1.8m

r=1.5m

 Given that the cylinder has a length of  3 m, calculate the quantity 

of  milk, in cubic metres, that is being transported.

Great circles are those circles on a sphere which have the same radius 

and centre as the sphere. On a globe the Earth is divided in longitudes and 

latitudes. All longitudes are great circles but the equator is the only latitude 

which is a great circle. You may wish to research how trigonometry and great 

circles are used to solve navigational problems, such as calculating the 

amount of fuel needed for a  ight from London to São Paulo.

. The unit circle and trigonometric ratios

Consider the unit circle shown below with centre at the origin (0, 0) 

and point P on the circumference. The length of  OP is 1 and the 

coordinates of  the point P are (x, y).

x–0.5 O

–0.5

0.5

y

P(x, y)

Qi

Applying the defi nition of  the three trigonometric ratios given in the 

previous section:

➔   
OP 1

sin
y y

  
OP 1

cos
x x

  tan , 0
y

x
x

A unit circle is a circle 

with a radius of one 

unit and centre at the 

origin (0, 0).
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Trigonometric ratios for angles which are 
not acute

In the previous section, trigonometric ratios were defi ned for the 

unit circle.

  
OP 1

sin
y y

  
OP 1

cos
x x

  tan , 0
y

x
x

You can extend the defi nition of  the trigonometric functions to 

angles larger than 90° by looking at the coordinates of  the point P 

outside the fi rst quadrant. When P is in the second quadrant, θ is 

obtuse, the x-coordinate is negative and the y-coordinate is 

positive, so all the ratios except for sin θ are negative in this 

quadrant.

Consider the signs of  the coordinates of  P in each quadrant, and 

assign signs to the three ratios. This is summarized in the diagram 

below.

x–0.5

–0.5

0.5

y

P(x, y)

i

(0, –y)

(0, y)

(x, 0)(–x, 0)

cosi = 
–x

1

sini = 
y

1

sin +ve All +ve

cos +vetan +ve

tani = 
y

x

cosi = 
x

1

sini = 
y

1

tani = 
y

x

cosi = 
x

1

sini = 
–y

1

tani = 
–y

x

cosi = 
–x

1

sini = 
–y

1

tani = 
y

x

From the above diagram, we can also obtain the following identities 

for 
2

0


 

➔  sin (π − θ)  = sin θ sin (π + θ) = −sin θ sin (2π − θ) = −sin θ

cos (π − θ) = −cos θ cos(π + θ) = −cos θ cos(2π − θ) = cos θ

tan(π − θ)  = −tan θ tan(π + θ) = tan θ tan(2π − θ) = −tan θ

These results suggest that sine, cosine and tangent are periodic. 

The periodicity of  the trigonometric functions is discussed in detail 

in section 8.5.

xA B

C

2

4

2 4

y

Q

P(x, y)

The hypotenuse OP is 

always equal to 1.

For a review of radian 

measure see 

Chapter 5.

180° = π radians

360° = 2π radians
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Reciprocal trigonometric ratios

The reciprocal trigonometric ratios are defi ned as:

➔ 
1 1 1

sin cos tan
csc , sec , cot

  
    

It is very important to remember that  


  11

sin
csc sin

For example: 11

sin
sin 0.3246 csc (sin ) 3.081


      

You should also note that by defi nition:

● −1 ≤ sin θ ≤ 1 ⇒ |csc θ| ≥ 1, and 

● −1 ≤ cos θ ≤ 1 ⇒ |sec θ| ≥ 1

Example 

Write each of  these angles in terms of  acute angles.

a sin 156° b tan 140° c cos 320° d
5

cos
8

 
 
 

Answers

a sin 156° = sin (180  24)° = sin 24°

b tan 140° = tan (180  40)° = −tan 40°

c cos 320° = cos (360  40)° = cos 40°

d
5 3 3

8 8 8
cos cos cos

     
   
   

  

Use sin (π – θ) = sin θ

Use tan (π – θ) = – tan θ

Use cos (2π – θ) = cos θ

Use cos (π – θ) = – cos θ

Example 

Given that 
3

5
sin   and ,

2
0

   fi nd the exact values of cos θ and tan θ

Answer

Using Pythagoras’ theorem:
2 2AB (adjacent) 5 3 4  

Therefore,

4 3

5 4
cos and tan  

Since 
3

5
sin   and θ is an acute 

angle we can use the triangle ABC to 

solve.

xA B

C

2

4

2 4

y

Q

P(x, y)

So AB = 4, BC = 3 and AC = 5.

Recall that sin–1θ is 

used to represent 

arcsin θ, the inverse 

of sin θ. 
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Example 

Find the maximum value of  1  3 sin θ, and evaluate the smallest 

positive value of  θ for which this occurs.

Answer

–1 ≤ sin θ ≤ 1

⇒ 3 ≥ −3 sin θ ≥ −3

1 – 3 sin θ = 1 + (–3sin θ) has a 

maximum value of  4.

This value occurs when 









 

 


3

2

3sin 3

sin 1

Sine is positive in the 1st and 2nd 

quadrants.

Multiply the inequality by −3.

Exercise 8B

1 Write each of  these in terms of  acute angles.

a sin 144°  b cos 210°

c tan 230° d 
7

8
sin

 
 
 

e 
7

3
tan

 
 
 

 f 
7

6
cos

 
 
 

2 Given that 
5

13
sin   and 

2
,


    fi nd the exact values of  

cos θ and tan θ

3 Given that 
5

4
sec   and π < θ < 2π, fi nd the exact values of  

cos θ, tan θ and sin θ

4 For each trigonometric expression below write down

i the maximum value

ii the minimum value.

 State the smallest positive value of  θ for which these values occur.

a 2 + 4 cos θ

b 5 − 3 sin θ

c 2 sin  − 1

d −2 cos θ − 3

Look back at p 397 

where the 1st, 2nd, 

3rd and 4th quadrants 

are de ned.

✗
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Investigation – trigonometric identities 

Use your GDC to copy and complete the 

following table.

θ° sin θ cos θ tan θ sin (90 θ) cos (90 θ) tan (90 θ)
sin

cos




sin2θ + cos2θ

23

37

44

56

38

87

14

a Using the table above, suggest three relationships connecting 

the trigonometric ratios of θ and (90 θ).

b Write a conjecture connecting the three trigonometric ratios.

c Write a conjecture connecting sin 2θ and cos 2θ

d Use the general right-angled triangle on the right to prove 

your conjectures.

e Use your results to  nd a relationship between tan 2θ and sec 2θ

f Find a relationship between cot 2θ and csc2θ
A

B

C

c

b

a

sin2 θ is standard notation for (sinθ)2. 

On a GDC you must enter (sinθ)2

Summary of the results of the investigation

➔ Co-function identities

   sin cos 90  and    cos sin 90

➔ Tangent identity




 

sin

cos
tan

➔ Pythagorean identities

sin2θ + cos2θ = 1

1 + tan2θ = sec2θ

1 + cot2θ = csc2θ

Why do we call these 

identities? What 

is the difference 

between identities and 

equations?
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Angles and radian measure

Until now in this Chapter we have mainly used degrees for angle 

measure. You should recall that in Chapter 5, section 5.8, radians 

were introduced as another unit for angle measure.

➔   For a circle of  radius r, the angle at the centre, which subtends 

a part of  the circumference of  length r, is equal to one radian.

As the circumference of  the circle is 2π × r then the total angle 

at the centre is 2π radians which is also 360° (a complete circle).

Hence

● 2π radians = 360° or π radians = 180°

● 1 radian = 
180


 degrees and 1 degree = 

180



 radians.

You can use this information to convert between degrees and 

radians.

Consider the unit circle and the real number line as shown in the 

diagram. Point B on the circle coincides with zero on the number 

line. Imagine that you wrap the number line around the circle, 

with point B on the circle remaining fi xed. As the number line is 

wrapped around the circle, each real number on the number line is 

mapped onto a point (x, y) on the circle.

The point P on the number line coincides with P´ on the circle, the 

point Q on the number line coincides with Q´, and the points  and 

− both coincide with point A.

Notice that since the number line is infi nite you could continue 

wrapping it around the circle and if  you did this the points 2

and −2 would again coincide with point B on the circle. In fact all 

the points ± 2n, n ∈, on the number line will coincide with the 

point B on the circle. Any real number, x, on the number line will 

coincide with a unique point on the unit circle. However this point 

on the unit circle coincides with all the numbers x ± 2nn ∈, on 

the number line.

In a similar way all the angles θ ± n360, n ∈, measured in degrees 

are equivalent to the same point on a circle.

It does not really matter whether you use degrees or radians when 

measuring angles; however, when using radians you will fi nd that 

many formulae become simple.

Why do we use 

radians as an angle 

measure?

1 radian

r

r

r

3

2

1

–2

–3

O
A

P'

Q'

B

r

r

P

Q

r

r

2r

r

2

r

2

3r

2

3r

2

3

2

4

5

6

7

O
B

r

2r
r

For an introduction to 

radian measure see 

Chapter 5.
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In 1936 archeologists excavated a clay tablet in Iran, about 400 km from 

the ancient city of Babylon. The script on this tablet was translated in 1050 

and it con rmed that the Babylonians used the sexagesimal number system. 

They divided the circle into 360 degrees, subdivided into minutes and 

seconds. The tablet also gave a value of  = =

25

8
3.125

Trigonometric ratios of some special angles

Returning to the defi nitions of  the three trigonometric ratios and the 

diagram, you can evaluate the ratios for 0 and 


2
.  

sin 0 = y = 0

cos 0 = x = 1

tan 0 0
0

1
= = =y

x

2

2

1

2 0

sin 1

cos 0

tan = =  is undefined
y

x

y

x







 
 
 

 
 
 

 
 
 

 

 

Since θ = ± 2nπ is equivalent to θ = 0 and 


  
 
 

 
2

2n  is 

equivalent to 



2

 on the unit circle, you can say that:

sin ( ± 2nπ ) = y = 0

cos ( ± 2nπ ) = x = 1

tan ( ± 2nπ ) = 
0

1

y

x
 = 0

sin

cos

tan

p

p

p

p

p

p

2

2

2

1

2 1

2 0

2

± = =

± = =

±

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

n y

n x

n
y

x
= =

00
is undefined

Similarly, θ = π ± 2nπ is equivalent to θ = π and 


 
3

2
2n  is 

equivalent to 


 
3

 on the unit circle, which means that:

sin (π + 2nπ) = y = 0

cos (2nπ) = x = − 1

tan (2nπ) =  
0

1
0

y

x

sin

cos

tan

3

2

3

2

3

2

2 1

2 0

2

p

p

p

p

p

p

± = = −

± = =

±

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

n y

n x

n =
yy

x
=  is undefined

1

0

x–0.5 O

–0.5

0.5

y

P(x, y)

Qi

When  = 0 point P 

has coordinates (1, 0). 

When q
p

=
2

 point P 

has coordinates (0, 1).

 =  ± 2n is 

equivalent to 

 =  ± (2n – 2)

which means all the 

odd multiples of 

When  = π point 

P has coordinates 

(−1, 0). When 

3

2
=  point P has 

coordinates (0, −1).
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Investigation – exact values of sin, cos and tan

a The diagram on the right shows an 

isosceles right-angled triangle PQR.

Choose any value for the length of PQ to 

evaluate the trigonometric ratios for 


4
=

b The diagram on the right shows an 

equilateral triangle XYZ. A 

perpendicular from X to YZ has been 

constructed. Choose any value 

for the length of XY and evaluate the 

trigonometric ratios for 
 


3 6

= and =

P Q

R

Y T Z

X

Summary of the results of the investigation

➔ Values of sin, cos and tan for common acute angles

       
     
     

  
1 3 1

6 2 6 2 6 3
sin cos tan

sin
p

4

2

2

⎛
⎝
⎜

⎞
⎠
⎟ = cos

p

4

2

2

⎛
⎝
⎜

⎞
⎠
⎟ = tan

p

4
1

⎛
⎝
⎜

⎞
⎠
⎟ =

sin
p

3

3

2

⎛
⎝
⎜

⎞
⎠
⎟ = cos

p

3

1

2

⎛
⎝
⎜

⎞
⎠
⎟ = tan

p

3
3

⎛
⎝
⎜

⎞
⎠
⎟ =

Example 

Given that 
1

3 2
sin =  where 


       , fi nd the values 

of  cos θ and tan θ

Answer

 



 
     

 

  

2

2 1

3

8 2 2

9 3

cos = 1 sin = 1

cos = =

1

sin 13

cos 2 2 2 2

3

tan = = =





Use the identity sin 2θ + cos 2θ = 1

⇒ cos 2θ = 1  sin2θ

Since − ≤ ≤ −p q
p

2
, θ is in the 3rd 

quadrant. Therefore, cos θ is negative.

Use the identity 
sin

cos
tan =






tan θ is positive in the 3rd quadrant.

  

6 4 3
= 30°, = 45°, = 60°

tan θ can also be 

found using the 

method shown in 

Example 8. It is left 

as an exercise for you 

to use this alternative 

method to verify the 

results obtained.
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Example 

Given that 
4

3
tan = ,  fi nd the possible values of  sin θ and cos θ

Answer
2

2 4

3
sec = 1+ tan = 1+      

 

25 5

9 3

3

5

sec = ± = ±

Therefore, cos = ±





4 3 4

3 5 5
sin = tan cos = ± = ±         

   

Since tan θ > 0, θ can be in the 1st 

or 3rd quadrant.

Use the identity 1 + tan2θ = sec 2θ. 

(sec θ is positive in the 1st quadrant 

and negative in the 3rd quadrant.)

Use the identity 
sin

cos
tan =






(sin θ is positive in the 1st quadrant 

and negative in the 3rd quadrant.)

Example 

Show that 
1+ cos sin 2

sin 1+ cos sin
+

 

  
  where 

2
0 < <




Answer

 
 

 

 

 

2 2

2 2

1+ cos sin
+

sin 1+ cos

1+ cos + sin
=

sin 1+ cos

1+ 2cos + cos + sin
=

sin 1+ cos

2 + 2cos
=

sin 1+ cos

2(1+ cos ) 2
=  =

sin 1+ cos sin

 
 

 
 

  
 


 


  

Add the fractions.

Expand (1 + cosθ) 2. 

Use the identity sin 2θ + cos 2θ = 1. 

Note: with the condition 


< < ,
2

0

sinθ ≠ 0 and (1 + cosθ) ≠ 0. 

Exercise 8C

1 Given that 
    

1

4 2
sin  where , fi nd the values of  cos θ and 

tan θ

2 Given that      
12

13
cos  where 0 , fi nd the values of  sin θ

and tan θ

3 Show that sin arcsin arctan .
3

2

1

3

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− =

4 Show that 
sin 1 cos 2

1 cos sin sin

 
  
 

5 Prove the identity tan θ + cot θ ≡ sec θ csc θ and hence show that 

(sin θ + cosθ )(tan θ + cot θ) ≡ sec θ + csc θ

6 Show that cot2θ – cos2θ ≡ cos4θ csc2 θ

The equivalence 

symbol ≡ means that 

the two expressions 

either side of it are 

the same for all 

values of θ.

✗
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Investigation – cosines of compound angles

 Use this diagram with PQR = A and SQR = B to prove that 

sin(A B)  sinAcosB − cosAsinB

 Use the identities for sin(A + B) and sin(A B) to derive these 

identities.

● cos(A + B)  cosAcosB − sinAsinB

● cos(A B )  cosAcosB + sinAsinB

 Can you also derive these identities using the diagram?

A

B

P

S

R

M Q

L

. Compound angle identities

In this section you will derive useful identities, known as the 

compound angle identities, which express the trigonometric ratios 

of  the sum or difference of  two angles, A and B, in terms of  the 

ratios of  the separate angles.

Consider this diagram which shows two right-angled 

triangles PQS and RQS. PQS  = A and RQS  = B

A perpendicular, RM, has been drawn from R to PQ, 

and a line parallel to PQ is drawn from S to meet RM at L.

From the diagram, you can see that QSL  = A = ˆSRL

In triangle RMQ, 

sin( + )= RM
RQ

LM+RL
RQ

A B =
RM = LM + RL

= LM
RQ

RL
RQ

+
LM = PS since PMLS

= PS
RQ

SQ
SQ

RL
RQ

RS
RS

× + ×  

RS S

RS S
1

= PS
SQ

SQ
RQ

RL
RS

RS
RQ

× + × Rearranging

 = sin A cos B + cos A sin B

Therefore, sin (A + B)  sinA cosB + cosA sinB. This is the identity 

for the sine of  the sum of  two angles.

QSL  and PQS  are 

alternate angles.

LSR  = 90 – A since 

RSQ  = 90°

Therefore, SRL  = A

A

B

P

S

R

M Q

L
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You can now use the tangent identity, 



 

sin

cos
tan , to derive the 

compound angle identities for tangent.

tan( + )=
sin( + )

cos( +
A B

A B

A B
Expand using the identities 

for the sine and cosine of 

the sum of two angles.

= sin cos + cos sin
cos cos sin sin

A A
A A

B B
B B

Divide both the numerator and 

denominator by cosA cosB.

=

sin cos + cos sin

cos cosB

cos cos sin sin

cos cos

A B A B

A

A B A B

A B

( )

( )
Simplify.

sin sin
+

coscos

sin sin
1

cos cos

=

A B

BA

A B

A B

= tan + tan
1 tan tan

A B
A B

Therefore, tan( )
tan tan

tan tan
A B

A B

A B
+ =

+

1
. This is the identity for the 

tangent of  the sum of  two angles.

It is left as an exercise for you to show that tan( ) =
tan tan

1 + tan tan
A

A

A
B

B

B

This is the identity for the tangent of the difference of two angles.

➔ Compound angle identities

sin (A + B) = sin A cos B + cos A sin B sin(A – B) = sin A cosB + cos A sin (–B) 

cos(A + B) = cos A cos B – sin A sin B cos(A – B) = cos A cos B + sin A sinB

tan( )
tan tan

tan tan
A B

A B

A B
+ =

+

1
tan( )

tan tan

tan tan
A B

A B

A B
− =

+1

Example 

Show that 
3 +1

12 2 2
cos = .

 
 
 

Answer

12 4 6
cos = cos

     
   
   

4 6 4 6
= cos cos +sin sin

          
       
       

1 3 1 1 3 +1

2 22 2 2 2
= =  

Use the identity for the cosine of  the 

difference of  two angles.
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Example 

Show that cos(A + B) cos(A – B) ≡ cos2A – sin2B

Answer

cos (A + B) cos(A – B)

=  (cos A cos B – sin A sin B) × (cos A cos B + sin A sin B)

= cos2 A cos2 B – sin2 A sin2 B

=  cos2 A (1 – sin2 B) – sin2 A(1 – cos2 B)

=  cos2 A – cos2 A sin2 B – sin2 A + sin2 A cos2 B

= cos2 A – sin2 B

Difference of  two squares.

cos 2B = 1 – sin 2B and 

sin 2B = 1 – cos 2B using the identity 

sin 2θ + cos 2θ = 1

Expand and simplify.

Example 

Given that 
3

5
sin =  and 

12

13
sin = , where both θ and ϕ are acute angles,  

fi nd the exact value of  cos(θ – ϕ).

Answer
2

3 3 4

5 5 5
sin = cos = 1 =     

 

12 12 5

13 13 13
sin = = cos = 1 =   

 
 

 
4 5 3 12 56

5 13 5 13 65

cos = cos cos +sin sin

= + =

    

 

Use the identity sin 2θ + cos 2θ = 1

⇒ cos 2θ = 1 – sin 2θ

(θ and ϕ are acute angles so they are in the 1st 

quadrant. So sin b and sin ϕ are positive.)

Use the identity for the cosine of  the difference 

of  two angles.

Exercise 8D

1 Find the exact value of:

a sin 75° b tan 15° c sec 105°

2 Evaluate these expressions:

a cos 70° cos 10° + sin 70° sin 10° b
tan

tan

75

15

°

°

3 Given that 
  

24

2 25
0 < and sin , and 

    
3

2 5
 and sin = , 

fi nd the exact value of  tan (θ + ϕ).

4 Show that cot( )
cot cot

cot cot
A B

A B

A B
+

+
≡

1

5 Prove these identities:

a 
sin( )

cos cos
tan tan

A B

A B
A B

+
+≡ b (sin A + cos A) (sin B + cos B ) ≡ (sin A + B ) + cos(A – B )

EXAM-STYLE QUESTION

6 a Show that arctan 
1

4

 
 
 

 + arctan    
  4

3

5

 b Hence, or otherwise, fi nd the value of  arctan (4) + arctan 
5

3

 
 
 

✗
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. Double angle identities

By letting A = B = θ we can use the compound angle identities to 

obtain formulae for sin 2θ, cos 2θ and tan 2θ, that is, double angle 

identities.

➔ Double angle identities

sin 2θ = 2sinθ cosθ                         
2

2 tan

1 tan
tan 2




 

cos 2θ = cos2θ – sin2θ

 = 1– 2 sin2θ

 = 2 cos2θ –1

This example shows how to use the double angle formulae to obtain 

ratios for multiples of  an angle.

Example 

Given that sin =
2

5
A , use the double angle identities to evaluate 

sin 2 A and cos 4 A

Answer

sin = cos = 1 =
4

5

4

5

3

5

2

A A⇒ −⎛
⎝
⎜

⎞
⎠
⎟

sin2 = 2sin cos

= 2 =
4

5

3

5

24

25

A A A

× ×

cos4 = cos2(2 )

=1 2sin (2 )

=1 2 =

2

2
24

25

527

625

A A

A

− −⎛
⎝
⎜

⎞
⎠
⎟

Use the identity 

sin2 A + cos 2 A = 1

⇒ cos 2 A = 1 – sin2 A

Use the double angle identity for 

sin 2A.

In the next example compound and double angle formulae are used 

to prove identities.

Example 

Show that sin 3A = 3sin A – 4sin3 A.

Answer

sin 3A = sin A cos2 A + cos A sin 2 A

 =  sin A (1 – 2sin2 A) + cos A (2sin Acos A)

 = sin A – 2sin3 A + 2sin A cos2 A

 = sin A – 2sin3 A + 2sin A(1 – sin2 A)

 = sin A – 2sin3 A + 2sin A – 2sin3 A

sin 3A = 3sin A – 4sin3 A

Write sin 3A = sin(A + 2A) and use the identity for 

the sine of  the sum of  two angles.

Use the double angle identity for sin 2A. Since 

you want the answer in terms of  sin A, choose the 

appropriate double angle identity for cos 2A, that is, 

cos 2A = 1 – 2 sin 2 A.

Use the Pythagorean identity 

cos 2 A + sin 2 A = 1 to write cos 2 A in terms of  sin2 A.
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Example 

Express 4 − 2cos2 A in terms of  cos 2A

Answer

4 − 2cos2A = 4 − (cos 2A + 1)

 = 3 − cos 2A

The expression contains the term 

cos 2 A so use the double angle identity:

cos 2A = 2cos2A − 1

⇒ 2cos2A = cos 2A + 1

Exercise 8E

1 Use the compound angle identities to derive the double angle 

identities:

a sin 2θ = 2sinθ cosθ

b cos 2θ = cos2θ − sin2θ

c 
2

2 tan

1 tan
tan 2




 

EXAM-STYLE QUESTIONS

2 Given that   
4 7

5 25
cos and cos , fi nd the possible values 

of  cos (α + β).

3 Given that 
1

3
cos ,A  fi nd the value of  cos 2A and cos 4A

4 Show that 
  


    
   
   

  
2

2

tan 3

3 3 1 3tan
tan tan

5 Express the following in terms of  cos 2A:

a 2cos2A + sin2A b cos4A c sin4A

6 Show that:

a (1 + tan2θ)(1 – cos2θ) = 2 tan2θ

b (1 + tan2θ)(1 + cos2θ) = 2 

7 Prove these identities:

a 21 cos 2

1 cos 2
tan

A

A
A




b 
2

2

1 tan

1 tan
cos2

A

A
A




c 
sin 2

1 cos 2
cot

A

A
A

d cos 3A = 4cos3A − 3cosA

✗
Let A = B = θ, then 

sin 2θ = sin (θ + θ).
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. Graphs of trigonometric functions

Consider again the defi nitions of  the trigonometric ratios using 

the unit circle. The diagram to the right shows an angle θ moved 

through by the radius OP. P has coordinates (x, y) and 

OP
sin

y
y  

You learned that, when measuring angles in radians, 

their sizes correspond to real numbers which can be 

represented on a number line wrapped around the unit circle.

Now consider sin θ for several angles on the circle. Since sin θ is 

represented by the y-coordinate, imagine a number of  vertical 

lines from points on the circumference of  the circle to the x-axis. 

Open up the wrapped number line carrying these vertical lines to 

obtain:

0
x

21

[ The values on the x-axis correspond to the size of the angles 

and the bars correspond to the values of their sines.

Now consider 
OP

cos
x

x    and, in the same way, consider cos θ 

for several angles on the unit circle.

Since cos θ is represented by the x-coordinate, imagine a number 

of  horizontal lines from points on the circumference of  the circle 

to the y-axis. Open up the wrapped number line carrying these 

horizontal lines to obtain:

x–1

[ The values on the x-axis correspond to the size of the angles 

and the bars correspond to the values of their cosines.

Consider the end points of  these lines–these are the values for 

sinθ and cosθ for corresponding values of  θ, that is, the functions 

f  (θ) = sinθ and g (θ) = cosθ. Since θ ∈  the domain of  both 

functions will be all real values of  θ. Also, if  you wrap the whole 

number line around the unit circle, and repeat the process, the 

graphs for f  (θ) = sinθ and f  (θ) = cosθ will repeat themselves for 

every full turn. In other words, the sine and cosine functions are 

periodic with period π. Finally, the range of  these functions is 

given by –1 ≤ f  (θ) ≤ 1. 

x–0.5 O

–0.5

0.5

y

P(x, y)

Qi

To see an animation 

of the sine curve 

created by opening up 

the wrapped 

number line, go to 

http://clem.mscd.

edu/~talmanl/HTML/

SineCurve.html
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Now do the same for f  (θ) = tan θ  Since   tan , 0,
y

x
x  you know 

that with the wrapped number line tan θ is undefi ned whenever the 

line crosses the y-axis on the unit circle, that is, whenever 

q
p

= + ∈( )2 1
2

n n,  . The graph of  f  (θ) = tan θ will have vertical 

asymptotes for all these values of  θ. The domain of  the tangent 

function is therefore q q
p

∈ ≠
+( )

,
2 1

2

n
. The range of  the tangent 

function will be f  (θ) ∈ 

In order to visualize the shape of  the tangent function, consider this 

diagram which shows the unit circle and a tangent drawn at the 

point (1, 0). Triangles OPQ and OLM are similar and hence 

   
LM PQ

OM OQ
LM tan

y

x
. Therefore, the value of  tan θ is 

obtained by extending OP to meet this tangent line at L. The 

y-coordinate of  the point L is then equal to tan θ. If  you do this for 

several values of  θ, you get this graph.

–1 O

–1

–2

1

2

1

L

y

O

y

Q

i

(x, y)

P

x
r 2r

M

Note that for f  (θ) = tan θ the period of the function is π

You can summarize these results.

Domain: x ∈ 

Range: y ∈ , 

–1 ≤ y ≤ 1

Amplitude = 1

Period = 2π ⇒

sin(x + 2nπ) = sin(x) 

Odd function ⇒

sin (–x) = –sin(x) 

Domain: x ∈ 

Range: y ∈ , 

–1 ≤ y ≤ 1 

Amplitude = 1

Period = 2π ⇒

cos(x + 2nπ) = cos(x)

Even function ⇒

cos(– x) = cos(x)

Domain: 

 







2 1

2

, 

n

x

x

Range: y ∈ 

Period = π ⇒

tan(x + nπ) = tan(x)

Odd function ⇒

tan(–x) = –tan(x)

You can verify that the 

range of the tangent 

function consists of 

all real numbers by 

considering values 

of f  (θ) = tan θ as θ

approaches either 

side of the vertical 

asymptotes.

x
–1–2

O

–1

–2

1

2

1 2

M

L

y

Q

i

P(x, y)

An odd function 

satis es f  ( x) = f  (x). 

It is symmetric under 

a 180° rotation about 

the origin. An even 

function satis es 

f  ( x) = f  (x). It is 

symmetric under 

re ection in the y-axis.

See Section 2.4.

Amplitude is de ned 

as 
1

2

 (max − min)
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Example 

Use the graph of  f  (θ) = cos θ to deduce the graph and properties of  

g (θ) = sec θ

Answer

Since   1
=

f
g


  you can obtain 

the graph using this reasoning:

x–4 O

–1

–2

–3

–4

1

4

f(i) = cosi

g(i) = seci

3

2

y

 sec θ = 1 when cos θ = 1 i.e. 

at θ = ±2nπ, n ∈ 

 sec θ = −1 when cos θ = −1 

i.e. at θ = ±(2n + 1)π, n ∈ 

 g (θ) is undefi ned when 

f  (x) = 0 ⇒ vertical asymptotes 

at 
2

= ±(2 +1)n


 sec θ → ∞ as cos θ → 0+

sec θ → ∞ as cos θ → 0−

Example 

Use the graph of  y = sin x to sketch the graph of  y = 3sin 4x

Answer

Le t f  (x) = sinx and g (x) = 3 sin4x.

Then g(x) = 3f  (4x).

x–1–2
O

–4

1

4

3

2

y

g(x) = 3sin4x

Stretch the function of  y = sin x by 

a scale factor of  3 parallel to the 

y-axis. The amplitude of  g(x) is 3.

Stretch the function of  y = sin x

by a scale factor of  
1

4
 parallel 

to the x-axis.

The period of  the new function, 

g(x), is therefore 
2

4 2

p p

= .

 Exercise 8F

1 Use the graph f  (θ ) = sin θ to deduce the graph and properties 

of  g (θ ) = csc θ

2 Use the graph of  y = cos x to sketch each of  these functions.

a y = 5cos 2x b
 
 
 

 

2

cosy x

c y = – 4cos(πx)  d y = 2 cos(4x + π) + 1 

Hi-tech musical 

composers and 

developers of 

computer games 

need to use the basic 

rules of trigonometry. 

How is music related 

to trigonometric 

functions?

✗

‘Sketch’ means give a 

general shape of the 

graph, showing any 

zeros, the y-intercept, 

any asymptotes 

and any maxima or 

minima.

For a reminder about 

transforming graphs 

of functions see 

Section 2.4.
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3 Use the graph of  y = sin x to sketch each of  these functions.

a y = 3 sin x b y = sin 3x

c y = 3 sin 3x d y = 3(1 + sin(3x))

4 On the same set of  axes, sketch the graphs of  f  (x) = cos 2x and 

g (x) = 2 cos x for 0 ≤ x ≤ π. 

How many solutions are there to the equation f  (x) = g (x) in the 

interval 0 ≤ x ≤ π? 

5 For each of  these functions, determine whether they are odd or 

even, give the period of  each function and hence sketch each of  

the functions over the period 0 ≤ x ≤ 2π. 

a f  (x) = 4 sin x cos x

b g (x) = 1 – 2sin2 x

c h (x) = x sin x

Investigation – properties of the sine function

Consider the function f  (x) = a sin[b(x + c)] + d, b, c ∈  b > 0

By considering different values of a, b, c and d show that 
● the amplitude of the function is given by |a| 

● the function has a period of 
2p

b
● the line y = d is a line of symmetry

● d =

 maximum value + minimum value

2

● the function can be obtained by shifting the graph of 

y = a sin(bx) by c units to the left and d units vertically 

upwards when c, d > 0

The number c is called 

the phase shift of f  (x)

Steps for fi tting data to a sine function

For the sine function f  (x) = a sin[b(x + c)] + d:

a Calculate the amplitude 

a =

maximum value minimum value

2

b Calculate the vertical shift 

d =

maximum value + minimum value

2

c Find the value of  

b =

2p

period

d Calculate the horizontal shift by choosing given coordinates 

of  a data point.

Trigonometric 

functions of the form 

f  (x) = asin[b(x + c)] + d

apply to wave motion 

and the motion of a 

Ferris wheel. The  rst 

Ferris wheel was built 

in 1893 to a Chicago 

exhibition. The current 

tallest Ferris wheel is 

165 m (the Singapore 

Flyer), opened in 

2008.
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Example 

Find the amplitude, period, phase shift and vertical shift of  the function 

f  (x) = 2sin(4x + π) + 5. Hence, sketch the graph.

Answer

Amplitude = 2

Period = 
2

4 2
=

 

Phase shift = 
4



Vertical shift = 5

x–1 O

1

4

3

2

8

6

1 2 3 4 5 6 7

y

f(x) = 2sin(4x + r) + 5

r

2

r

4

Rewrite the function as:

( ) = + +
4

f x 2sin 4 x 5
  

  
  

Compare with  

f  (x) = a sin[b(x + c)] + d

where a = amplitude, 

= =
2 2

period b
b period

  
 
 


c = phase shift

d = vertical shift

Example 

The number of  hours of  sunlight in Wellington, the southernmost city 

in New Zealand, on the shortest day is 9.18 hours and on the longest 

day 15.13 hours.

Given that the hours of  sunlight over a year follows a function of  the 

form f  (x) = a sin[b (x + c)] + d, fi nd the values of  a, b, c and d

Use a graph of  this function to fi nd the number of  hours of  sunshine 

on 21 March 2012. 

(Assume that this is the 60th day of  the year and that there are 365 days in a year.)

Answer

For f  (x) = a sin[b(x + c)] + d; 

The amplitude of  the function is given by 

15.13 9.18

2
= 2.98 = a

The vertical shift is given by 

15.13 + 9.18

2
=12.16 = d

The period of  the function is 

2 2

b 365
= 365 = 0.0172b

 
 

So, 
2

365
( ) = 2.98sin ( + ) +12.16f x x c

 
  

The data repeats itself  every 365 days, that is, 

period = 365.

Assume that in the 

southern hemisphere 

21 June is the shortest 

day and 21 December 

is the longest day.

{ Continued on next page
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2

365
15.13 = 2.98sin (355 + ) +12.16c

 
  

2

365
2.97 = 2.98sin (355 + )c

 
  

2.97 2

2.98 365
= sin (355 + )c

 
  

2

365

2.97

2.98
(355 + ) = arcsin

=1.489

p

c
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜

⎞
⎠
⎟

1.498 365

2
355 + =c





1.498 365

2
= 355 = 268c




 

Therefore, 

2

365
( ) = 2.98sin ( 268) +12.16f x x

 
  

From the graph of  the function, there are 13.4 

hours of  sunshine on 21 March 2012.

On 21 December (longest day), 

x = 365 – 10 = 355 and f(x) = 15.13 

Substitute these values and solve for c.

Exercise 8G

1 a Find the amplitude, period and phase shift of  functions 

i and ii below.

b Calculate the minimum and maximum values and sketch 

each function.

 i 
  

  
  

  
12

( ) 7sin 6 3f x x


 ii  
 
 
 

   
2

( ) 3sin 2 5f x x


2 The voltage, V, produced by an AC generator is given by 

V(t) = 220 sin(120πt). 

a Find the maximum voltage produced.

b Find the minimum voltage produced.

c Write down the amplitude of  the function V.

d Write down the period of  the function V.

e Sketch the graph of  V over two periods starting at t = 0.
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EXAM-STYLE QUESTION

3 Water tides can be modeled by the function

h(t) = a sin [b(t + c)] + d

where h(t) is the height of  water at time t, measured in hours 

after midnight.

At Blue Harbor on Sunny Island the time between consecutive 

high tides is 12 hours. The height of  the water at high tide is 

14.4 m and the height of  the water at low tide is 1.2 m.

On a particular day the fi rst high tide occurs at 08:15.

a Use the information given to fi nd the values of  a, b, c and d

b Plot the graph of  the function and calculate the time of  the 

fi rst low tide.

A fi shing boat is only allowed to leave or enter the harbor if  the 

height of  the water is at least 5 m.

c Find the time intervals during which a boat could enter or 

leave the harbor on that particular day.

4 In Miami, Florida, the sun shines for 12.75 hours on the 21 June 

and on the shortest day there are 10.65 hours of  sunshine.

Given that the hours of  sunlight over a year follows a function 

of  the form f  (x) = a sin[b(x + c)] + d, fi nd the values of  a, b, c

and d

Use a graph of  this function to fi nd the number of  hours of  

sunshine on Independence Day, 4 July.

(Assume that there are 365 days in a year.)

. The inverse trigonometric functions

Before discussing the nature of  the inverse trigonometric functions, 

you can list the characteristics of  a function and its inverse (as 

defi ned in Chapter 2).

● The inverse f  –1(x) of  a function f  (x) exists if  and only if  f  (x) is a 

one-to-one function.

● (  f  –1
° f  ) (x) = (  f ° f  –1) (x) = x

● The domain of  f  (x) is the range of  f  –1(x) and the range of

f  (x) is the domain of  f  –1(x).

● The graph of  f  –1(x) is the mirror image of  f  (x) in the line 

y = x

The inverse sine function

You know by defi nition that: y = sin x ⇔ x = arcsin y. The graph of  

the function f  (x) = sin x is not one-to-one since for –1 < f  (x) < 1 

there are infi nitely many values of  x that give the same value for 

f  (x).

Inverse functions are 

discussed in Section 

2.3.

The horizontal line test 

shows that the function 

is not one-to-one.
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However, if  you restrict the domain of  f  (x) = sin x to the 

interval   
2 2

x
 

, the function becomes one-to-one and 

hence it will have an inverse, f  –1(x) = arcsin x

y=sin x

r

2

r

2
(    , 1)

r

2
(    ,–1)

x

1

y

–1

1

1

1.5

0.5

1

x

y

[ Domain: − ≤ ≤
p p

2 2
x

 Range: –1 ≤ y ≤ 1

[ Domain: – 1 ≤ x ≤ 1

 Range: − ≤ ≤
p p

2 2
y

The inverse cosine function

You can do the same for the function f  (x) = cos x by restricting the 

domain to 0 ≤ x ≤ π

y=cos x

xO

1

–1

y

(0,1)

(r, –1)

(1,0)

(–1,r)

y=cos–1 x

xO

r

y

1–1

[ Domain: 0 ≤ x ≤ π

 Range: –1 ≤ y ≤ 1

[ Domain: –1 ≤ x ≤ 1

 Range: 0 ≤ y ≤ π

The inverse tangent function

The function 
2 2

( ) tan , for the domainf x x x
 

     is one-to-one 

and therefore has an inverse.

y= tan x

xO

y

y = tan–1 x

xO

y

r

2

2

[ Domain: − ≤ ≤
p p

2 2
x

 Range: all real numbers

[ Domain: all real numbers

 Range: − ≤ ≤
p p

2 2
y

x–2–4–8–10 O

1
f(x) = sin x

y

A GDC often uses a 

different notation for 

inverse trigonometric 

functions.

sin–1 x = arcsin x; 

cos–1 x = arccos x; 

tan–1 x = arctan x
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The next examples show how inverse trigonometric functions 

are used in typical examination-style questions.

Example 

Write sin(arcsin a + arccos b) in terms of  a and b

Answer

Let arcsin a = θ and arccos b = ϕ. 

sin(arcsin a + arccos b)

= sin(θ + ϕ )

 = sin θ cos ϕ + cos θ sin ϕ

= + 1 12 2ab a b− −

2 2
arcsin a = sin = , < <

     

Use the identity sin2θ + cos2θ = 1 ⇒

2 2cos = 1 sin = 1 a , cos 0    

arccos b = ϕ ⇒ cos ϕ = b, 0 < ϕ < π

2 2sin = 1 cos = 1 b , sin 0    

Example 

Evaluate sin arctan cos arcsin
1

3

1

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎜

⎞
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎜

⎞
⎟

Answer

1

63
arctan

 
 

 
1 1

6 23
sin arctan sin

  
    

  
1

42
arcsin =

 
 
 

1 1

42 2
cos arcsin = cos

    
     

    

1 1

3 2

1 1 1 2

2 22

Therefore,

sin arctan cos arcsin

= =


      
     

     



1 1

3 3
Let arctan = tan =  

 
 

6
=


  
 
 


1 1

2 2
Let arcsin = sin =

=
4



Exercise 8H

1 Find the exact value of  each of  these expressions.

a 
 
  
 

2

2
cos arcsin b

 
 
 

1

2
sec arctan

c 
  
      

3

2
cos arcsin d

 
 
 

5

6
tan arctan



e 
  
  

  

3

4
arccos sin


f 

    
  

7

6
arcsin sin
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2 Find the exact value of  these expressions.

 a 
 
 
 


1 1

2 2
sin arcsin arccos

 b 
  
  

  

3 4

5 5
cos arcsin arccos

 c 
  
  

  

3

4
tan 2arctan

3 a Show that tan arcsina
a

a
( ) =

1 2

b Show that cos(arcsin a + arccos a) = 0

c Show that tan(arccos )a
a

a
=

1 2

. Solving trigonometric equations

In this section you will look at the different forms of  trigonometric 

equations and their solutions. Because of  the periodic nature of  

trigonometric functions, general solutions to trigonometric 

equations will give an infi nite number of  solutions. However, you 

will only be looking at solutions over a fi nite interval.

Simple trigonometric equations

Example 

Solve the equation sin =q
2

2
 for 0 ≤  ≤ 2

Answer

Method 1: analytic solution

5

4 4

7

4 4

= =  or 

= 2

 

 

 

 



 

Method 2: graphical solution

θ = 3.93 radians or 

θ = 5.50 radians

Since sin θ < 0, it follows that 

θ is in the 3rd or 4th quadrant. 

2

2
=

4
sin



Alternatively, use a graphical 

method to fi nd the solution.
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Trigonometric equations which are quadratic

These are equations which can be written as a sin2θ + b sin θ + c = 0 

or a cos2θ + b cos θ + c = 0 

These examples show they are solved using trigonometric identities.

Example 

Solve the equation 2 tan θ = cos θ for –π ≤ θ ≤ π. 

Answer
2 sin

cos
cos = 0






⇒ 2sin θ + cos2θ = 0 

⇒ 2sin θ + 1 – sin2θ = 0

⇒ sin2θ – 2sinθ – 1 = 0

⇒ (sin θ –1)2 = 0

⇒ sin θ = 1

2
=




Rewrite the term 2 tan θ using the 

identity =
sin

cos
tan




 . 

Multiply throughout by cos θ .

Rewrite the term cos2θ using the 

identity 

sin2θ + cos2θ = 1 ⇒

cos2θ = 1  sin2θ .

Example 

Solve the equation 3sin x cos x + sin x – 9 cos x – 3 = 0 for 0 ≤ x ≤ 2π. 

Answer

3sin x cos x + sin x – 9 cos x – 3 = 0 

⇒  sin x(3 cos x + 1) 

– 3(3 cos x + 1) = 0

⇒ (3 cos x + 1) (sin x – 3) = 0

⇒ 3 cos x + 1 = 0 or sin x – 3 = 0

⇒ cos x = 
1

3
 since sin x ≠ 3

x = 1.91 radians or x = 4.37 radians

Factorize.

Use a GDC to evaluate x.

Example 

Solve the equation 2 cos 2 = sin
x

xe x e x  for 0 ≤ x ≤ 2π. 

Answer

x = 0.432 radians

x = 2.68 radians

x = 4.45 radians

x = 5.12 radians

Using the GDC to sketch the graphs. 

Notice that there are four solutions in 

the given interval.
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Example 

Solve these equations for –π ≤ x ≤ π

a sin 2x + sin x = 0 b cos 2x + sin x = 0 

Answers

a sin 2x + sin x = 0

⇒ 2sin x cos x + sin x = 0

⇒ sin x (2cos x + 1) = 0

⇒ sin x = 0 or cos x = 
1

2

⇒ x = arcsin 0 = 0, ± π

1 2

2 3
or = arccos =x

 
 

 

Use the double angle identity 

for sine: sin 2x = 2sin x cos x.

Factorize.

b cos 2x + sin x = 0

⇒ 1 – 2sin2 x + sin x = 0

⇒ 2 sin2 x – sin x – 1 = 0

⇒ (2 sin x + 1) (sin x – 1) = 0

⇒ sin x = 
1

2
 or sin x = 1 

1 5

2 6 6
= arcsin = ,x

  
   

 

 or 
2

arcsin1x


 

Use the double angle identity for 

cosine: cos 2x = 1 – 2sin2 x.

Factorize.

Exercise 8I

1 Solve 3sin x = 2tan x where –π ≤ x ≤ π

2 The angle θ satisfi es the equation cot θ + sin θ = 6. 

Find all the possible values of  θ in the interval [q, π]. 

3 Find all the values of  θ in the interval [–π, π] which satisfy the 

equation 3cos 2θ = 2cos2 θ. 

EXAM-STYLE QUESTION

4 Given that   2 14

cos
3tan 18 0


 , fi nd the possible values for sec θ

5 Solve sin x – cos x = 1 for 0 ≤ x ≤ π

EXAM-STYLE QUESTIONS

6 Solve the equation csc θ + sin θ = 2 for –π ≤ θ ≤ π. 

7 Given that 
sin 3cos

sin cos
7

x x

x x
 fi nd the value of  tan x. Hence, 

fi nd the exact values of:

a tan 2x b
 
 
 2

tan
x

Since sin x can be 

equal to 0 we cannot 

divide throughout by 

sin x, otherwise we 

would miss three 

possible solutions.

✗

✗

✗
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8 Find all the solutions to the equation 
2

sin 2 sin
x

x x x in the 

interval 0 ≤ x ≤ 2π. 

9 Find all the solutions to the equation – 5x 2 cos 8x = tan x in the 

interval  
2

0 x


. The cosine rule

In the triangle on the right, a perpendicular has been drawn from 

B to AC. The height of  the perpendicular is h and the lengths 

of  the sides AB, AC and BC are c, b and a respectively.





   
   

  

2 2 2

2 2 2 2

2 2 2

In ABD, ( )
( )

In BDC,        

h c b x
c b x a x

h a x

Simplifying you obtain:

c 2 – (b 2 – 2bx + x 2) = a 2 – x 2 ⇒

c 2 – b 2 + 2bx = a 2 ⇒

c 2 = a 2 + b 2 – 2bx ⇒

c 2 = a 2 + b 2 – 2abcos C

In    BDC, cos cos
x

a
C x a C

Rearranging you fi nd:

 


2 2 2

2
cos

a b c

ab
C

➔ The cosine rule states for any triangle ABC with 

corresponding sides a, b and c:

 
    

2 2 2
2 2 2

2
2 cos    cos

a b c

ab
c a b ab C C

Two other forms of  the cosine rule are:

 
    

2 2 2
2 2 2

2
2 cos   cos

b c a

bc
a b c bc A A

 
    

2 2 2
2 2 2

2
2 cos   cos

a c b

ac
b a c ac B B

c
h

a

B

A b – x x CD

In this form, c is the 

side opposite the 

chosen angle, a and b

are the sides adjacent 

to the chosen angle 

and C is the chosen 

angle.

Can you derive the 

cosine rule if the 

triangle ABC looks like 

this?

A C

B

D
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The cosine rule is used to solve triangles when

● three sides are given, or

● two sides and the included angle are given.

Example 

In triangle PQR, PQ = 9 cm, QR = 16 cm 

and PR = 11 cm.

Calculate the smallest angle in the 

triangle to the nearest degree.

Answers

cos =
2 2 2

+

2
R

p q r

pq

⇒ PRQ = + −
× ×

⎛

⎝
⎜

⎞

⎠
⎟arccos

16 11 9

2 16 11

2 2 2

⇒ °PRQ = 33

The smallest angle is opposite the 

smallest side, that is, angle R.

Use the cosine rule.

Example 

In triangle ABC, the lengths of  the sides a, b and c are in the 

ratio 2 : 5 : 6 respectively.

Find the largest side of  the triangle.

Answers

cos =
2 2 2

+

2
Z

x y z

xy

⇒
× ×

XZY = arccos
2 + 5 6

2 2 5

2 2 2

 ⎛
⎜

⎞
⎟

= 110.5º (to 1 dp)

a : b : c = 2 : 5 : 6 

This means that triangle ABC is 

similar to a triangle XYZ with sides 2, 

5 and 6 units long. 

2

6

5

Y X

Z

Since similar triangles are equi-angular 

you can solve for triangle PQR.

The largest angle is opposite the largest 

side.

9

16

11

Q R

P
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Example 

From a sailing boat, B, out at sea, two lighthouses, A and C, can be seen 

on the coastline. The boat is 6 km away from A and 9 km from C.

Given that the angle ABC is 70°, what is the distance between the two 

lighthouses?

Answer

b2 = a2 + c2 – 2ac cos B

⇒ − × ×b = 9 +6 2 9 6cos70

= 8.95 (to 2 dp)

2 2

So the two lighthouses are 8.95 km 

apart.

Draw a sketch to represent the 

information given in the question.

A

B

C

70°

Use the cosine rule to fi nd the distance 

AC.

Exercise 8J

1 Use the cosine rule to fi nd the missing angles and sides of  these 

triangles.

a 

P

5

8

Q

R

30°

b 

Z

4 5

Y

X

95°

c 

A

4
5

8

B

C

2 Find the largest angle in triangle ABC given that a = 4.5 cm, 

b = 3.9 cm and c = 2.3 cm.

3 In triangle PQR the sides PQ, QR and RP are in the ratio 

3 : 2 : 4. Find the smallest angle of  the triangle.
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4 Triangle ABC has sides of  length 5, x and (2x – 1). Given 

that BAC  = 60, fi nd x and hence calculate the other two 

angles of  the triangle.

A

B

5

x

2x – 1

C

60°

5 A parallelogram ABCD has sides AB and AD of  length a

and b respectively. The diagonals AC and BD have lengths 

p and q as shown in the diagram.

A

D

a

b
p

q

B

C

 Show that p 2 + q 2 = 2(a 2 + b 2).

. The sine rule

In this triangle, a perpendicular has been drawn from B to 

AC. The height of  the perpendicular is h and the lengths 

of  the sides AB, AC and BC are c, b and a respectively.

In ABD,

In CBD,  

Δ

Δ

sin sin

sin sin

s

A h c A

C h a C

c

h

c

h

a

= ⇒ =

= ⇒ =
⇒

⎫

⎬
⎪⎪

⎭
⎪
⎪

iin sin
sin sin

A a C
c

C

a

A
= ⇒ =

Now consider the same triangle but this time with a 

perpendicular of  height H drawn from C to AB.

In BCE,

In ACE,

Δ

Δ

sin sin

sin sin

s

B H a B

A H b A

a

H

a

H

b

= =

= ⇒ =

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇒

⇒

iin sin
sin sin

B b A
a

A

b

B
= ⇒ =

A D

a

b

h
c

C

B

A

E

h

a

c

b C

B

H

D
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Combining the two results you get: 
a

A

b

B

c

Csin sin sin
= =

Alternatively: 
sin sin sinA

a

B

b

C

c
= =

➔ The sine rule states for any triangle ABC with corresponding 

sides a, b and c: 
a

A

b

B

c

Csin sin sin
= =

The sine rule is used to solve triangles when

● two angles and any side are given, or

● two sides and a non-included angle are given.

Example 

This illustration shows the angles of  elevation of  the highest point of  

the Great Pyramid of  Cheops measured from two observation points 

A and B. Given that A and B are 32 m apart, calculate the height of  the 

pyramid h

B A D

C

h

46°40°

Answer

In triangle ABC:

BC

sin134

AB

sin6
=

° °

BC = 220.22 m
32sin134

sin6

°

°
≈

In triangle BCD:

sin 40 =

220.22 sin 40

BC
°

⇒ ≈ °

h

h

Therefore, h ≈ 141.6 m.

C A B  = 180 ° – 46 ° = 134 °

AC B = 180 ° – (134 ° + 40 °) = 6 °

Apply the sine rule to triangle ABC 

given AB = 32.

Use the sine ratio given opp = h and 

hyp = BC ≈ 220.22.

Ambiguows case

Be careful when fi nding angles using the sine rule because there are 

two angles between 0° and 180° with a particular ratio for sine. In 

order to understand how this is possible, consider the same triangle 

used in the derivation of  the sine rule above.

The construction of 

the Great Pyramid of 

Cheops has amazed 

people through the 

ages. Did you know 

that the ratio of the 

side length of the 

square base to the 

height of the pyramid 

is equal to 
p

2
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Given the lengths of  two sides, BC and AB, and 

the measure of  a non-included angle, C, you can 

actually construct two triangles, ABC and ABC,  

as shown in this diagram. This is often referred 

to as the ambiguous case.

When given two sides and a non-included angle 

(the ambiguous case) it should not be assumed that

there are always two solutions for a missing angle.  

You should always check that each answer makes 

sense. This is demonstrated in Examples 31 and 32.

Example 

The diagram shows a river with a fence, 

AB, of  length 5m built at an angle of  

34° to the riverside.

Farmer Brown wants to fence off  an 

area in the shape of  a triangle ABC 

(as shown in the diagram) for his three 

goats. He has 3 m of  fencing left.

Find the angles ACB and ABC.

Answer

For triangle ABC′:

sin

5

sin34

3

5sin34

3
= sin =

′
′ ⎛

⎝
⎜

⎞
⎠
⎟

C
C

° °
⇒

′ ⎛
⎝
⎜

⎞
⎠
⎟C = arcsin = 68.7

5sin34

3

°
°

For triangle ABC:

C = sin(180 – 68.7)° = 111.3°

So, ACB  = 68.7° or 111.3°

ΔABC:

ACB   = 68.7°, ABC  = 180° – (34 + 68.7) 

= 77.3°

ΔABC: ACB  = 111.3°, 

ABC  = 180° – (34 + 111.3)° = 34.7°

You are given two sides and the non-included angle so 

you may have two solutions.

B

68.7°
111.3°

5m

3m

Solve for acute angle C ′

Use the sine rule in triangle ABC ′ given c = 5, a = 3 

and A = 34 °

Use the fact that sin(180 ° – θ) = sin θ to solve for the 

obtuse angle C.

This will give you two solutions for AC and hence the two 

possible solutions for triangle ABC.

A A'

h

a

b

C

B

D

BAC  = 180° – BAC

C

B

3m

34°A 5m

This solution can also be 

obtained using the cosine 

rule: 

Let AC = x. Then use 

the cosine rule: 

x2 + 52 – 10 x cos 34° = 92

This will give you two 

solutions for AC and 

hence the two possible 

solutions for triangle ABC.
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Example 

Consider the same situation as in 

Example 31 but with AB = 8 m making 

an angle of  40° with the riverside as 

shown in the diagram. This time farmer 

Brown has 12 m of  fencing left.

Find the angles ACB and ABC.

Answer

For acute angle C in triangle ABC:

sin

8

sin40

12

8sin40

12

8sin40

12

= sin =

= arcsin

C
C

C

° °

°

⇒ ⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ == 25.4°

For obtuse angle:

(180 – 25.4)° = 154.6°

But this is not possible because 

40° + 154.6° > 180°

So there is only one solution:

ACB  = 25.4°, 

ABC   = 180° – (40 + 25.4) 

= 114.6°

A C

B

25.40°40°

8m 12m

As with Example 31 consider the 

possibility of  two solutions.

Use the sine rule given c = 8, 

a = 12 and A = 40 °

Use sin(180 ° – θ) = sin θ to solve for 

the obtuse angle.

Exercise 8K

1 Find the unknown angles and sides in these triangles:

a 

A

B

C

30°

125° 10cm

b 

R

Q

P

45° 40°

7cm

 c

A

C

B

7cm

9cm

40°

C

B

12m
40°A

8m

In Example 32 we 

have one possible 

triangle (one solution) 

and a ≥ c
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2 A plane fl ying from P to Q followed a course from P that had 

a 15° error, as shown in the diagram below. After travelling for 

80 km, the pilot corrected the course by changing direction at 

point R and fl ew a further 150km to reach Q.

P

Q

R

150km

80km

15°

Assuming that the plane fl ew at a constant 400 km h−1, calculate 

the amount of  time (to the nearest second) that was lost due to 

the error.

3 From a hot air balloon the angles of  depression to each end of  

a lake are 68° and 32°. Given that the balloon is 250 m above 

the ground, fi nd the length of  the lake. Give your answer to the 

nearest metre.

250m

64°

32°

4 This diagram shows three points, A, B and C, on level 

ground. A vertical mast, MA, stands at A. The top of

the mast is supported by wires fastened to the ground 

at B and C.

MBA  = 64° and MC A  = 23° 

Given that B and C are 15 m apart, fi nd the length of  

both wires and the height of  the mast, MA.

5 Show that two triangles, ABC, can be drawn in which 

AB = 31 cm, AC = 27 cm and ABC  = 55°. Find the size of  

the angles of  each triangle, giving your answers to the nearest 

degree.

A B

M

C15m

64° 23°
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. Area of a triangle

Consider triangle ABC shown in the diagram on the right.

Area of  triangle ABC = 
1

2
ah

In triangle ABD, sin sinC h b C
h

b
= ⇒ =

Substituting for h we obtain:

➔  Area of  
1

2
ABC sinab C   where a and b are adjacent sides and 

C is the included angle.

C

chb

a

A

D B

Can you derive the area 

formula if the triangle 

ABC looks like this?

A

C BD

Investigation –  the sine rule and the triangle 
inequality

This diagram shows a triangle ABC. 

1cm x cm
i

B C

A

Copy and complete the table.

x (cm) θ (°) BC (cm)

0.7 26.8 0.49

0.8 0.64

0.9 50.1

1.0 1.0

1.1 70.2

1.2 1.44

Make a conjecture about your results for BC.

Investigate what happens to your results for  as you 

change values of x and the corresponding values 

of BC according to your conjecture.

Answer these questions based on your results.

● What values can x take?

● Do your results indicate any limits to the 

values x can take?

● Write the triangle inequality for the case 0< x < 1, and hence solve for x

● Write the triangle inequality for the case x ≥ 1, and solve for x

● Combine the last two results into one inequality and comment on your  ndings.

The triangle inequality states that the 

sum of the lengths of any two sides 

must be greater than the length of 

the remaining side. If the sum of the 

lengths of two sides is equal to the 

length of the third side then the three 

points are collinear.
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Example 

Find the area of  the quadrilateral 

ABCD.

Answer

Area of  triangle:

ABD = 12 5

= 30 cm

1

2
2

× ×

5

12
= arctan  

= 22.6°


 
 
 

∴ DBC  = 120° – 22.6°

    = 97.4°

BD = 5 +12

=13

2 2

Area of  triangle:

BDC = 13 18 sin97.4

=116 cm

1

2
2

× × × °

Hence, area of  ABCD  = 30 + 116 

= 146 cm2

Join B to D to obtain two triangles so 

area ABCD = area ABD + area BDC.

A 12

18

5
120°

C

D

B

i

Use tan
AD

AB

5

12
q = =  to fi nd θ

Use Pythagoras’ theorem to fi nd BD.

For DBDC, area of  triangle 

= 
1

2
bc Asin

Exercise 8L

1 Find the area of  quadrilateral PQRS.

2 Find the difference between the areas of  two possible triangles 

ABC in which

BAC  = 20°, BC = 52 cm and AC = 2BC. 

A 12cm

18cm

5cm 120°

C

D

B

P

Q

1310
125°

S

R

15
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EXAM-STYLE QUESTIONS

3 The diagram shows two chords XY and YZ drawn on a circle 

with centre O and radius 5 cm. Given that XY = 3 cm and 

YZ = 7 cm, fi nd the area of  quadrilateral OXYZ.

4 This diagram shows a mast AB of  length 12 m. C and D 

are points on the ground such that the angle of  elevation from 

C to B is 60° and the angle of  elevation from D to B is 55°. 

Given that the distance between C and D is 15 m, calculate 

the angle CAD and hence fi nd the area of  the triangle CAD.

5 In the diagram, O is the centre of  a circle with radius r

P R Q SO O = = p

4
 and R SO = p

6

a Find the area of  triangles POQ and ROS.

b Find the area of  the minor segment formed by the chord PQ.

c Find the area of  the minor segment formed by the chord RS.

d Show that the shaded area is equal to    
2

1 3 .
4

r

Review exercise

EXAM-STYLE QUESTION

1 Use the triangle on the right to show that if  tan
q

2

⎛
⎝
⎜

⎞
⎠
⎟ = t , then 

sin cosq q= =
+ +
2

1

1

12 2

t

t

t

t

and 

 Hence, solve the equation:

3 1sin cosq q+ = for 0 ≤ θ ≤ 2π

2 Find the exact value of  these expressions:

a sin 165° b tan 105° c
 

 
 

5
cos

12
d

 
 
 

tan
8

O

3cm

5cm

Y

Z

7cm

X

C

15m

B

A

12m

D

55°

60°

O

P

rr

4

r

4
r

6
Q

✗

1

i

2

t
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3 Prove these identities:

a 
cos 1

cos sin 1 tan



  


 
b

cos( )

cos cos
tan tan

A B

A B
A B+≡1

c cos3A – sin 3A ≡ (cos A + sin A)(1 – 4 cos A sin A) 

d 2 sin 2θ (1 – 2 sin2θ) ≡ sin 4θ

e 1 + 2 cos 2A + cos 4 A ≡ 4 cos2 A cos 2A

EXAM-STYLE QUESTIONS

4 Find the value of  each of  these expressions:

a os arcsin arccos
3

5

1

2
−⎛

⎝
⎜

⎞
⎠
⎟

b sin arccos2
3

5

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

c sin arctan arccos− +( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥1

4

5

5 The graph below shows the function f  (x) = A cos Bx + C, for 
 

  x
B B

xO

y

On the same set of  axes, sketch the graph of  

g x Bx C
A

( ) cos .= − +( )
2

2

6 Given that arcsin x, arccos x and arcsin(1 – x) are all acute 

angles, prove that sin[arcsin x – arccos x] ≡ 2x 2 – 1. 

Hence, showthat if  arcsin x – arccos x = arcsin(1 – x) then x = 
1

4
17 1( )

7 Use the identity tan( )
tan tan

tan tan
A B

A B

A B
+ +≡

1
 to show that if  

2
4

x y+ = p

, then tan
tan tan

tan tan
y

x x

x x
= − −

+ −
1 2

1 2

2

2
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Review exercise

1 Show that cos(A – B) – cos(A + B) ≡ 2 sin A sin B.

Use this result to solve the equation sin 3x sin x = –1 for 0 ≤ x ≤ π

2 A system of  equations is given by:

sin y + sin x = 1.1

cos y + sin 2x = 1.8

a Express y in terms of  x for each of  the equations.

b Hence, solve the system of  equations for    
2 2

0 , 0 .x y
 

EXAM-STYLE QUESTION

3 The diagram below shows a circle, centre O, inscribed in a kite 

ABCD. The sides of  the kite are tangents to the circle.

B

0.6m

D

70°15°

O

 BC = 0.6 m

BAO = °15

BOA = °70

a Calculate the size of  angle ABC.

b Find the length of  AB.

c Hence, calculate the radius of  the circle.

4 a Explain why the function 

f x
x

x
( )

sin

cos
=

+

+

2 3

4 3

0 2x  

does not have any vertical asymptotes.

b Write down the y-intercept of  f  (x). 

c Write down the x-intercepts, p and q (where p < q ).

d Sketch the graph of  f  (x), labeling any stationary points p, q

and the y-intercept.

e Given that g (x) = cos 2x, for what values of  x is f  (x) > g (x)? 

f Hence or otherwise, calculate the maximum value of f  (x) – g (x).
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5 The diagram below shows a right-angled rectangular prism 

ABCDEF.

A

D

E

M

F
C

N

B10cm

7cm

4cm

The base of  the prism ABCD is a rectangle with AB = 10 cm and 

BC = 7 cm. The face BCEF is rectangular and is perpendicular to 

the base. The height of  the prism CE = 4 cm. M is the midpoint 

of  EF and N is the midpoint of  AB.

Calculate

 a the length of  DN b the length of  DM

 c the length of  MN d the angle DMN

 e the area of  triangle DMN.

EXAM-STYLE QUESTIONS

6 a Prove that in a triangle ABC, the length of  the perpendicular 

h from C to AB is given by 
ab

c
Csin .

b This diagram shows the triangle ABC which lies on 

horizontal ground. ACB  = 150°. A mast CD stands 

vertically and is 10 m high.

Given that DBC  = 30° and DAC  = 45°, fi nd the lengths 

of  the sides of  triangle ABC and the length of  the 

perpendicular from C to AB.

7 The drive wheel of  an engine has a radius of  7 cm, and the 

pulley on the rotary pump has a radius of  3 cm. The shafts of  

the drive wheel and the pulley are 24 cm apart as shown in the 

diagram.

7cm

3cm

24cm

Calculate the length of  belt required to join the wheel and pulley 

as shown in the diagram.

A

c

a

b

C

B

A

C

D

B
30°

45°

Ancient mathematics and modern methods428



CHAPTER 8 SUMMARY

Trigonometric ratios


opposite

hypotenuse
sin 

1

sin
csc





adjacent

hypotenuse
cos 

1

cos
sec





opposite

adjacent
tan

1

tan
cot =




Values of sin, cos and tan for common acute angles
 
 
 


1

6 2
sin

  
 
 


3

6 2
cos

  
 
 


1

6 3
tan



 
 
 


2

4 2
sin

  
 
 


2

4 2
cos

  
 
 


4

tan 1


 
 
 


3

3 2
sin

  
 
 


1

3 2
cos

  
 
 


3

tan 3


For the unit circle shown below:

x–0.5 O

–0.5

0.5

y

P(x, y)

Qi

  
OP 1

sin
y y

  
OP 1

cos
x x

  tan , 0
y

x
x

Odd/even function identities

sin(–θ) = sin θ cos(–θ) = – cos θ tan(–θ) = – tan θ

Co-function identities
 
 
 

 
2

sin cos


   
 
 

 
2

cos sin


 

Tangent and cotangent identity


sin

cos
tan






cos

sin
cot




 

A

C

Badjacent

opposite
hypotenuse

i

Continued on next page
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Pythagorean identities

sin2 θ + cos2 θ = 1 1 + tan2 θ = sec2 θ 1 + cot2 θ = csc2 θ

Compound angle identities

sin(A ± B) = sin A cos B ± cos A sin B

cos(  –  ) = cos  cos   sin  sin A B A B A B


 



tan tan

1 tan tan
tan( )

A B

A B
A B

Double angle identities

sin 2θ = 2 sin θ cos θ 
2

2 tan

1 tan
tan 2






cos 2θ = cos2θ – sin2 θ

 = 1 – 2 sin2 θ = 2 cos2 θ – 1

Graphs of trigonometric functions

x

y

–2r r

–2

1

2
y = sin(x)

x

y

–2r 2r

–2

–1

0

1

2
y = cos(x)

x

y

–2r 2r

1

2

3

4

5
y = tan(x)

1

1

1.5

0.5

1

x

y

(1,0)

(–1,r)

y=cos–1
x

xO

r

y

1

y = tan–1 x

xO

y

r

2

r

2

Continued on next page
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The cosine rule

For any triangle ABC with corresponding sides a, b and c:

c 2 = a 2 + b 2 – 2ab cosC  cosC = 
a b c

ab

2 2 2

2

+ −

The sine rule

For any triangle ABC with corresponding sides a, b and c:

a

A

b

B

c

Csin sin sin
= =

Area of a triangle



1

2
sinA ab C  where a and b are adjacent sides and C is the included angle.

C

c

b

a

A

B
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Theory of knowledge: Luck + Intuition = Ingenuity432

Luck + Intuition = Ingenuity
To what extent does luck play a role in the development of  mathematics?

Theory of knowledge

The right place, at the right time
Eratosthenes of Cyrene (3rd century BCE), 

a Libyan mathematician, lived in Alexandria, 

which is on the same line of longitude as the 

city of Syene. 

On 21 June he measured the angle of 

elevation of the sun at noon in Alexandria. He 

knew that the angle of elevation of the sun at 

Syene on that day was 90° – there was a very 

deep well in the city, which only re ected the 

sun on 21 June. The difference between those 

two angles was 7.2°. 

Eratosthenes also knew the distance between 

the two cities. Using this 

distance, the 7.2° difference 

and assuming that the Earth 

is round and the rays from 

the sun are essentially 

parallel, he calculated the 

circumference of the Earth.

 Have any other 

mathematicians been 



other mathematical discoveries?

“All perceiving is also thinking, all reasoning is 

also intuition, all observation is also invention.” 

Rudolf Arnheim, German art theorist and 

psychologist (1904 2007)

where L represents the length of 

the string, g the acceleration 

due to gravity and θ the angle 

made by the string to the 

vertical line of suspension.  

This differential equation is dif cult to solve, 

because of the sinθ term. But if we replace   

sinθ by θ a solution can easily be found. The 

solution describes the motion of the 

pendulum by expressing θ as a function of 

time. However this is only true for small 

values of θ

 Why can sinθ be replaced by θ in the 

differential equation?

 How small should the angle be to justify 

this assumption?

 Pure mathematics is precise. 

Approximations are contrary to the nature 

of the subject. Explain this statement.

 The applied mathematician claims that 

approximations are justi ed when results 

are matched to observations. Why does 

the argument ‘the end justi es the means’ 

defy the claim of absolute truth in 

mathematics?

k?

d² θ

d t²
=  

–g

L
 sinθ

θ

L

l



433Chapter 8

Intuition = Perception? 

“But, despite their remoteness from sense experience, we do have 

something like a perception also for the objects of  set theory, as is seen 

from the fact that the axioms force themselves on us as being true. 

I don’t see any reason why we should have less confi dence in this kind 

of  perception, i.e. in mathematical intuition, than in sense 

perception.”

Kurt Gödel, Austro-Hungarian born mathematical logician, 

(1906–78)

 How true is Gödel’s realism about mathematics?

 How does he defend it?

Counter-intuitive results – pathological 
functions
A function has to be continuous in order to be differentiable but this 

does not mean that any continuous function is differentiable. French 

mathematician Joseph Fourier (1768–1830) showed that any 

reasonable smooth function f (θ) in the interval  < θ < , can be 

expanded as a Fourier series.

Look at the ‘saw tooth’ function shown in green.

The series f (θ) = Σ(–1)n + 1 2

n
sin(nθ) gives the black curve, 

which is an approximation of the saw tooth curve.

As the number of terms increases the function becomes a better 

approximation of the saw tooth function. When n = 10 the graph looks 

like this:

A Weierstrass Function is a special type of Fourier series.

ω(x) = Σ
1

2
n sin (2nx) = sin x + 

1

2
sin 2x + 

1

4
sin 4x + ...

 Use your GDC to graph the Weierstrass function ω(x) = Σ
1

2
n sin (2nx)

 Then graph the function ω 1(x) = Σ
1

2
n sin (2nx)

 What happens to the function as the number of terms in the series 

increases?

 Is the function periodic?

 What happens to the function as you zoom into an interval which 

you keep making smaller?

 Why is this function continuous everywhere but nowhere 

differentiable?

 How does this function compare to a fractal?

“As far as the laws 

of  mathematics 

refer to reality, they 

are not certain; 

and as far as they 

are certain, they do 

not refer to reality.”

Albert Einstein, 

Sidelights on 

Relativity

A pathological 

function is a function 

developed speci cally 

to violate an almost 

universally valid 

property. Pathological 

problems can provide 

interesting examples 

of counter-intuitive 

behavior.

5

n = 1

∞

n = 0

5

n = 0

3

n = 0

” Visualization of the derivative of a Weierstrass Function. Does this sense 

perception of the function help intuitive understanding of the function?
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CHAPTER OBJECTIVES:

6.1  De nition of a derivative from  rst principles

6.2  Derivative of sin x, cos x and tan x, sec x, csc x, cot x, arcsin x, arccos x and arctan x

6.4  Inde nite integral of sin x and cos x; other inde nite integrals using 

the results from 6.2; the composites of any of these with a linear function

6.5  Areas of regions enclosed by curves; volumes of revolution about the x-axis 

or y-axis

6.6 Kinematic problems involving displacement s, velocity v and acceleration a

6.7 Integration by substitution; integration by parts

You should know how to: 
1 Transform trigonometric expressions.

e.g. prove 
2

2 tan

1 tan
sin 2









RHS =
+

=
+

=

2

2
2 2

2

2 2

2

sin

cos

cos sin

cos

sin cos

(cos sin )

sin





 



 

 

 ccos sin = 2

2 Apply the product and quotient rules on 

x n, e x and ln x, how to do implicit 

differentiation and the chain rule.

e.g. Differentiate f x xx( ) ( )= −e ln 
2

2 1

f x x x

x x

x x

x
x

x

x

′( ) ( )

( )

= ⋅ ⋅ − + ⋅

= − +

e ln e

e ln
e

2 2

2

2

2 2 1 2

2 2 1

1

2 1

2

2 1

Skills check

1 Prove these identities.

a 
2

2

1 tan

1 tan
cos2









b 
2

2 tan

1 tan
tan 2




 

2 Find the derivative of:

a f  (x) = 3e 2x − 2x 2

b g (x) = (x + 1)  ln(x2 + 2x + 1)

c h( )x
x

x
=

+

e
2

1

Before you start
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Further calculus and applications  

The geometrical name for a doughnut shape is a 

ring torus. It is a solid of  revolution, created by 

rotating a circle about a vertical axis at the centre of  

the ‘hole’ in the torus.

In this chapter you will learn more differentiation and integration 

techniques, and use these to model and analyze real-world 

problems. Integration can be used to fi nd the volume of  a torus – or 

the volume of  dough needed to make a doughnut.

This chapter will also show you how to solve optimization 

problems– such as how to calculate the amount of  dough needed to 

create the optimum number of  doughnuts for a day’s sales, with 

minimum wastage.

You learned about 

solids of revolution in 

Chapter 7.

The torus was studied by a Greek 

geometer Pappus of Alexandria 

(290–350 CE).

There are three types of torus 

called ring, horn and spindle torus. 

Investigate the properties of these 

tori (the plural of torus).

Chapter 9 435



.  Derivatives of trigonometric functions

To fi nd derivatives of  trigonometric functions we are going to use 

the defi nition of  the derivative, i.e., differentiate from fi rst principles. 

First fi nd the values of  some trigonometric limits that will appear in 

the process.

Trigonometric limits

One of  the most useful limits that involves trigonometric functions 

is lim
sin

h

h

→0
. 

To determine its value, consider the unit circle.

x

tanh

sinh

y

Notice that the arc whose length is denoted by h can be ‘squeezed in’ 

between two vertical line segments that represent sin h and tan h values. 

From the diagram:

sin h ≤ h ≤ tan h

1
1

≤ ≤
h

h hsin cos

cos
sin

h
h

h
≤ ≤ 1

lim cos lim lim
sin

h h h

h
h

h→ → →
+ + +

≤ ≤
0 0 0

1

1 1
0

≤ ≤
→

+

lim
sin

h

h

h

lim = 1
0

sin

h

h

h→
+

Therefore since the limit from the left is equal to the limit 

from the right you can conclude that 

➔ im
sin

h

h

h→

=
0

1

Another confi rmation of  the result can be obtained 

numerically by using a calculator.

Divide by sin h

sin h ≠ 0. 

Use reciprocal values.

Take a limit h 0+

Use properties of 

limits and cos 0 = 1.

The graph of 
sin x

x

is even, so the same 

from both sides.
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The graph also confi rms that lim
sin

h

h

h→
=

0
1

Another limit that will be useful is lim
cos

h

h

h→0

1
. To fi nd its value 

use these following trigonometric identities.

2 21 cos

2 2 2
sin cos 1 2sin

     
     

    

Using this identity:

lim lim
cos

sin

h h

h

h

h

h→ →

⎛
⎝
⎜

⎞
⎠
⎟

=
0 0

2

1
2

2

= − ×
→

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

lim sin

sin

h

h

h

h

0

2

2

2

= − × = − × =
→ →

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟lim lim

sin

sin
h h

h

h

h

2
0

0

2

2

2
1 0 0

Again you can verify the value of  the limit by looking 

at the graph of  the function g x x
x

x
( ) = ≠

cos
,

1
0

Derivatives of trigonometric functions

Now you can differentiate trigonometric functions from fi rst principles. 

Example 

Find the derivative of  f  (x) = sin x from fi rst principles.

Answer

Solution 1

     


 


0
lim
h

f x h f x

h
x

   
0

sin sin
lim
h

x h x

h

 


0

sin cos cos sin sin
lim
h

x h x h x

h

 


Use the defi nition of  the derivative.

Use addition formula for sine.

0

sin cos 1
lim cos sin
h

h h

h h
x x



 
 
 



0 0

sin cos 1
cos lim sin lim

h h

h h

h h
x x

 
   

= cos x · 1 + sin x · 0 = cos x

Rewrite the expression.

Use the properties of  limits

Rewrite the square 

and fractions into a 

desirable form.

Use the results of the 

known limits.

Notice that when 

h → 0 then 
h

2

0→  too.

Derivatives of 

trigonometric 

functions from  rst 

principles are not 

examinable. The 

derivative of sine is 

included here so that 

you can understand 

the result.
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You can use the GDC to confi rm the gradient function 

of  y = sin x. First, graph f  1(x) = sin x, then graph

f  2(x) = nDeriv (sin x, x = x). This is the graph of  the 

derivative which calculates the value of  a derivative at 

all the points in the window range.

Graph f  3(x) = cos(x) and change the graphing mode to 

dashed blue. This will trace over f  2(x), so the GDC 

confi rms your analytical result.

This graphical method can be used to confi rm all the results 

of  differentiation. You need to input the function that you 

need to differentiate in f  1 and your answer in f  3.

In a similar way you can fi nd that 
d

d

cos
sin

x

x
x

( )
= − . 

You can confi rm this in Exercise 9A.

Exercise 9A

1 Use a graphical method to confi rm these results.

a 
d

d

cos
sin

x

x
x

( )
= −

b 

d

d

sin

cos

x

x
x2 1

2 2

( )
=

c 
d

d

cos
sin

3
3 3

x

x
x

( )
= −

d 
d

d

sin
cos

2 1
2 2 1

x

x
x

( )( )
( )= −

e 
d

d

tan
sec

x

x
x

( )
= 2

f 
d

d

cot
csc

x

x
x

( )
= − 2

➔
d

d

d

d

x

x

x x

x x

(sin ) cos

(cos ) sin

=

= −

Since you know the derivatives of  sine and cosine functions you can 

fi nd the derivative of  the tangent function by using the quotient rule.

nDeriv and centralDiff

are equivalent 

commands.

All of these results 

can be obtained by 

 nding derivatives 

from  rst principles 

but some of the 

calculations are 

challenging.
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Example 

Find the derivative of  f  (x) = tan x by using the quotient rule.

Answer

 
sin

cos
tan

x

x
f x x   Rewrite tangent as quotient of  

sine and cosine.

f x

x

x
x x

x

x

x
′( )

( )
⋅ − ⋅

( )

( )
=

d

d

d

d

sin
cos sin

cos

cos
2

 
2

cos cos sin sin

cos

x x x x

x

   


2 2

2

cos sin

cos

x x

x




2

2

1

cos
sec

x
x 

Apply the quotient rule.

Use the derivatives of  sin 

and cos and simplify the 

expression.

Use the fundamental 

trigonometric identity 

cos 2 x + sin 2 x = 1.

Example 

Find the derivative of  the function f  (x) = sin x  cos x

Answer

Solution 1

f x x x
x

x

x

x
′( )

( ) ( )
= ⋅ + ⋅

d

d

d

d

sin cos
cos sin

= cos x · cos x + sin x · (−sin x)

= cos2x − sin2x

Use the product rule.

Use the derivatives of  sin and 

cos.

Simplify the expression. 

Solution 2

f     (x)  = sin x · cos x

= 
1

2
sin 2x ⇒

f ′ x
x

x
( )

( )
=

1

2

2d

d

sin

= ⋅ ⋅
1

2
2 2cos x = cos 2x

Use sin 2 = 2 · sin  · cos  to 

rewrite the product.

Use the chain rule. 

Simplify the expression. 

This example looks at the derivative of  a reciprocal trigonometric 

function.

Example 

Find the derivative of  f  (x) = sec x

Answer

f (x) = sec x = (cos x)−1 ⇒

f  ′(x) = −1 · (cos x)−2 · (−sin x)

2

sin

cos

x

x
  = sec x · tan x

Secant is reciprocal cosine. 

Use the chain rule. 

Simplify and rewrite. 

These two results 

from the solutions are 

equivalent since the 

trigonometric formula 

for a cosine of double 

angle is 

cos 2 = cos2 − sin2

Write the reciprocal 

functions as composite 

functions, and then 

apply the chain rule.
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Exercise 9B

1 Differentiate with respect to x

a y = cot x b y = csc x c y = sin 3x

d y = tan (5x − 3) e y = cos (8 − 3x)  f y
x= ⎛

⎝
⎜

⎞
⎠
⎟csc

3

4

g y
x= ⎛

⎝
⎜

⎞
⎠
⎟cot

7 2

13

2 Use the chain rule to fi nd 
d

d

y

x

a y = sin (x 5 − 3) b y = cos (e x)

c y = csc (x 2 + 11) d y = cot (4x3 − 2x2 + 7x + 17)

e y = tan (ln(2x + 1)) f y x= +( )sec e 1

g y = sin (cos(tan x))

Now you can fi nd derivatives of  composite functions, products and 

quotients of  trigonometric and other functions.

Example 

Find the derivatives with respect to x of:

a y = x2 sin2x b 
3 1e

cos

x

x
y c y = ln(x2 + 1)tan 

2

Answers

a y =  x 2sin 2x

 y ' = 2x sin 2x + x 2 cos 2x · 2

= 2x sin x 2 + 2x 2 cos 2x

[= 2x (sin 2x + x cos 2x)]

b 

     



  

3 1

3 1 3 1

2

e

cos

e 3 cos e sin

cos

x

x x

x

x x

x

y

y

 


3 1 3 1

2

3e cos e sin

cos

x xx x

x

Use product rule. 

Simplify the expression.  

Use the quotient rule.

c y = ln(x 2 + 1)tan
2

x
⇒

y x
x

x

x x′ = + + ⋅
+

( )2

1 2 2

1

22

2 21tan ln sec

= + +
+

( )
2

2

1

1

2 22

2 21
x

x

x

x
x

tan
ln sec

Use product rule. 

Simplify the expression.

Notice that 

sometimes you can 

leave answers in 

a factorized form, 

especially if you 

need to do further 

calculations on the 

derivatives.

Some derivative 

expressions are very 

long and it may not be 

possible to simplify 

them.
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Gradients of curves

You can use the derivative to determine the gradient of  a function 

at a given point.

Example 

Find the gradient of  the curve y = 3x cos (2x) at the point 
5 5

,
6 4

 
 
 

 

Answer 

y =  3x cos(2x) 

⇒ y ′ =  3cos(2x) + 3x ( sin(2x) · 2)

= 3(cos(2x)  2x sin(2x))

y′ 5

6

5

6

5

6

5

6
3 2 2 2

p p p p⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= × − ⋅ ⋅ ⋅cos sin

= ⋅ =⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

3
5

3

5

3

5

3

3

1

2

3

2

cos sin
p p p

     
22

5 3

2
+ p

This result can be obtained from 

the GDC. Notice that the GDC 

gives a decimal form, 

so you need to verify our answer.

Sometimes it is easier to fi rst rewrite and simplify the trigonometric 

expression and then to differentiate it.

Example 

Find the derivative of  f  (x) = (1 + tan2 x) · (1 − sin2 x)

Answer

Solution 1 – di erentiate fi rst

f ′ x x x
x

x

x

x
( )

+( )
( ) ( )

( )
= ⋅ − + + ⋅

d

d

d

d

1 12

2 2

2

1 1
tan sin

sin tan Use the product rule. 

= (2tan x · sec2 x) · (1 − sin2 x) + (1 + tan2 x) · (−2sin x · cos x)

=  2

3 2

sin 1

cos cos
2 cos 2sin cos

x

x x
x x x    

=
sin sin

cos cos
2 2 0

x x

x x
 

Solution 2 – simplify fi rst

f  (x)  = (1 + tan2 x) · (1 − sin2 x) 

= sec2 x · cos2 x = 1 ⇒

f ′ x
x

( ) ( )= =
d

d

1
0

Use trigonometric identities to 

simplify.

Use trigonometric identities. 

Differentiate the constant.

See Chapter4.
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Exercise 9C

1 Use product and quotient rules to differentiate with respect to x

a y = (2x − 1) cos x b y = (3x − x 2) sin 2x c y = e1−x  tan x

d y
x

x
=

sin
e y

x

x
=

+2 3

2sin
f y

x

x

=
tan

2

2 Find the gradient of  the curve at the given point.

a y = sin 2x, at x = 
6


b y = cos 3x, at x = 

7

12



c y = tan (−x), at x = 
5

4


d y = (x − 2) sin x, at x = 0

e y = −3x cos x, at x = 
2


f y = x 2 tan x, at x = 

3

4



g y = e x sec x, at x = 0

3 Find the derivatives of  these expressions with respect to the 

variable indicated.

a y = sin2
α + cos2

α, α b 
tan

,
sin

y





c 
2

2 tan 2

1 tan 2
,y




 d




sin sin 2

cos cos 2
,y

 
 

e 
 


sin sin 2 cos sec

sin cos
,y

   

 


Derivatives of inverse trigonometric functions

To differentiate the inverse trigonometric functions, y = arcsin (x),

y = arccos (x) and y = arctan (x) introduced in Chapter 8, you can 

proceed as follows:

Let y = arcsin x then x = sin y so 
d

d

x

y
= cos y

Using 
d

d d

d

x

y x

y

=
1

 and sin2 x + cos2 x = 1 gives 

d

d

x

y
= 1

1 2sin y


2

1

1 x

Using this result and the chain rule you can fi nd a general formula.

If  y = arcsin 
x

a

d

d

x

y a
=

⎛
⎝
⎜

⎞
⎠
⎟

⋅ =
1

1

1 1

2 2 2
x

a

a x

➔ If  y = arcsin x then 
2

d 1

d 1

y

x x

If  y = arcsin 
x

a
 then 

d

d

y

x a x

= 1

2 2

arcsin x : 

[−1, 1] →
  

  2 2

In this interval, the 

cosine value will 

always be positive 

so don’t consider the 

negative square root.
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Example 

Find the derivative of  the function g(x) = arctan x, x  .  

Answer

tan( g (x)) = x

⇒ sec2 ( g (x)) g ′(x) = 1

⇒ g ′(x) = cos2(arctan (x))

  2

1

1 tan arctan x


=
+
1

1 2x
x, ∈

Composition of  a function and its 

inverse function gives the identity 

function.

Differentiate with respect to x by 

using the chain rule.

Rearrange to make g(x) the subject.

Use the trigonometric identity 

2

2

1

1+ tan
os =


 and simplify.

Exercise 9D

1 Find the derivatives of

a f  (x) = arccos x b f  (x) = arcsin3 x  c f  (x) = arctan(2x + 1)

2 Find 
d

d

y

x

a y = 2x arcsin x b y
x

x
= arccos

c y = (2x + 1) arctan x

d y x x= −1 2 arcsin e y = (4x 2 + 1)arctan 2x 

3 Show that these identities are valid and explain why:

a 
d

d

arcsin arccosx x

x

+( ) = 0

b 
d

d

arctan arctanx x

x

+ −( )( )
= 0

c 

d

d

2
2

12

0

arctan arcsinx
x

x

x

+
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟
=

4 Differentiate with respect to x these implicitly defi ned functions.

a x = sin y b x + y = tan y

c x + sin x = y + cos y d e sin y = x 2

e cos y
x

y
= f ln (xy) = tan 2y

See Section4.8
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Tangents and normals

As discussed in Section 4.2, equations of  a tangent and a normal to 

the curve y = f  (x) at the point (x
1
, y

1
) are given by 

y = f  ′(x
1
)(x – x

1
) + y

1
 and y = – 

  1

1

x
 (x – x

1
) + y

1
 respectively.

Example 

Given the function f  (x) = 2 sin (3x) + 1, −π < x < π, fi nd the equation of: 

a the tangent b the normal at the point where the graph 

of  the function meets the y-axis.

Answers

x = 0 ⇒ f (0) = 2 sin (3 · 0) + 1

= 1 ⇒ P (0, 1) 

f  ′(x) = 2 cos(3x) · 3 = 6 cos(3x)

x = 0 ⇒ f  ′(0) = 6 cos(3 · 0) = 6

a Tangent: 

y = f ′(0)(x  0) + 1

y = 6x + 1

b Normal:

 
 

1

0
0 1

f
y x   

1

6
1y x  

Calculate the y-coordinate of  the 

point of  intersection.

Calculate the gradient of  the curve at 

the point.

Apply the formula for the equation of  

a tangent.

Apply the formula for the equation of  

a normal.

You can confi rm our results on the 

GDC.

In this example you use implicit differentiation.

Example 

Find the equation of  the normal to the curve y + 2x = cos (xy) at the 

point P(0, 1) in the form y = mx + c

Answer

y + 2x = cos (xy)

d

d

d

d

y

x

y

x
+ = − +( )⎛

⎝
⎜

⎞
⎠
⎟2 sin xy y x

m
1
 + 2 = −sin(0·1)(1 + 0 · m

1
)

m
1

+ 2 = 0 ⇒ m
1
 = −2

m
2

= 
1

2
⇒ N : y = 

1

2
(x − 0) + 1

⇒ N : y = 
1

2
 x + 1

Differentiate the implicitly defi ned 

function with respect to x.

Find the slope of  the curve at the 

given point.

Apply the formula for a normal.

In this next example you need to use a GDC because the equation 

cannot be solved using the algebraic methods you have learned so far.

These results use the 

point-slope form of a 

straight line.

This is a good 

example of an exam-

style question.
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Example 

Graphs of  the functions f  (x) = arctan(2x) 

and g (x) = e x – 3 are given in the 

diagram. The point P is the point of  

intersection between the curves, 

the line T is the tangent to 

f at P, and N is the normal to g at P .

a Find the coordinates of P.

b Find the area of  the triangle enclosed by the tangent T, normal N

and the x-axis.

Answers

a P(1.44, 1.24), given correct to 

3 sf.

b Area = 6.82

The calculator working is shown 

here.

(a, b) are the coordinates of  P.

The slope of  the tangent T is stored 

in m and the zero of  the tangent T is 

stored in u.

The slope of  the normal N is stored 

in n and the zero of  the normal N is 

stored in v.

2 64–2–4
x

y

1

3

4

5

6

–2

–3

N

P

T

{ Continued on next page
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The base of  the triangle is calculated 

by adding the absolute value of  u 

(since u <0) and v, whilst the height 

of  the triangle is the y-coordinate of  

the point P.

Exercise 9E

1 Given a function f  (x) and the point P, fi nd the equation of the tangent.

a f  (x) = tan (3x), P (0, 0)

b f  (x) = sin (2x) – 1, P
 
 
 3

, y


c f  (x) = 2 cos 
x

2

⎛
⎝
⎜

⎞
⎠
⎟  – e 2x, P(0, 1)

d       
    

    
 

3

3 4
ln tan 2, P ,

x
f x y

2 Given a function f  (x) and the point P fi nd the equation of  the 

normal.

a f  (x) = cos(2x), P(0, 1)

b f  (x) = tan(4x), P
 
 
 16

, y


c f  (x) = 2ex sin
x

2

⎛
⎝
⎜

⎞
⎠
⎟ , P(0, y)

d f  (x) = x cos(2x) – 3, P
 
 
 2

, y


EXAM-STYLE QUESTIONS

3  Given a curve ln(x) = tan y fi nd the equation of  tangent at the 

point P(0, 1). 

4  Given a curve y + y2 = sin 2x fi nd the equation of  normal at the 

point P(0, –1).

5 Consider the curves y = cos(x 2) and y = 
2

ex  – 2.

a Find the point of  intersection between the curves that lies in 

the fi rst quadrant.

b Find the equations of  tangents to both curves at the point of  

intersection.

c Find the angle between the tangents in part b

6 Find the area of  a triangle enclosed by the y-axis, the tangent and 

the normal to the curve e y = sin x + 1 at the point P (–π, 0). 

You may need to use 

your GDC for some of 

these equations.
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Higher derivatives of trigonometric functions

Higher derivatives were discussed in Chapter 4. You can now 

investigate them for trigonometric functions.

Example 

y = x tan x

a Find 
d

d

2

2

y

x
b Calculate the exact value of  second derivative at 

3
x 



Answers

a y = x tan x ⇒
d

d

y

x
 = tan x + x × sec2 x

⇒
d

d

2

2

y

x
= sec2 x + sec2 x + x × 2 sec x ×

sec x × tan x

= 2sec2 x + 2x sec2 x tan x

= 2sec2 x (1 + x tan x)

Find the fi rst derivative 

using the product rule.

Differentiate to fi nd the 

second derivative.

Simplify.

b 
d

d

y

x

2

2

2

3 3 3 3
2 1

p p p p⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= +sec tan

= × + = +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟8 1 8

3

3

8 3

3

 

Substitute x = 
3

You can check this on a 

GDC

This example shows an interesting connection between the 

trigonometric functions sine and cosine.

Example 

Find the pattern that emerges in higher derivatives of  the function 

f  (x) = sin x

Answer

f  (x) = sin x

⇒ f  ′(x) = cos x ⇒ f  (3)(x) = cos x ⇒ f  (5)(x) = cos x

⇒ f  ″(x) = sin x ⇒ f  (4)(x) = sin x

Notice that you completed a cycle and began the same cycle again. 

f
n

x

x n k

x n k

x n k

x n k

k( ) +( ) =

= −
− = −
− = −

=

⎧ cos ,

sin ,

cos ,

sin ,

,

4 3

4 2

4 1

4

∈⎨⎨
⎪
⎪

⎩
⎪
⎪

The graph of  the cosine function is related to the 

graph of  the sine function by a horizontal translation of  


2
 units:

f n x x n
n( ) ( ) ⎛

⎝
⎜

⎞
⎠
⎟= + =sin , , , ,...



2
0 1 2 , 

where the 0th derivative is the original function itself.

You can prove this formula using mathematical induction

You may have already 

noticed that their 

graphs are similar.

This is very similar to 

the emerging pattern 

of the powers of the 

imaginary unit i

Later on in Chapter 12 

you will use the polar 

form of a complex 

number to explain this 

emerging pattern.
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Exercise 9F

1  Find the exact value of  the second derivative for these functions 

at the given value of  x

a f  (x) = tan x, x = 

3

b f  (x) = x sin x, x = 0 

c f  (x) = (x 2 + 1) cos x, x = 0 

d f  (x) = x  cos 
x

2
, x = 1 

e f  (x) = ex sin 2x, x = 


f f  (x) = 2x sec x, x = π

 Check all your answers by using a calculator.

2  Describe any emerging patterns when successively differentiating 

these functions:

a f (x) = cos x

b g (x) = sin 3x

c h (x) = cos (ax + b), a, b , a ≠ 0.

3 A function f  (x) = sin 2x defi nes a sequence in such a way that 

the general term of  the sequence is defi ned by the formula 

a
n
= ⎛

⎝
⎜

⎞
⎠
⎟f n( 1) 

8
, n = 1, 2, 3, ..., 

where the 0th derivative is the original function itself.

a Write the fi rst four terms of  the sequence.

b Find the sum of  the fi rst 10 terms of  the sequence.

EXAM-STYLE QUESTION

4 Prove the following statements by mathematical induction:

a f (x) = sin x ⇒ f (n)(x) = sin
2

n
x

 
 
 

 , n = 0, 1, 2, ...

b g (x) = cos x ⇒ g (n)(x) = sin
 1

2

n
x

  
 
 

 , n = 0, 1, 2, ...

 where the 0th derivative is the original function itself.

✗

The power of calculus448



You should now be able to differentiate a variety of  trigonometric 

functions. These results will be useful when doing further integrals.

Example 

Find the derivatives of

a f ( ) ln
sin

cos
x c

x

x
= ++⎛

⎜
⎞
⎟

1

b f x
x

x
( ) ⎛

⎝
⎜

⎞
⎠
⎟= ln

cos

sin1

c f  (x) = ln(tan x + sec x)

Answers

a f ′ x
x

x

x x x x

x
( )

+

− − +( ) ( )
=

⋅ ⋅1

1

1
2sin

cos

cos cos sin sin

cos

2

2 2cocos + sin +

1+ sin cos

s sin
= ×

x xx x

x x

= ⋅

=

+

+1

1

1

sin

sin

cos

sec

x

x

x

x

b f ′ x
x

x

x x x x

x
( )

− ⋅ −( ) − ⋅ −( )

( )
= ⋅

1

1

1

1
2cos

sin

sin sin cos cos

sin

2

2

2sin1 sin sin cos

cos 1 sin

x xx x

x x

   

= ⋅

=

1

1

1

cos

sin

sin

sec

x

x

x

x

c f ′ x x x x
x x

( )
+

( )= ⋅ +
1 2

tan sec
sec sec tan

=

=

sec sec tan

tan sec

( )

sec

x x x

x x

x

+

+

Use 
d

dx
x( ln ) = 

1

x  and product rule.

1

cos
sec

x
x=

Plot and compare the 

graphs of the three 

functions. 

What do you notice?

Chapter 9 449



.  Related rates of change with 
trigonometric expressions

The derivative of  a function, y = f  (x), measures the rate of  change 

of  the independent variable, y, with respect to a change in the 

dependent variable, x.

Example 

A 10 m long industrial ladder is leaning against a wall on a building 

construction site. It starts to slip down the wall at a rate of  0.5 ms 1. 

How fast is the angle between the ladder and the ground changing 

when the vertical height of  the ladder is 8 m?

Answer

i

y 10

Sketch a diagram representing the 

given information.

d

d

y

t
= −0 5. and y = 8

You need to fi nd
d

d

q

t
.  

10
sin

y


cosq
qd

d

d

dt t
= 1

10

y

8 4

10 5
8 siny    

2
4 3

1
5 5

cos
 
 
 

  

3

5

1

10

1

2
⋅ = ⋅ − ⇒⎛

⎝
⎜

⎞
⎠
⎟

d

d

d

d

q q

t t

1

12
  cs 1

So the angle is decreasing at a 

rate of  
1

12
 cs 1 or 4.77° s 1

Write down the given information, 

and what you are asked to fi nd.

Identify the relationship between the 

height of  the ladder and the angle.

Differentiate implicitly with respect 

to time.

Evaluate sin θ at y = 8.

Use cos θ = 1 sin2− q .

Substitute and solve.

Notation °s –1 denotes radians per 

second.

Interpret your answer in the context 

of  the problem.

°g–1 denotes degrees per second
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Example 

There are two ships at sea, Zadar and Rab. At a given moment Zadar is 40 km south and 50 km 

east of  Rab. Zadar sails north at a rate of  12 kmh 1, whilst Rab sails east at a rate of  15 kmh 1. 

a How fast are the two ships approaching each other after 2 hours?

b How fast is the bearing of  Zadar from Rab changing after 2 hours?

Answers

W E

N

S

50km

Z
Y

X

40km

i
Rab

Zadar

a Given that x t
x

t
= − ⇒ = −50 15 15

d

d

and y t
y

t
= − ⇒ = −40 12 12

d

d

 you need to fi nd 
d

d

z

t

z2 = x2 + y2

2 2 2z x y
z

t

x

t

y

t

d

d

d

d

d

d
= +

z x y
z

t

x

t

y

t

d

d

d

d

d

d
= +

x = 50 – 15·2 = 20

y = 40 – 12·2 = 16

z = 2 220 16  = 25.612 . . . 

 25.6 
d

d

z

t
 = 20 · (–15) + 16 · (–12)

d

d

z

t
= = −

492

25 6
19 2 kmh 1, correct to 3 sf.

So the distance between the two ships is 

decreasing at a rate of  19.2 kmh 1

b Given that 
d

d

x

t
= −15 and 

d

d

y

t
= −12

you need to fi nd 
d

d

q

t
.  

Sketch a diagram representing the given 

information.

Write down the given information, and what we are 

asked to fi nd.

Identify the relationship between the variables using 

Pythagoras’ theorem.

Differentiate as an implicit function with respect to 

time.

Simplify.

Calculate x, y and z when t = 2.

Substitute and solve.

Interpret your answer in the context of  the problem.

Notice that the bearing of  Zadar from Rab is 90°+ θ, 

therefore the bearing is changing at the same rate as 

the angle θ itself.

Write down the given information, and what you 

are asked to fi nd.

{ Continued on next page
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tan
y

x


sec2

2
q ⋅ =

⋅ − ⋅
d

d

d

d

d

dθ

t

y

t
x y

x

t

x

x = 50 – 15.2 = 20

y = 40 – 12.2 = 16
2

216 4 4 41

20 5 5 25
tan sec 1

 
 
 

      

41

25

12 20 16 15

202
⋅ =

− ⋅ − ⋅ −( )d

d

q

t

d

d

q

t
= 0°h 1

 So the bearing is not changing at all.

Identify the relationship between the variables.

Differentiate as an implicit function with respect 

to time.

Calculate x, y and z when t = 2.

Substitute and solve.

Notice that the bearing from one ship to another 

is not changing since the ratio of  the initial 

positions of  the ships is equal to the ratio of  their 

corresponding velocities.

Example 

A reef  120 m from a straight shoreline is marked by a beacon which 

rotates six times per minute. 

a How fast is the beam moving along the shoreline at the moment 

when the light beam and the shoreline are at right angles? 

b How fast is that beam moving along the shoreline when the beam 

hits the shoreline 50 m from the point on the shoreline closest to the 

lighthouse?

c What is happening to the velocity of  the light beam when the ray is 

parallel to the shoreline?

Answer

Sketch a diagram representing 

the given information.

Assume the beacon is at the 

same height  as the shoreline.

120m

Spot of light Shoreline

Reef

x m

i

{ Continued on next page
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d

d

q p p

t
= =

6 2

60 5
cs 1, from the speed 

of  the beam and you need to

fi nd 
d

d

x

t

120
tan

x


sec2 1

120
q

qd

d

d

dt

x

t
= ⋅

 = 0 

sec2 0
5

1

120
⋅ = ⋅
p d

d

x

t

⇒ = =
d

d

x

t
24 75 4p  ms 1, (3sf)

The beam is moving along the 

shoreline at 75.4 ms 1

Write down the given 

information, and what we are 

asked to fi nd.

Identify the relationship 

between the variables.

Differentiate as an implicit 

function with respect to time.

When the beam is at 90° to the 

shoreline, = 0.

Substitute and solve.

Interpret your answer in the 

context of  the problem.

b sec2 1

120


d

d

d

dt

x

t
= ⋅

50 5

120 12
tan  

2

2 5 169

12 144
sec 1

 
 
 

   

169

144 5

1

120
⋅ = ⋅
p d

d

x

t

  
d 169

d 6
88.5

x

t
 ms 1 (3sf)

The beam is moving along the 

shoreline at 88.5 ms 1

Start with the derivative again.

Use sec 2  1 + tan2 

Substitute and solve.

Interpret your answer in the 

context of  the problem.

c As the light ray approaches the 

position parallel to the shoreline, 

then angle 




→ ⇒ →∞

⇒ →∞

2

2sec

velocity

according to the model.

Exercise 9G

1 A 2.5 m long ladder is leaning against a wall on a building 

construction site. It starts to slip horizontally along the ground 

at a rate of  4 cms1. How fast is the angle between the ladder and 

the ground changing when the bottom of  the ladder is 1 m away 

from the wall?
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2 Two planes A and B are fl ying to their destinations. At a given 

moment plane A is 25 km north and 18 km east of  plane B. 

Plane A fl ies west at a speed of  200 ms1, whilst plane B fl ies 

direction north at a speed of  160 ms1. 

a How fast are the two planes approaching each other after 

0.5 minutes?

b How fast is the bearing of  plane B from plane A changing 

after 1 minute?

3 A professional cameraman on a safari is at a spot 30 metres from 

a tree, following birds that are moving at a speed of  95 kmh1. 

The birds are moving perpendicularly to the line joining the tree 

and the spot. How fast does he need to turn the camera when 

fi lming a bird:

a that is directly in front of  the camera

b one second later? 

4  An isosceles triangle with the sides 6, 5 and 5 cm is going 

through a transformation where the longest side is decreasing at 

a rate of  0.1 cms1.

a Find the rate of  change of  the angle opposite to the 

decreasing side at the start.

b Find the rate of  change of  the angle opposite to the 

decreasing side when the triangle is equilateral.

5  A balloon has a spherical shape. There is a hole in the balloon 

and the air is leaking at 2 cm3 min1.

a Find the rate at which the radius is decreasing when 

r = 12 cm.

b Find the rate at which the surface area is decreasing when 

r = 4 cm.

6  A scientist is pointing with a laser to a fl ying object whose 

trajectory is vertically above her. The object is fl ying at a constant 

height of  10 000 m and maintaining a speed of  1025 kmh1. Find 

the rate in degrees per second of  the rotating laser when

a the horizontal distance of  the object is 8 km from the scientist,

b the object is directly above the scientist.

7 A train is moving along a straight track at 75kmh1 due east. 

A camera positioned 2 km from the track west of  the train is 

focused on the train.

a Find the rate of  change of  the distance between the camera 

and the train when the train is 4 km from the camera.

b At what rate is the camera rotating when the train is 4 km 

from the camera? Give your answer in degrees per second 

correct to the nearest tenth of  a degree.
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8 An observer is watching a fi reworks rocket from a distance of  

10 metres. He uses a laser to measure the distance to the rocket 

which is changing at a rate of  5 ms 1. At a particular moment the 

distance measured to the rocket is 20 metres.

a Find the rate of  increase of  the angle of  elevation at that 

moment.

b Find the speed of  the rocket at that moment.

EXAM-STYLE QUESTION

9 A Ferris wheel 15 metres in diameter makes two revolutions 

per minute. Assume that the wheel is tangential to the ground 

and let P be the point of  tangency. 

i

P

R

 At what rate is the distance between P and a rider R changing, 

when she is 5 metres above the ground and going up? 

. Integration of trigonometric functions

Basic integrals of trigonometric functions

Since integration is a process of  fi nding the antiderivative of  the 

integrand function you can deduce some standard integrals:

➔ cos x dx = sin x + c, c ∈  since 
d

d

sin
cos

x

x
x

( )
=

sin x dx = −cos x + c     since 
d

d

( )
=

cos
sin

x

x
x

sec2 x dx = tan x + c       since 
  2

d tan

d
sec

x

x
x

Chapter 7 introduces the compound formula, and here it can be 

used to obtain other antiderivatives. 

➔ f  (ax + b)dx = 1

a
F (ax + b) + c

You can fi nd all the integrals of  the form f  (ax + b) dx where f can 

be any of  the three functions mentioned above.

✗

More integrals of 

the trigonometric 

functions will be found 

later using methods 

of substitution and 

integration by parts.
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Example 

Find these integrals.

a cos 5x dx  b 2 sin(5  3x) dx  c 1

2 4

2sec
x

xd

Answers

a cos 5x dx = 
1

5
sin 5x + c

b 2 sin (5 − 3x) dx

 = −
2

3
(−cos(5 − 3x)) + c

 =
2

3
cos(5 − 3x) + c

c
1

2 4

1

2
1

4

4

2sec tan
x x

xd = + c

4
2tan

x
c 

Use compound formula.

Use compound formula.

Simplify the expression.

Use compound formula.

Simplify the expression.

There are some more complicated integrals that can be determined 

using the trigonometric identities from Chapter 8.

Example 

Use trigonometric identities to fi nd these integrals.

a 2sin x cos x dx b (2 cos2 3x − 1) dx c tan2

3
1

x
x+⎛

⎝
⎜

⎞
⎠
⎟ d

Answers

a 2sin x cos x dx = sin 2x dx

1

2
cos2x c  

b (2cos2 3x − 1) dx

 = cos 6x dx

 = 
1

6
sin 6x + c

Use: sin 2 = 2 sin  cos 

Use compound formula.

Use: cos 2 = 2cos 2  − 1.

Use compound formula.

c tan2

3
1

x
x+⎛

⎝
⎜

⎞
⎠
⎟ d

 =  sec2

3

x
xd

= 3
3

tan
x

c+

Use tan2  + 1 = sec2

Use compound formula.

Recap all the 

trigonometric 

identities from 

Chapter8.
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Exercise 9H

1  Find these integrals.

a sin 3x dx b cos(2x + 1) dx c sec2 3x dx

d sec2 (1 − x) dx e sin
5 1

3

x
x

⎛
⎝
⎜

⎞
⎠
⎟d  f cos

3 2

7

x
x

+⎛
⎝
⎜

⎞
⎠
⎟d

2  Solve these integrals using trigonometric identities.

a (1 − 2cos2x)dx b (1 + tan2x)dx

c sin2x dx d cos2 x dx

e (1 − 2sin2(2x)) dx f (2 + 2 tan2(5x)) dx

g (1 + tan2x)(1 − sin2x) dx h 4sin2 x cos2 x dx

When you integrate a linear combination of  functions you get a linear 

combination of  the integrals.

Example 

Find these integrals.

a (4 x3 + 5 cos 2x) dx

b (7ex  3x2 + 1  2 sin 2x) dx

Answers

a (4 x3 + 5cos 2x) dx

4 1

4 2
4 5 sin2

x
x x c    

4 5

4 2
4 sin2

x
x x c   

b (7ex  3x2 + 1  2sin 2x) dx

       
3 1

3 2
7e 3 2 cos2x x

x x c

 = 7ex x 3 + x + cos 2x + c

Integrate.

Simplify. Don’t forget the 

constant.

Integrate.

Simplify.

Recap properties of 

integrals in Chapter 4.
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Exercise 9I

1  Integrate these functions.

a f  (x) = 2sinx − 3 cosx

b f  (x) = x 2 − 7 sinx

c f  (x) = 4e x − 1

3

2sec x

d f  (x) = 1 − 2x  + 7sin 3x

e f  (x) = 
5

2x
 + sec2

x

3

⎛
⎝
⎜

⎞
⎠
⎟

f f  (x) = 
x

x +1
 − sin

3

4

x⎛
⎝
⎜

⎞
⎠
⎟

g  f x x x x
( ) = + −2 5

2

2

3
sin cos

h f  (x) = 3−2x − 11sec2 (11x)

Finding a particular antiderivative

In Chapter 7, you found that there is no unique antiderivative 

function, but a family of  functions that are distinguished by a 

constant. In order to fi nd a particular function you need to be given 

a certain initial condition that the function must satisfy.

Example  

Given that f  ′(x) = 2 − 3sinx fi nd the function f such that f  (0) = −2. 

Answer

f  (x) = (2  3sinx) dx

= 2x  3 · (cosx) + c

= 2x  3sinx + c

f  (0)  = 2x

⇒ 2 · 0 


1

3cos0  + c 

= 2

c = 5 ⇒ f  (x) = 2x  3 cos x 5

Simplify.

Use the given condition.

Solve for the constant and write the 

function.

When higher derivatives are involved, you need as many initial 

conditions as the order of  the derivative given.
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Example 

Find the function g that satisfi es these conditions

g ″(x) = cosx  e x, g ′(0) = 2 and g (0) = 3. 

Answer

g ″(x) = cosx  e x ⇒

g ′(x) = (cosx  e x) dx

= sinx  e x + c
1

⇒ g ′(0) = 1 ⇒ sin 0  e 0 + c
1
 = 1 

Integrate the second derivative 

function to fi nd the fi rst derivative.

Use the condition for the fi rst 

derivative.

c
1
 = 2 ⇒ g ′(x) = sinx  e x + 2 ⇒

g (x) = (sinx  e x + 2) dx

= cosx  e x + 2x + c
2

⇒ g (0) =  3 

⇒ cos0  e 0 + 2 · 0 + c
2
 = 3 

c
2
 =  5 

⇒ g (x) = cos x  e x + 2x + 5

Substitute for c
1
 in g ′(x).

Integrate the fi rst derivative function 

to fi nd g(x).

Use the condition for g(x).

Substitute for c
2
 in g(x).

Exercise 9J

1  Find f  (x) given these conditions:

a f  ′(x) = 5 − 2cos x, f (0) = 0 b f  ′(x) = 4x − 6sin (2x), f  (0) = 1

c    
 
 

    2 2 3

6 3
3cos 2sec ,f x x x f d f  ′(x) = 3x 2 − 2e x + cos 4x, f  (0) = −5

e        
    

sin 13

3
cos 3 4, 1

x
f x x f f f f′ x x

x

x( ) ⎛
⎝
⎜

⎞
⎠
⎟= − + = −7

3 4

1

2
8 4 12 1e ,

2  Find f  (x) given these conditions:

a       
 
 

  
3

4 sin , 0, 0 1f x x f f

b f  ″(x) = 1 + cos x, f  ′(0) = 3, f  (1) = −cos(1)

c f  ″(x) = e1−x + sin(1 − x), f  ′(1) = 2, f  (1) = 2

d f  ″(x) = e 2x + sin(2x) + x3 − 2x + 1, f  ′(0) = 2, f  (0) = 2 

Defi nite integrals

➔ To evaluate defi nite integrals, apply the fundamental theorem 

of  calculus.

f  (x) dx = F (x) + c ⇒
b

a

f  (x)dx = F (b) − F (a)

The fundamental 

theorem of calculus 

(FTC) was introduced 

in Section 7.3.
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Example 

Evaluate these integrals.

a

π

0

(x + sin 2x) dx b


2

0

 (e2x
 cos (3x) dx c

5

2



5

2



1
1

5 10

2⎛
⎝
⎜

⎞
⎠
⎟sec

x
xd

Answers

a

π

0

x x x x
x+ = −( ) ⎡

⎣
⎢

⎤

⎦
⎥sin cos2 2

2

0
2

1

2
d

π



2 2

11

1 0 1

2 2 2 2
cos2 cos0

   
   

  
   



 

2 21 1

2 2 2 2
    

Integrate and apply the FTC.

Simplify.

Check on 

GDC.

b


2

0

(e2x + cos(3x)) dx 

=  


 
  


2

2

0

1 1

2 3
e sin 3x x

= + ⋅ − +⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜

1

2

1

3 2

1

2

1

3

2
2

1

0

0

3 0e e
 

sin sin
  



⎞⎞

⎠
⎟

=
1

2

1

3

1

2 2

5

6
e

e


− − = −

Apply the FTC.

Simplify.

Check on 

GDC.

c

5

2



5

2



1
1

5 10

2⎛
⎝
⎜

⎞
⎠
⎟sec

x
xd

5

2

5

2

1 1

15 10

10

tan
x

x

 
 
 
 
 

  





5

2

5

2

10
2tan

x
x





 
  

 

5 5
5 52 2

2 10 2 10
2tan 2tan

    
    
    
            

   =

 
 

 

1 1

5 5

2 4 2 4
2tan 2tan 5 4    

    

Integrate and apply the FTC.

Simplify the expression before evaluating.

Apply the formula.

Simplify.

Check on 

GDC.

The power of calculus460



Exercise 9K

1  Evaluate these integrals. Check each solution using a GDC

a 
2



3



2x x x−( )sin d  b
2



6



5 +( )cos x xd

c 
4



0

2 12sec x x+( )d  d
3



0

e dx
x x+( )2sin

e 

2π

−2π

3 4

4
+

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

x

x

x

cos

d  f
2



0

e
d

3

3

2 2

5

x
x

x

⎛⎜
⎜⎜

⎞

⎠
⎟⎟⎟

sin

g 
4



4



1 2 2
2

− +⎛
⎝
⎜

⎞
⎠
⎟

x
x xsin d  h

12



0

2 3 6x
x x+( )cos d

i 
8



8



x x x
2 22 2+( )sec d  j

π

0
16 9 38e dx

x x+( )sin

. Integration by substitution

This section introduces the method of  substitution. It comes 

from the chain rule (composite function rule) 

d

d

d

d

d

d

y

x

y

t

t

x
= ⋅

To find the integral (2x + 3)6 dx it would be easier to have a single 

variable to the power of  6 rather than the expansion of  the binomial 

expression (2x + 36 ).

Once you write the substitution equation you need to differentiate 

both sides with respect to x

Let

t x

x t
t

x

= +

= ⇒ =

2 3

2
1

2

d

d
d d

So the new integral must be in terms of  the new variable only. 

Take care not to mix the variables. 

⇒ (2x + 3) 6 dx = t 6 ×
1

2
 dt =

1

2
t 6 dt

= × +1

2 7

7
t

= + ∈
+( )2 3

14

7
x

c c, 

Use the substitution 

to obtain the new 

simpler integral for t

Solve the new integral 

for t

Substitute for t to 

obtain the  nal answer 

in terms of x
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Example 

Find the integral (2x + 1) ex x2+ dx

Answer

Let x x u

x x x u
u

x

2

2 1 2 1

+ =

+ = ⇒ =
⇒

+( )

⎫

⎬
⎪

⎭⎪
d

d
d d

(2x + 1) ex x2+ dx = eu du

= eu + c = ex x2+ + c

Notice that 2x + 1 is the derivative 

of  x 2 + x so if  you defi ne it as a 

new variable u you will have its 

derivative du too.

Use the substitution and solve the 

new integral for u.

Leave your answer in terms of  x.

Example 

Find the integral cot x dx

Answer

cot x dx = 
cos

sin

x

x
xd

Let sin

coscos

x v

x x vx
v

x

=

= ⇒ =

⎫

⎬
⎪

⎭⎪
d

d
d d

⇒
cos

sin

x
x

x
d  = dv

v

= ln|v| + c = ln|sin x| + c

Rewrite in terms of  sine and cosine.

Notice that cos x is the derivative of  

sin x so you have the new variable v 

and its derivative dv. 

Use the substitution and integrate 

with respect to v.

Give your answer in terms of  x.

Example 

Use an appropriate substitution to fi nd x2 sin(x3  2) dx

Answer

Let

d d
d

d

x t

x x x t
t

x

3

2 2

2

3
1

3

− =

= ⇒ =

⎫

⎬
⎪

⎭
⎪
⇒

x2 sin(x3  2) dx

= sin t t×
1

3
d  = 

1

3
sin t td

 31 1

3 3
cos cos 2t c x c      

Notice that x 2 is not exact derivative 

of  x3, but 
1

3
 of  it. 

Use the substitution.

Simplify and integrate with respect 

to t.

Give your answer in terms of  x.

The initial integral is in 

terms of x, so the  nal 

answer must also be 

in terms of x
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Exercise 9L

1 Find these integrals by the method of  substitution.

a 2x sin x2 dx b 3 32 3
x x x+ d

c 3 4 1 3 2 2

−( ) + −
x x

x xe d  d tanx dx

e 2 cos 2x esin2x dx f
e

d
x

x

x

2

g 2x ln 2 sin(2x) dx h
arcsin x

x

x

1 2
d

i 


2

2 arctan 2

1 4
d

x

x

x

2 Use an appropriate substitution to fi nd these integrals.

a x cos x2 dx b x x x
5 63 1− d

c (x + 2) e d3 12 72
x x

x
+ −

d
tan 5 4

5

x

x

+( )
d

e sin 3x  3cos3x dx f
sin x

x

x

4

34
d

g 5x cos(5x) dx h


2 2

2 2

e e

e e
d

x x

x x

x

i 

arctan
x

x

x
3

9 2+
d  j x x x x x

2 3 23

2
+ +( ) ⎛

⎝
⎜

⎞
⎠
⎟cos d

k 
arcsin2

2

2 1x

x x

x

+( )
− −

d

Defi nite integrals and integration by substitution

When solving defi nite integrals there are two methods. 

Method I Solve the original integral by using substitution and then 

just apply The Fundamental Theorem of  Calculus on 

the given boundaries to the solution.

Method II When substituting a new variable in the process to 

obtain a simpler integral we use the substitution to 

change the boundaries. Use new boundaries and apply 

the Fundamental Theorem to the new integral.

An appropriate 

substitution for 1a

would be u = x 
2. For 1b

it would be u = x 
3 + 3
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Example 

Evaluate these integrals. 

a

7

1

22 1x x dx b
4



6

 cos x sin x dx

Answers

a Method I

Let 
x t

x x t

2 1

2

− =

=

⎫
⎬
⎭
⇒

d d

2 12x x xd = t td

 
3

32
2 2

2

3 3

2

1
t

c x c    

7

1

  
 
 

  
7

3
2 2 2

1

2
d

3
2 1 1x x x x

   
 
 

  
 
 

   

  



33 3
2 2 22 2

2 2

3 3

2

3

7 1 1 1 48

0

64 3 3 128 3

Method II

Let 
x t

x x t

2 2

2

1

2

1 1 0

7 1 48

− =

=

− =

− =
⇒

⎫
⎬
⎪

d d
7

1
2 12x x x− =d

48

0

t td

48
3 3

2 2

0

2 2

3 3
48 128 3t

 
 
 

  

b Method I

Let 
sin

cos

x t

x x t

=

=

⎫
⎬
⎭
⇒

d d

cos x sin x dx 

= t dt 
2 2

sin

2 2

t x
c c   

Identify the substitution.

Use the substitution and as 2 d 2dx x t=  you can 

simplify.

Solve the integral and give the answer 

in terms of  the original variable.

Use the FTC for defi nite integral.

Calculate and simplify.

Identify the substitution and fi nd new boundaries.

Use the substitution and apply the new boundaries.

Use the FTC and calculate the answer.

Check on GDC.

Identify the substitution and 
dt

d
cosx

x 

Solve the integral and give the answer in terms of  x.

{ Continued on next page
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π

4

π

6

cos sin
sin

x x x
x

d =
⎡

⎣
⎢

⎤

⎦
⎥

2

6

4

2 p

p

2 2

2
2

sin sin
4 6

2 2

2 1

2 1 1 12

2 2 4 8 8

       
      
      

       
    



  

Method II

Let sin

cos

sin

sin

x t

x x t

=
=

= −

=
⇒

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎫

⎬
⎪
⎪

⎭
⎪
⎪

d d

p

p

6

1

2

4

2

2

Use the FTC for defi nite integral.

Evaluate the defi nite integral.

Calculate and simplify.

Identify the substitution and fi nd new boundaries.

π

4

π

6

cos x sin x dx = 

2

2

1
2

t t
t

d =
⎡

⎣
⎢

⎤

⎦
⎥

2

2 1

2

2

2

2
22 1

2 2

2 2

1 1 1

4 8 8

       
   

 

The work in both methods is similar, but it is 

slightly simpler in Method II, so you could use 

this method this in paper 1 to gain some time. 

In paper 2, unless otherwise stated in the 

question simply use a GDC.

Use the substitution and apply the new boundaries.

Evaluate the defi nite integral.

Notice that you could have used cos x = t; the 

boundaries would be changed but the fi nal 

result will remain the same.

Check on GDC.

Exercise 9M

Find the exact values of  these integrals:

1 

1

0

3 12 3
4

x x x−( ) d 2

3

0

2

12

x

x
x

+
d 3

0


6

cos sin dx x x

4 
1

e
3

ln x
xd 5

ln 2

0

e

e
d

x

x
x

+1
6

0


6

2 2tan x x( )d

7 

1

0

x x x x x2 3 23

2
+ +( ) ⎛

⎝
⎜

⎞
⎠
⎟cos d 8

3

0

2 2 1x x + d

9 Repeat questions 1 to 8 using a GDC.
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. Integration by parts

Integration by parts is related to the product rule for differentiation.

d

d

d

d

d

d

u v

x

u

x

v

x
v u

( )
= ⋅ ⋅+

Integrating this identity with respect to x you fi nd:

d

d
d

u v

x
x

( )
=

d

d
d

u

x
v x

d

d
d

v

x
uvu x   = vdu + udv

This gives:

➔ u 
d

d

v

x
dx = uv − v 

d

d

u

x
dx

where u and v are functions of  x

These examples give typical integrals that can be calculated using 

integration by parts.

Example 

Find the integral 2x ex dx. 

Answer

Let 
d

d
2 2 d 2d ,

u

x
u x u x    

  
d

d
exv

x
v e x dx = e x

2x ex dx = 2x ex − e x · 2 dx

In these cases, always differentiate 

the polynomial and integrate the 

exponential.

You could try it the other way 

around.

= 2xex − 2 ex dx

= 2xex − 2ex + c

= (2x − 2)ex + c, c ∈ 

= 2ex (x − 1) + c

Choose the variables and apply the 

formula.

Use integral properties to simplify it.

Simplify the fi nal answer.

Notice that in the process of  

integrating dv you do not add a 

constant at the end, but only add the 

constant to the fi nal answer.

Integration by parts 

allows you to convert 

an integral into 

another one that is 

simpler. The method is 

a kind of reduction

formula

Normally, let 
d

d

v

x
 be the

more complicated 

function that is 

still integrable. 

Considering y = 2x

and y = e x, y = e x is 

the more complicated 

function of the two 

whose integral you 

can still  nd.
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Exercise 9N

Find these integrals using integration by parts.

1 xex dx 2 (2x + 9)cos x dx 3 (2 − 5x)sin x dx

4 (3x − 1)e 3x dx 5 (4x − 7)e (4x−1) dx 6
x

x x
+ ( )+3

2
2 3sin d

7 
3

4 4

⎛
⎝
⎜

⎞
⎠
⎟

x x
xcos d 8 x  2x dx 9 (1 − x)  5x dx

10 
2

7 3

( )x
x

xd 11
4 3

5

x x

x
xd

Example 

Integrate the expression y = (4x + 5)ln x with respect to x

Answer

Let 

u x u x
u

x x x
= ⇒ = ⇒ =ln

d

d
d d

1 1

d

d

v

x
x v= + ⇒ =( )4 5 (4x + 5)dx 

= 2x2 + 5x

(4x + 5)lnx dx

= (2x2 + 5x)lnx − (2x2 + 5x) 
1

x
 dx

= (2x2 + 5x)lnx − (2x + 5)dx

= (2x2 + 5x)ln x − (x2 + 5x) + c

= x2(2ln x − 1) + 5x (ln x − 1) + c

Choose the variables.

Apply the formula and simplify the 

integral.

Simplify, if  possible.

Exercise 9O

Find these integrals using integration by parts.

1 x ln x dx 2 (3x + 2)ln x dx 3 (1 − x)ln x dx

4 x ln(4 x)dx 5 3 2
5

x x
x−( ) ⎛

⎝
⎜

⎞
⎠
⎟ln d 6 (3 + 4 x) ln(3 + 4x) dx

7 (5 + 7x) ln(4 − 11x) dx 8 x2 ln x dx 9 (2 − x + x2) ln(3x) dx

Notice that in this 

case you differentiate 

In x and integrate 

(4x + 5) even though 

polynomials are 

considered simple 

than logarithms. This 

is the only such case.
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In this section you will use integration by parts to fi nd 

some special integrals.

Example 

Integrate these functions.

a f  (x) = ln x b f  (x) = arcsin x

Answers

a Let

u x u x
x

= ⇒ =ln d d
1

d

d

v

x
v x= ⇒ =1

ln x dx = x ln x − x x
x

1
d

= x ln x − 1 · dx = x ln x − x + c

= x (ln x − 1) + c

b Let u x u
x

x= ⇒ =arcsin d d
1

1 2

d

d

v

x
v x= ⇒ =1

arcsin xdx

= x arcsin x − x x
x

1

1 2
d

= x arcsin x + 
x

x
x

1 2
d

t x x

t x x

t

x
= − ⇒ = −

⇒ = −

1 22

1

2

d

d

d d

ln x = 1 × ln x

Choose the variables.

Apply the formula.

Simplify and integrate.

Choose the variables.

Apply the formula.

Simplify the integral.

Use substitution to solve the new 

integral.

x

x
x

1 2
d

1

2
 t t c x c

t= + = − +
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

2

1

2
21

2 1

2

1d

 arcsin x dx

=  x arcsin x + 
21 x  + c

Apply the result and fi nd the fi nal 

answer.
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Exercise 9P

Find these integrals.

1 log x dx 2 log
a
x dx 3 arctan x dx

4 arccos x dx 5 2x arctan x dx 6 x2 arcsin x dx

Sometimes you have to apply integration by parts more than once 

until we reach a simple integral. That often occurs with polynomials 

of  a higher degree.

Example 

Find (3x2 − x + 1) sin x dx.

Answer

u x x x

u x x

u

x
= − + ⇒ = −

⇒ = −( )

3 1 6 1

6 1

2 d

d

d d

d

d

v

x
x v= ⇒ =sin sin x dx = −cos x

(3x2 − x + 1) sin x dx

= (3x2 − x + 1) · (−cos x) − (6x − 1) · (−cos x) dx

=  −(3x2 − x + 1) · cos x + (6x − 1) · cos x dx

u x u x
u

x
= − ⇒ = ⇒ =6 1 6 6

d

d
d d

d

d

v

x
x v= ⇒ =cos cos x dx = sin x

(6x − 1) · cos x dx = (6x − 1)sin x − 6 · sin x dx

Choose the variables.

Apply the formula.

Simplify the integral and identify the new 

integral.

Choose the variables for the new integral to 

be solved by parts.

Apply the formula.

= (6x – 1) sin x – 6 (–cos x) 

= (6x – 1) sin x + 6cos x 

(3x2 – x + 1) sin x dx = 

– (3x2 – x + 1) · cos x + (6x – 1) · cos x dx

=  – (3x2 – x + 1) · cos x + (6x – 1)sin x + 6 cos x + c

=  (–3x2 + x + 5) · cos x + (6x – 1)sin x + c

Simplify the integral.

Continue with integration of  the original 

integral.

Use the result.

Simplify.
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Exercise 9Q

Integrate:

1 x 2 e x dx

2 (x 2 + 1)sin x dx

3 (2x − x 2)cos x dx

4 (1 + x − x 2) e 2x dx

5 (2x 2 + x + 3) cos(2x) dx

6 x 2 sin(1 − 2x) dx

7 x 23x dx

8 1 3 2+( )x x
x

e d

9 (x 3 + x 2) sin(5x) dx

10 x 4 cos x dx

11 x 5 e 2x dx

Multiple applications of  the method will occur in a product of  an 

exponential and sine or cosine function.

Example 

Find ex cos x dx

Answer

     
d

d d
d

e e 3 ex x xu

x
u u x

d

d

v

x
x v= ⇒ =cos cos x dx = sin x

ex cos x dx = ex sin x − sin x · ex dx

u = ex
⇒

d

d

u

x
 = ex · ⇒ du = ex dx

d

d

v

x
x v= ⇒ =sin sin x dx = −cos x

Choose the variables.

Apply the formula.

Simplify the integral and identify 

the new integral.

Choose the variables for the new 

integral to be solved by parts.
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Exercise 9R

Find these integrals.

1 sin x e x dx

2 e 2x cos x dx

3 cos 3xe 4x dx

4 
sin 2x

x
x

( )

e
d

5 sinx exdx

This process of  multiple application of  integration by parts can be 

shown in a table. The expression for u is successively differentiated 

in a column, whilst dv is successively integrated in the other column 

as many times as needed.

Example 

Find the integral x3 e3x dx.

Answer

dv = e 3x dx sign

u = x   
3

31

3
e xv  +

3x  
2

31

9
e x

−

6x
31

27
e x

+

6
31

81
e x

−

Notice that the 

second integral in 

the integration by 

parts formula has a 

minus in front of  it, 

so the sequence of  the 

products of  derivatives 

and integrals signs 

alternate.

So the result is

3 3e dxx x

3 3 2 3 3 31 1 1 1

3 9 27 81
e 3 e 6 e 6 ex x x xx x x c        

3 2
3 3 3 32 2

3 3 9 27
e e e ex x x xx x x

c    

 
3

3 2e

27
9 9 6 2

x

x x x c    

See further questions on 
the CD.
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You can use the method of  Example 33 to verify your solutions to 

Exercise 9R.

. Special substitutions

In this section you are going to study some special substitutions that 

are not immediately obvious.

Substitution in radical expressions

To simplify a radical linear expression, substitute the entire radical 

expression with a new variable and then integrate with respect to 

that new variable.

Example 

Find the integral x x x2 1+ d

Answer

Let 

 

2

21

2

2 1 2 1

1

x t x t

x t

    

  

d d d dx t t x t t= ⋅ ⇒ =1

2
2

x x x2 1+ =d
t

t t t
2 1

2
⋅ ⋅ d

1

2
 t t t

t t4 2
5 31

2 5 3
− =( ) ⎛

⎝
⎜

⎞

⎠
⎟d

   
5 3

2 22 1 2 1

10 6

x x
c

 
 

    
3

22 1 3 2 1 5

30

x x
c

  
 

   
3

22 1 3 1

15
,

x x
c c

 
  

Express x in terms of  t.

Find dx in terms of  t and 

simplify it.

Use the substitutions to obtain the 

integral in terms of  t only.

Simplify the new integral and 

integrate it with respect to t.

Use the substitution to return the old 

variable x.

Simplify.
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You can also take only the radicand for the new variable and then 

integrate with respect to it.

Example 

Find the integral 3 2 32 3x x xd

Answer

Let 

 1

3

2 3 2 3

2

x u u x

x u

    

  

d dx u= − 1

3

   22 2 21 1

9 9
2 4 4x u x u u     

3 2 32 3x x xd  = 3 4 4
1

9

1

3

2

1

3⋅ − + ⋅( ) ⎛
⎝
⎜

⎞
⎠
⎟u u u ud

1

9
  4 4

1

3

4

3

7

3u u u t− +( )d
4 7 10

3 3 31 4 4

4 7 109

3 3 3

u u u
c

 
 

  
  
 

  

Express x in terms of  u.

Find dx in terms of  the variable u.

Express the remaining factor in the integral x2 in 

terms of  u.

Use all the substitutions to obtain the integral in 

terms of  u.

Simplify the new integral and integrate it with 

respect to u.

4 7 10

3 3 34

3 21 30

u u u
c   

 
4

23 70 40

210

u u u
c

 
  

      
4

2
32 3 70 40 2 3 2 3

210

x x x
c

    
 

   
4

2
32 3 70 80 120 28 84 63

210

x x x x
c

     
  

   
4

2
32 3 18 36 63

210

x x x
c

  
  

   
4

2
32 3 9 2 4 7

210

x x x
c

   
  

   
4

2
33 2 3 7 4 2

70

x x x
c

  
  

Factorize and simplify.

Substitute for x.

Expand and simplify.

Factorize and simplify.

Chapter 9 473



Exercise 9S

Find these integrals.

1 x x x+ 2 d 2 3 1 2x x x− d

3 5 3 42x x+ d 4 x x x+ 33 d

5 x x x2 4 1+ d 6 x x x3 5 1− d

You have used trigonometric identities to solve the integrals of  

squares of  the sine and cosine functions. Here you can fi nd out 

what happens with higher powers.

Notice that in Examples 38 and 39 you always factorized the 

trigonometric function raised to an odd power and express 

everything in terms of  the trigonometric function raised 

to an even power.

Example 

Find the integral sin3x dx

Answer

sin3 x dx = sin2 x sin x · dx

= (1 − cos2 x) · sin x dx

Let

v x x

v x x

v

x
= ⇒ = −

⇒ − =

cos sin

sin

d

d

d d

Rewrite sine in terms of  cosine so that 

you have a new variable cos x and its 

differential −sin x.

(1 − v2) · (−dv) 

= (v2 − 1)dv

3

3

v
v c  

3cos

3
cos

x
x c  

Use the substitution.

Return the original variable x.
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Example 

Find the integral sin4x dx

Answer

sin4 x dx = (sin2 x)2 dx

= 
1 2

2

2

⎛
⎝
⎜

⎞
⎠
⎟

cos x
xd

= 
1 2 2 2

4

2− +cos cosx x
xd

= 
1

4

1

2

1

4

1 4

2
2− ⋅

+⎛
⎝
⎜

⎞
⎠
⎟+cos

cos
x x

x
d

1 1 sin 2 1 sin 4

4 2 2 8 4

x x
x x c

 
 
 

    

3 1 1

8 4 32
sin2 sin4x x x c   

Use double angle formula.

Expand the expression.

Again use double angle formula.

Simplify.

Exercise 9T

Find these integrals.

1 cos3 x dx 2 cos4 x dx 3 sin5

5

x
x

⎛
⎝
⎜

⎞
⎠
⎟ d 4 48cos6 (2x) dx

Investigation – recursive formula

Use integration by parts to  nd a recursive formula for the integrals 

of the forms:

1 sinn x dx, where n is a positive integer

2 cosn x dx, where n is a positive integer.

Example 

Find the integral sin3 x cos2 x dx.

Answer

sin3 x cos2 x dx = sin2 x · sin x · cos2 x dx = (1 − cos2 x) · sin x · cos2 x dx

= (cos2 x − cos4 x) · sin x dx

Let u x x u x x
u

x
= ⇒ = − ⇒ − =cos sin sin

d

d
d d

= u u u c
u u2 4

3 5

3 5
− ⋅ − +( ) ( ) = − +d = − +

cos cos5 3

5 3

x x
c
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Example 

Find the integral sin4x cos7x dx

Answer

sin4x cos7x dx = sin4 x · cos6 x · cos x dx

= sin4 x · (1 − sin2 x)3 · cos x dx

Let t x x t x x
t

x
= ⇒ = ⇒ =sin cos cos

d

d
d d

= t4 · (1 − t2)3 dt

= t 4 · (1 − 3t 2 + 3t 4 − t 6) dt

= t 4 − 3t 6 + 3t 8 − t10)dt

= − + − +
t t t t

c
5 7 9 11

5

3

7

3

9 11

5 7 9 11sin 3sin 3sin sin

5 7 9 11

x x x x
c    

Use  cos2 x = 1  sin2 x

Substitute back in 

terms of  x.

Notice that in Examples 38 and 39 you always factorized the 

trigonometric function raised to an odd power and expressed 

everything in terms of  the trigonometric function raised 

to an even power.

Investigation – more recursive formula

Find recursive formulae for the integrals of the form sinn x cosm x dx, 

where n and m are positive integers.

Trigonometric substitutions

➔ When the integrand contains a quadratic radical expression 

use one of  these trigonometric substitutions to transform the 

integral.

 If  the form is a x2 2
−  use the substitution x = a sin θ

 If  the form is x a2 2
−  use the substitution x = a sec θ

 If  the form is x a2 2
+  use the substitution x = a tan θ.
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Example 

Use an appropriate trigonometric substitution to fi nd 25 2x xd

Answer

Let 2 2 225 5x x   

2 225 25 25sinx   

25 1 sin 5cos   

Let x = 5 sin θ ⇒ dx = 5 cos θ dθ

225 x dx = 5cos θ · 5 cos θ dθ

= 25 cos2θ dθ = 25
1 cos2

d
2






25 25

2 4
sin2 c  

25 25

2 4
2sin cos c     

5
5sin arcsin

x
   

 
 

  

25 25

2 5 4 5
arcsin 2 cos arcsin

x x
c

                
   

Identify the substitution 

x = 5 sin θ

Express radical expression in terms of  θ

Find dx in terms of  the 

variable θ

Use the substitutions to obtain the 

integral in terms of  the variable θ

Use double angle formula to 

simplify the integral.

Integrate with respect to θ

Use double angle formula to simplify the 

primitive function.

In order to return the variable x express θ

in terms of  x.

Now proceed in substituting θ in term 

of  x.

Return to x.

= + ⋅ − +⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

25

2 5

5

2 5
1 2arcsin sin arcsin

x x x
c

2
25 5

2 5 2 5
arcsin 1

x x x
c

   
   
   

   

= + − + ∈⎛
⎝
⎜

⎞
⎠
⎟

25

2 5 2
25 2arcsin ,

x x
x c c 

Express cosine in terms of  sine.

Simplify the trigonometric expressions.

Simplify the radical expression.

In this problem you could also 

use the substitution x = a cosθ. 

The radical expression would be 

equal to a x2 2
 = a sinθ and the 

differential dx = a cos θdθ
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Example 

Use an appropriate trigonometric substitution to fi nd 
1

3 482x
xd

Answer

1

3 48

1

32x
x =d

1

162x
xd

Let 2 216 16sec 16x   

24 sec 1 4 tan   

d dx = ⋅ −⎛
⎝
⎜

⎞
⎠
⎟4

2

sin

cos

q

q

1

3


1

16

1

32x
x =d

1

4
4

2tan

sin

cos




⋅ −⎛
⎝
⎜

⎞
⎠
⎟d

1

3
  sec θ d θ

1 sin 1

cos3
ln

x
c



  
  

  
  

x = 4 sec θ ⇒ cos θ = 
4

x

 
 
 

⇒ θ = arccos 
4

x

 
 
 

= − +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

3

4
1

4
ln

sin arccos
x

x

cc

= −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎛

⎝

1

3

1
4

1

4

2

ln

cos arccos
x

x

⎜⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
+ c

Identify the substitution x = 4 sec θ

Express x in terms of  θ

Use the formula sec2θ − 1 = tan2 θ

Find dx in terms of  the variable θ

Now proceed to solving the original 

integral.

Use the substitutions to obtain the 

integral in terms of  the variable θ

Now substitute θ in terms of  x.

Return to the variable x.

Express sine in terms of  cosine and 

apply the inverse function.

= − +

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

3

1
4

1

4

2

ln
x

x

c = − +
+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

3

16
1

4

2

ln

x

x

x

c

= − ⋅ +− +⎛

⎝
⎜

⎞

⎠
⎟

1

3

16

4

2

ln
x x

c

= − ( )( )⋅ − + − +1

3

2 16 4ln lnx x c

= − ⋅ − +− +( )
∈

1

3
16

4

3

2ln
ln

x x c

k 

  

= − ⋅ − + +( )1

3

2 16ln x x k

Simplify the radical expressions.

Simplify the fraction.

Simplify the constant.
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Example 

Use an appropriate trigonometric substitution to fi nd 
1

22x
x

+
d

Answer

Notice that 2 is not a perfect square, but you can 

write it as

x2 + 2 = x2 +  2

2

Let 2 22 2 tan 2x   

22 tan 1 2 sec    

x x= ⇒ =2 2 2tan secq q qd d

1

22x
x

+
d  = 

1

2
2 2

sec
sec

q
q qd

= sec θ dθ

2
2 tan arctan

x
x    

 
 

  

2sec 1 tan  

Identify the substitution x 2  tan θ

Use the formula tan2 θ + 1 = sec2 θ

Find dx in terms of  the variable θ. Now 

solve the original integral.

Use the substitutions to obtain the integral 

in terms of  the variable θ  and simplify it.

In order to return the variable x express 

in terms of  x.

Also express sec in terms of  tan.

1

22x +

dx = + + +⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ln
x x

2 2
1

2

c

22

22
ln

x x
c

 
 
 
 

  

22

2
ln

x x
c

  
 
 
 

 

 2ln 2 ln 2

k

x x c    


 2ln 2x x k   

Now substitute θ in terms of  x.

Exercise 9U

Use an appropriate trigonometric substitution to fi nd these integrals:

1 4 2− x xd 2
1

12x
xd 3 x x2 9+ d

4 
3

36 2x
xd 5 3 162x xd 6

5

1212x
x

+
d

7 
2

81 4 2x
xd 8 3 752x x− d 9

7

7 282x
x

+
d

Further examples of  
trigonometric substitutions 
can be found on the CD.
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. Applications and modelling

You can now revisit some of  the applications of  calculus studied in 

the previous sections of  this chapter.

Minima and maxima problems

Example 

A rectangle ABCD is inscribed under a curve 
4 4

cos2 ,x x
 

    . 

Two vertices, A and B on the x-axis and two vertices, C and D 

on the curve, are shown in the diagram.

a Given that the coordinates of  vertex C are (x, cos 2x), x > 0 

fi nd the area of  the rectangle in terms of  x

b Find the value of  x for which the area is maximum. 

What is the maximum area?

Answers

a  


length width

2 cos 2A x x x 


b Method I

A′(x) = 2cos 2x + 2x (–sin 2x · 2)

 = 2cos 2x – 4x sin 2x

A′(x) = 0 ⇒ 2cos 2x – 4x sin 2x = 0

So the area will reach a maximum for x = 0.430 and its 

maximum value will be A
max

 = 0.561, both given correct 

to 3 sf.

Method II

Since there are no demands on showing workings in this 

case, simply use the graphical method on a GDC, apply it 

to the area function and fi nd the maximum.

Find the derivative and simplify the 

expression.

Find the x-coordinate of  the 

maximum point.

Make A′(x) = 0 for maximum (and 

minimum) points.

Since you cannot solve this 

equation algebraically, use a GDC 

to fi nd the values of  x and the 

correspondingA(x).

Notice that the coordinates give both 

the answers.

x = 0.430 and A
max

 = 0.561

1–1
x

y

1

A

D

B

C

–1

0
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Example 

Find the minimum distance between the point A(0,2) and the curve y = sin 2x

Answer

Method 1

Let P(x, sin 2x) be any point on the curve.

AP = −( ) + −( )x x0 2 2
2 2

sin

AP2 = x2 + sin2 2x − 4 sin 2x + 4

d

d
AP

x
( )2  =  2x + 4   sin   2x   cos 2x − 8   cos 2x

2x + 2   sin   2x  cos   2x − 8   cos 2x = 0

Since you cannot solve this equation 

algebraically use a GDC to fi nd the value of  x

and the corresponding distance.

So the minimum distance between the point A 

and the curve y = sin 2x is 1.22, correct to 3 sf. 

The distance is obtained at the point P(0.632, 

0.953) where the coordinates are also given 

correct to 3 sf.

Method 2

Since there are no demands on showing working 

in this case, use the graphical method on a GDC, 

apply it to the distance function and fi nd the 

minimum.

Use the distance formula to fi nd the length of  AP.

Square the equation to obtain an expression for a 

simpler calculation.

Differentiate it with respect to x.

Find the x-coordinate of  the minimum point.

Notice that squaring the distance had no effect on the 

minimum x-value.

Notice that in this method you can immediately read 

out the answer AP
min

 = 1.22. 

To fi nd the actual point, read out the x-coordinate but 

you still need to fi nd the y-coordinate.
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Exercise 9V

1 A rectangle is inscribed under a curve y = sin x, 0 ≤ x ≤ π in such 

a way that one side is on the x-axis. Find the dimensions of  such 

a rectangle that has a maximum area.

2 Find the minimum distance between the point A(1, −1) and the 

curve y = cos x

3 A circle has a radius of  10 cm. A tangent is drawn through 

a point A on the circumference. Chord BC is parallel to the 

tangent.

a Show that the area of  the triangle ABC is given by the 

formula A(α) = 100(1 + cos α) sin α

b Find the value of  α for which the area is maximum.

4 A roller coaster track will have a gap of  15 metres between 

the fi rst two posts. The part of  the track is straight and going 

downhill. The formula to calculate the time needed for a car to 

pass that part of  the track is 



15

sin 2
2

g
t , where g is the 

Earth’s acceleration and θ is the angle of  inclination to the 

horizontal position.

a What is the value of  the angle θ such that the speed of  the car 

would be maximum?

b What is the length of  the track is that case? Give your answer 

correct to the nearest millimetre.

5 An object’s displacement, d metres, from a fi xed point F is given 

by the formula d t t
t t( ) ⎛

⎜
⎞
⎟

⎛
⎜

⎞
⎟= + >sin cos ,

 

6 6
 at time 

t seconds.

a Show that the acceleration of  the object is proportional to the 

displacement.

b Find the maximum speed of  the object and the fi rst time 

when is achieved.

6 A metal chain is hanging between two poles that are 3 metres 

apart. The height (in metres) of  the chain is given by the formula 

h x x
x x

( ) = + ≤ ≤e e 32 5 0,

where x is the distance to the fi rst pole. What is the minimum 

height of  the chain and which pole is closer to the point of  

minimum height? Justify your answer.

In this exercise 

use a GDC where 

appropriate.
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Areas and volumes of revolution

Example 

Shade the region between the curve y = sin x, 0 ≤ x ≤ 2π and the x-axis 

and fi nd its area.

Answer

2rr
x

y

1

2

–1

–2

0

A = 

2π

0

|sin x| dx

= 2 ·

π

0

sin x dx  
0

2 cos x


 

  2 cos cos0    

= 2(1 + 1) = 4

Shade the region required, and notice 

that the region above the x-axis is 

symmetrical to the region below the 

x-axis.

So the required area is twice the area 

of  the curve between 0 and 

Evaluate.

Example 

Find the area of  the region bounded by the curve 
2

tan
x

y
 
 
 

 , the line y = 1 and the y-axis.

Answer

y = tan
x

2

321
x

y

y = 1

2

–2

–1

0

2 2 4
tan 1

x x  
 
 

  

2 2
,1x

  
 
 

  

Are

Rectangle Area under curve

a d= ⋅ − ⎛
⎝
⎜

⎞
⎠
⎟∫

p
p

2 2
1

0

2

   

tan
x

x



2

0
2 2

2 ln sec
x



  
 
 

  

Sketch the graph and shade the area required.

Put tan 
x

2

⎛
⎝
⎜

⎞
⎠
⎟  = 1 to fi nd the point of  intersection 

of  the curve and y = 1.

First fi nd the area of  the rectangle OABC.

Subtract the area under the curve from this.

{ Continued on next page
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2 4
2 ln sec ln sec0

  
 
 

   

 
2

2 ln 2 ln1


   

1

2 2
2 ln2

  
 
 

  
2

ln2


 

Calculate trigonometric values.

Simplify logarithmic expressions.

Note that you could alternatively integrate 

with respect to y. Try it and you should get the 

same answer.

Example 

Shade the fi nite regions enclosed by the curves y = cos (2x) and 

y = ln (x − 1). Find the area of  the shaded region.

Answer

x

y

1

2

–1

–2

0

y = cos(2x)

y = ln(x – 1)

To fi nd points of  intersections between 

these two curves, solve the equation 

cos(2x) = ln(x −1). It cannot be solved 

algebraically, so use a GDC this time.

Store the x-coordinates of  the points of  

intersections in the variables a and b.
You don’t need to  nd 

the middle point of 

intersection since you 

are using the absolute 

value of the difference 

of two functions.
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Exercise 9X

1 Shade the region enclosed by each of  these curves and fi nd its area.

a 


    
3

cos , 0, ,y x y x x

b 
 

    
2

4 4
sec , 0, ,y x y x x

c 
 

    
3 6

2sin 2 , 0, ,y x y x x

d 
 

   
1 5 2

3 18 3
cos3 , 0, ,y x y x x

e 
 

     
2 2 3

4 tan , 0, ,
x

y y x x

2 Given that x is positive, shade the region enclosed by each of  

these curves and fi nd its area.

a y x x y= = =cos , ,0
1

2

b y x x y= = =tan , ,2 0 3

c y x y
x= = = −3 0

3 3
sin , ,

d y x yx= 2cos 2 , = 0, = 2
6

− π⎛
⎝⎜

⎞
⎠⎟

, given x is non-negative

e y x y
x

= = =tan , ,
3

1

3
0

3 Shade the fi rst region enclosed by the curves 

y y x x
x

= = >cos cos ,
2

2 0and . Find the area of  the 

shaded region.

4 Shade the fi nite region enclosed by the curve 


  
2

tan , 0y x x , its tangent at a point where 



4

x  and the 

x-axis. Find the area of  the shaded region.

5 Shade the regions enclosed by the curves y x x= >2 0sin ,  and 

y

x

= +e2
4

1. Find the area of  the shaded region.

6 Consider the curves y y
x

x
= =

+

8

4 42

2

and .

a Find the points of  intersection.

b Write down the integral that represents the area of  the region 

enclosed by the curves.

c Calculate the area of  the region.
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The volume V of  a solid formed by a curve y = f  (x), between 

x = a and x = b rotated through 2 radians about the x-axis 

isgiven by 

V = 

b

a

y2 dx

Example 

Find the volume of  a solid obtained by rotating the curve 

sin , 0y x x     through 2π radians about the x-axis.

Answer

V = π

π

0

sin x x
2

d

= π

π

0

sin x dx  
0

cos x


 

= π (– cos π – cos 0) = 2π units3

Use the formula V = 

b

a

y2 dx

Simplify.

Evaluate.

The volume of  a solid formed by rotating a curve, y = f (x), 

through 2π radians about the y-axis is given by V = π

b

a

x 2 dy.

To use this formula directly you must fi rst fi nd x = f 1(y).

Example 

Find the volume of  a solid that is obtained by rotating the curve 

y = arccos x, 0 ≤ x ≤ 1 through 2π radians about the y-axis.

Answer

y = arccos x, 0 ≤ x ≤ 1

⇒ x = cos y, 0 ≤ y ≤ 
2



V = π



2

0

(cos y)2 dy

= π 

π

0

1 2

2

cos y
yd

= ⎡
⎣⎢

⎤
⎦⎥

p

p

y y

2

2

4 0

sin

= − − =⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟p

p p p

2

2

4

0

4 2
0

2sin sin
units3

Express x in terms of  y and 

fi nd the domain of  y values.

Use the volume formula.

Use the half  angle formula.

Evaluate.

You met this formula 

in Section 7.

x

y

0
1

1

–1

–2

2

2 3 4

11
x

y

0

r

2
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You can subtract volumes of  two different curves.

Example 

Find the volume of  a solid that is obtained by rotating the fi nite region 

enclosed by the curves y = ln x + 1 and 
2

tan
x

y   through 2π radians 

about the x-axis.

Answer

1 32
x

y

1

2

3

0

y =lnx +1

y = tan
x

2

Vol. = 3.58 units3

Sketch the graph to identify the fi nite 

region and the points of  intersection.

The equation ln tan
2

x
x

=  cannot be 

solved algebraically so use a GDC.

Solve the equation ln tan
2

x
x

=  and 

store the solutions as the variables a and 

b. Apply the formula for the volume of  

rotating region between two curves.

Exercise 9X

1 Find the volume of  a solid generated by rotating the region bounded 

by the given curves through 2π radians about the x-axis.

a 


   

2
cos , 0, , 0y x x x y

b 


   

4
sec , 0, , 0y x x x y

c 
 

   

5

6 6
cos , , , 0y x x x y

d 
 

   

2

3 3
sin , , , 0y x x x y

2 Find the volume of  a solid generated by rotating the region bounded 

by the given curves through 2π radians about the y-axis.

a y = arcsin x, x = 0, y = 1

b y = arcsin x, x = 0, x = 1, y = 0

c 


   

4
tan , 0, , 0y x x x y

d y = tan x, x = 0, y = 1
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3 Find the volume of  a solid generated by rotating the region enclosed 

by the curves 

a 
 

   
5

4 4
sin , cos ,y x y x x  through 2π radians about the 

x-axis.

b y = sin 2x, y = sin x, 0 ≤ x ≤ π through 2π radians about the x-axis.

c y y x
x

= − =e3 1 and arctan  through 2π radians about the x-axis.

d y y x
x

= − =e3 1 and arctan  through 2π radians about the y-axis.

Investigation – volume of a torus

Find the volume of a torus that is obtained 

by rotating a circle with the centre at (h, k)

and a radius r, k, r > 0 and k > r, about the x axis.

x

(h k)

y

r

0

Look back at the 

chapter introduction 

on page 441.

Exercise 9Y

1 Use volume of  revolution to fi nd the volume of  a torus obtained 

by rotating the circle (x − 4)2 + (y + 3)2 = 4 through 2π radians

about the x-axis.

2 Use volume of  revolution to fi nd the volume of  a torus obtained 

by rotating the circle (x − 4)2 + (y + 3)2 = 4 through 2π radians 

about the y-axis.

3 Use volume of  revolution to fi nd the volume of  a sphere 

obtained by rotating the circle x 2 + y 2 = 9 through 2π radians

about the x-axis.

4 Find the volume of  a solid obtained by rotating the ellipse 

4x 2 + 9y 2 = 36 through 2π radians about the x-axis.

5 Find the volume of  a solid obtained by rotating the ellipse 

4x 2 + 9y 2 = 36 through 2π radians about the y-axis.

6 Find the volume of  a solid obtained by rotating the ellipse 

(5 − x) 2 + 9y 2 = 36 through 2π radians about the x-axis.

See further questions on  
the CD.
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Review exercise

1 Differentiate with respect to x:

a f  (x) = (2x + 3) sinx

b g(x) = ex cos3x

c h x
x

x
( )

tan=
2 2

2 Find the equation of  a tangent to the curve sin y + e2x =1 at the origin.

3 Find the value of  m that satisfi es this equation

m

p

4

sec cos sin2 2
6 6

x xd = −⎛
⎝
⎜

⎞
⎠
⎟

 

4 Use the method of  integration by parts to solve:

a (2x – 5) e2x dx;

b (x2 – 5x) cosx dx;

c ex cos 3x dx

5 The diagonal of  a square is increasing at a rate of  0.2 cm s–1. 

Find the rate of  change of  the area of  the square when the side 

has a length of  5 cm.

6 The curve y = e2x–1 is given.

 a  Find the equation of  the tangent to the curve that passes 

through the origin.

 b  Find the area, in terms of  e, of  the region bounded by the curve, 

the tangent and the y-axis.

 c  Find the volume of  the revolution, in terms of  , obtained by 

rotating the region in part b about the x-axis. 

7 Use the substitution x = 3 cos θ to fi nd 9 2− x xd

8 The region bounded by the curve y = ln (2x), the vertical line 

x = 1 and the x-axis is rotated through 2π radians about the y-axis. 

 a Sketch the region in the coordinate system.

 b  Find the exact value of  the volume of  revolution obtained by 

this rotation. 

9 The velocity, v, of  an object, at a time t, is given by v
t

= 5
2

3e , 

where t is in seconds and v is in m s–1. 

 a Find the distance travelled in the fi rst k seconds, k > 0.

 b What is the total distance travelled by the object?

10 Find the equation of  the normal to the curve x2y3 = cos(x) at the 

point (1, –1).

✗
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Review exercise
1 Find the points of  infl ection of  the curve y = x2 sin 2x, –1 ≤ x ≤ 1.

2 Given the curve y3 = cos x, fi nd the equation of  the tangent at the 

point where x = 1.

3 Find the value of  a, 0 < a < 1, such that 
0

a2

1

1 2
0 2709=

x
xd .

4 An airplane is fl ying at a constant speed at a constant altitude of  

10 km in a straight line directly over an observer. At a given moment 

the observer notes that the angle of  elevation θ to the plane is 54º 

and is increasing at 1º per second. Find the speed, in kilometres 

per hour, at which the airplane is moving towards the observer.

5 The region in the fi rst quadrant bounded by the curves y = cosx

and y = ex –1 is rotated by the x-axis by 2π radians. Find the 

volume of  revolution of  the solid generated.

CHAPTER 9 SUMMARY

Derivatives of trigonometric functions

lim
sin

h

h

h→
=

0
1

d

d

d

d

x

x

x x

x x

(sin ) cos

(cos ) sin

=

= −

Derivatives of inverse trigonometric functions

If  y = arcsin x then 
2

d 1

d 1

y

x x

If  y = arcsin 
x

a
 then 

d

d

y

x a x
=

1
2 2

Basic integrals of trigonometric functions

cos x dx = sin x + c, c ∈  since 
d

d

sin
cos

x

x
x

( )
=

sin x dx = −cos x + c     since 
d

d

( )
=

cos
sin

x

x
x

sec2 x dx = tan x + c       since 
  2

d tan

d
sec

x

x
x

f  (ax + b)dx = 1

a
F (ax + b) + c

Continued on next page
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Defi nite integrals

f  (x) dx = F (x) + c ⇒
b

a

f  (x)dx = F (b) − F (a)

Integration by parts

u 
d

d

v

x
dx = uv − v 

d

d

u

x
dx

Trigonometric substitutions

If  an integral contains a quadratic radical expression use one 

of  the following substitutions.

If  the form is a x2 2
−  use the substitution x = a sin θ

If  the form is x a2 2
−  use the substitution x = a sec θ

If  the form is x a2 2
+  use the substitution x = a tan θ
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Theory of knowledge

The nature of mathematics

Mathematics in nature
French–American mathematician Benoît 

Mandelbrot (194–010) discovered the 

self-symmetry of complex patterns, 

sometimes described as ‘worlds within 

worlds’, and coined the term ‘fractal’ to 

describe a shape where when 

you enlarge a complex pattern 

the same complex pattern 

emerges. Mandelbrot 

discovered how to generate 

this complexity using simple 

mathematical rules based on 

fractional dimensions.

The word ‘fractal’ comes from the Latin 

‘frangere’ which means to break or to 

fragment.

A line has one dimension and a square has 

two dimensions. Fractals are shapes with 

dimensions between 1 and . How can we 

explain this?

If you take a line and cover it with a sheet of 

transparent squared paper you can count how 

many ‘squares long’ the line is, e.g. n squares 

long. If we repeat this but use squared paper 

with squares half the size of the  rst squared 

paper, the line is now n squares long, that is 

increased by a factor of . 

Now repeat the process for a square. 

Consider a square with sides the length of 

the original line above. If we place the original 

sheet of squared paper on this square we 

would observe that the square is covered by 

n2 squares. Now if we place the second sheet 

of squared paper we would  nd that the 

number of squares has increased to n x n

= 4n2, that is, by a factor of 2.

If we repeat the same process on a complex 

line – say part of the coastline of Australia, 

we  nd that the number of squares increases 

by a factor of 1.1. 

For part of the coastline of England the 

multiplier is 1.6. The fractal dimension of 

the Australian coastline is therefore 1.1 and 

that of England is 1.6. This shows that the 

coastline of Australia is ‘smoother’ than the 

coastline of England. The coastline of Norway 

has a fractal dimension of 1.5.

The fractional dimension of a shape tells 

us how much space this complex shape 

occupies. 

 Fractal geometry is used to model 

complex natural structures. 

Can we use mathematics to describe 

all the complexities of the Universe? 

 Does this mean that there is a  nite 

amount of mathematics to be 

discovered/invented?

 Mathematics models the real world. 

Do we create mathematics to explain 

natural processes or is the world 

intrinsically mathematical – we just 

have to  nd the mathematics?

Theory of knowledge: The nature of mathematics

You researched 
fractals in the 
theory of knowledge 
section at the end 
of chapter 7.
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Mathematics in art

The American artist Jackson Pollock 

produced abstract paintings by splashing 

paint across canvas. In 1999 a group of 

mathematicians analysed Pollock’s work 

and found that the technique he used 

created fractal shapes. When magni ed, 

some sections of Pollock’s work look very 

similar to the original full-size version. 

The image shown here was inspired by 

Pollock's Blue Poles. 

 Is mathematics art? Can art be created 

mathematically? What are the ethical 

issues around this?

“The process of  creation isn't the same in 

Art as it is in Nature”

Wassily Kandinsky, 

Russian artist (18–1944)

Mathematical paradoxes – unnatural mathematics

Evangelista Toricelli (1606–47) studied under Galileo and is renowned for his work as a 

physicist. He was amazed to discover that mathematically you can have a cylinder of 

in nite area but with  nite volume. 

Consider a rectangle of length L² cm and width 
2

L
 cm rolled into a cylinder.

Curved surface area = area of rectangle = 
2

L
  x L² = L

Circumference of cylinder = 
2

L
 , so radius is 

1

L

Volume of cylinder is r²h  = 
1

L2
L² = .  

As L  ∞ we get a cylinder with in nite surface area but with  nite volume ().  

We could  ll it up with less than 4cm3 of paint but we would never have enough paint to 

paint the curved surface!

Toricelli lived before calculus was discovered, so 

he came across this paradox intuitively. When the 

calculus was developed this result was con rmed 

using integration to  nd the volume and area

formed when rotating the curve f (x) = 
1

x
 by 

about the x-axis for values of x between 1 and ∞.  

The shape formed is called Toricelli’s Trumpet or 

Gabriel’s Horn.

 Does mathematics always 

re ect reality?

 Can mathematics be right and 

wrong at the same time?

 Do mathematical explanations 

hinder our understanding of 

the real world?

[ The pieces from the  rst triangle are rearranged to make 

the second triangle. Why is there a gap in the second one?

y

x

1

0.75

0.5

0.25

– 0.25

– 0.5

– 0.75

– 1

2 4 6 8



Modeling 
randomness

CHAPTER OBJECTIVES:

5.5   Concept of discrete and continuous random variables and their probability 

distributions; de nition and use of probability density functions; expected value, 

mode, median, variance and standard deviation; applications

5.6   Binomial and Poisson distributions; mean and variance

5.7  Normal distribution; properties of normal distribution; standardization 

of normal variables

You should know how to: 

1 Use the basic probability laws.

 P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

 P(A′) = 1 – P(A)

 e.g. If  P(A) = 0.7, P(B) = 0.2 and

 P(A ∩ B) = 0.3, 

 P(A′) = 1 – 0.7 = 0.3

 and P(A ∪ B) = 0.7 + 0.2 – 0.3 = 0.6

2 Calculate probabilities of  dependent and 

independent events.

 
 

 




P

P
P

A B

B
A B

When A and B are independent, 

P(A ∩ B) = P(A) × P(B).

e.g. If  A and B are independent 

and P(A) = 0.4 and P(B) = 0.1, fi nd 

P(A ∩ B), P(A ∪ B) and P(A|B).

 P(A ∩ B) = 0.4 × 0.1 = 0.04

 P(A ∪ B) = 0.4 + 0.1 − 0.04 = 0.46

 P(A|B) = 0.04

0.1
0.4

Skills check

1 Given two events A and B such that 

P(A) = 0.2 and P(B) = 0.3, fi nd:

a P(A′)

b P(A ∪ B) if  P(A ∩ B) = 0.1

 Given two events A and B such that 

 P(A) = 0.2 and P(B) = 0.3, fi nd:

a P(A ∩ B) and P(A ∪ B) if

A and B are independent

b P(A | B)  if  P(A ∩ B) = 0.1

10

Before you start

Note that when A and 

B are independent 

events, P(A | B) = P(A).
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Random variables and distributions 

In a production factory, the weight of  each unit of  a product must be 

within a given range of  a target weight (usually the weight stated on 

the packaging). This is monitored using a control chart. The quality 

control manager uses a probability model to calculate acceptable 

limits for the weight of  each unit. If  these limits are exceeded too 

often, this indicates ineffi ciency in the production process.

Walter Shewhart

(1891–1967), American 

physicist, engineer and 

statistician, invented 

the control chart (a type 

of graph) while working 

for Bell telephone 

laboratories in the 

190s. This helped to 

impove the reliability 

of their telephony 

transmission systems.

Control charts

Manufacturing processes use control charts to ensure that standards are kept 

within acceptable limits. A control chart is a graphical display showing data 

obtained from the process being monitored. A horizontal center line shows 

the desired statistic, a line shows the upper control limit (UCL) and a line 

shows the lower control limit (LCL).

The LCL and UCL are determined from historical data. By comparing current 

data to these limits, conclusions can be drawn about whether any variation 

in the process is consistent (in control) or is unpredictable (out of control, 

affected by special causes of variation).
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➔ The outcome of  many random phenomena can be measured 

or represented by numerical values. To describe the behavior 

of  these outcomes, use a random variable with its associated 

probability distribution.

.  Discrete random variables 
and distributions 

In many statistical experiments the data has discrete values.

For example

 if  you roll a dice, the possible scores are 1, 2, 3, 4, 5 and 6

 the possible number of  times, n, that you roll the dice until you 

get a 6 forms, in theory, an infi nite discrete set: +

You can model both these situations using a discrete random 

variable. Its values are the possible outcomes of  the experiment and 

its behavior is described by a probability distribution function.

➔ The probability distribution function of  a discrete random 

variable assigns a probability to each value x of  the variable X

f  (x) = P(X = x).

➔ A probability distribution function has these properties:

 0 ≤ f  (x) ≤ 1

 f x
A

( )
∈

∑ =1 where A is the set of  all possible values of  X

Example 

X is the random variable ‘the number of  heads obtained when you toss 

two coins simultaneously’.

a What are the possible values of  X?

b Defi ne the probability distribution of  X

Answers

a X can take the values 0, 1 and 2.

b  The possible outcomes are 

HH, HT, TH and TT. 

P = 0 = P TT = = 0.25
1

4
X( ) ( )

P =1 = P HT + P TH

= = 0.5

X( ) ( ) ( )

2

4

P = 2 = P HH = = 0.25
1

4
X( ) ( )

List the possible numbers of  heads.

List the 4 possible outcomes. 

A discrete variable 

can only have certain 

values. For example, 

the number of rainy 

days in November can 

only be an integer 

between 0 and 0.

Use upper case 

letters to represent 

random variables 

and lower case 

to represent their 

particular values.

P(X = x) is sometimes 

written p
x

This means ‘give the 

probability for each 

possible value of X
You could also put the 

information in a table

x 0 1 

P(X = x) 0.5 0.5 0.5

Modeling randomness496



You can represent a probability distribution function of  a discrete 

random variable with a bar chart where the height of  each bar 

represents the probability.

Example 

A discrete random variable Y has a probability distribution function 

given by f  (y) = ky2, where y = 0, 1, 2, 3 and 4. 

Find the value of  k and hence draw a bar chart to represent f.

Answer

    

 


y

f y k k k

k k

4

=0

=1 so 0 + 1+ 4

+ 9 + 16 =1

30k = 1

k = 1
30

So, the values of  f  (y) are

y 0 1   4

f  ( y  ) 0
1

30

4

30

9

30

16

30

32 41 y

f

3

30

6

30

9

30

18

30

15

30

12

30

0

The total of  the probabilities is 1

Substitute the values of  y in the 

expression f  (y) = ky2

The heights of  the bars represent the 

probability of  each value of  x.

Exercise 10A

1 State with a reason whether or not each of  these functions can be 

a probability distribution of  a random variable.

a 
x 1   4

f  (x ) 0. 0. 0.4 0.

b x –1 – – –4

f  (x ) 0. 0. 0.4 0.

c 
x –1   4

f  (x ) –0. 0.5 0.4 0.

The probability 

distribution function 

is sometimes called 

the probability mass 

function.

Check that both 

properties are true 

for each probability 

distribution function:

 Each value of x

has a probability 

between 0 and 1

 The sum of all 

the probabilities 

equals1. 
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2 A discrete random variable X has this probability distribution

x 1 2 3 4 5

f  (x ) 0.21 0.25 0.41 a 0.01

Find

a the value of  a b P(1 ≤ X ≤ 3) c P(X ≤ 3)

3 The discrete random variable T has probability distribution 

function given by 

 P(T = t) = f  (t) = k (4 – t) for t = 0, 1, 2 and 3.

a Find the value of  the constant k

b Hence calculate P(1 ≤ T < 3).

4 There are eight red socks and six blue socks in a drawer. A sock 

is taken out, its color noted and it is put back in the drawer. 

This procedure is performed three times. 

Let R be the random variable ‘number of  red socks taken’.

Determine the probability distribution of  R and represent it in a 

table and on a bar chart.

5 Do question 4 again, this time assuming that each sock is not put 

back in the drawer after it has been taken out.

Parameters of a discrete random variable

Probability distribution functions are described by characteristics 

called parameters. These parameters have the same names as the 

statistical measures you studied in Chapter 6: the mean, mode, 

median, variance and standard deviation.

➔ For a random variable X the mean μ, also called the expected 

value E(X), is given by μ = Σ x P(X = x)

 The variance σ 2 is given by σ 2 = Σ(x – μ)2 P(X = x) or 

σ 2 = Var ( ) = E( ) (E( )) = P( = )2 2 2 2X X X x X x− −∑ 

σ = Var X( ) is called the standard deviation of  X

➔ The mode of  a probability distribution function is the value of  

x for which the probability distribution function has a 

maximum.

If  there is no maximum value, then the PDF has no mode. A PDF 

with more then one maximum is multi-modal.

An expected value 

μ = E(X  ) represents 

a cluster point for the 

entire distribution. 

μ = E(X  ) is an 

average value and 

therefore it may not 

be one of the values 

of the variable.

A more formal 

treatment of 

expectation algebra 

is part of the option 

Statistics and 

Probability.

PDF is shorthand for 

probability distribution 

function.
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Example 

Let X be the random variable ‘the number shown when a dice is rolled’.

Find the values of  the mean, the variance and the standard deviation 

of  X

Answer

  1
6

P = =X x  for x = 1, 2, 3, 4, 5 

and 6

E = = = = 3.5
6

21
6

7
2

=1

6

X
x

x

( ) ∑

E( ) =2

=1

6 2

6
=

1+ 4 + +36

6
=

91

6
X

x

x

∑ 

Var = =91

6

7

2
35

12

2

X( ) ⎛
⎝
⎜

⎞
⎠
⎟

35
12

1.71 (3 sf) = =

Use E(X) =  x P(X = x)

Use E(X 2) = x 2 P(X = x)

Use Var (X) = E(X2) – (E(X))2

Use σ= Var X( )

Example 3 is typical of  a situation where the expected value is not 

one of  the possible values of  the variable.

The next example shows a simple application of  probability models:  

how to decide whether or not a game is fair using the expected value 

of  the variable ‘amount gained’.

Example 

Tom tosses three fair coins. He wins $9 if  he gets three heads, $5 if  he 

gets two heads, and $2 if  he gets one head. If  he doesn’t get any heads 

he pays $30. Is the game is fair?

Answer

There are 8 equally likely possible outcomes: 

HHH, HHT, HTH, HTT, THH, THT, TTH, 

TTT

Let A be the amount gained or lost. 

P 9 P(HHH)
1

8
A = = =( )

P = 5 = P(HHT, HTH, THH) =
3

8
A( )

P 2   P(HTT, THT, TTH)A = = =
3

8
( )

P 30  P(TTT)A = − = =
1

8
( )

Therefore,

E 9 5 2 30 0
3

8

3

8

1

8
A( ) = × + × + × − × =

1

8

So this game is fair.

List all the outcomes.

The random variable 

A can take four values: 

9, 5, 2 and −30.

E PA = x A x( ) ( )∑ =

Unless otherwise 

stated in the question, 

dice are always 

assumed to be fair 

and have six faces 

numbered 1, 2, 3, 4, 

5 and 6. When a dice 

is fair the distribution 

has no mode.

The game is 

considered fair if the 

expected value of the 

winnings is zero.

What do we mean by 

‘a fair game’?

This is an example of 

a PDF with two modes: 

2 and 5.

Chapter 10 499



Exercise 10B

1 A discrete random variable R has the probability distribution

given in this table.

r 1 5 10

P(R = r )
1

5

2

5

2

5

Find the value of

 a E(R) b E(R2) c Var(R) d standard deviation of  R

2 A discrete random variable X can take only the values 0, 1, 2, 3, 

4 and 5. 

The probability distribution of  X is given in this table.

x 0 1 2 3 4 5

P(X = x) a a a b b b

Given that P(X ≥ 2) = 3P(X < 2)

a fi nd the values of  a and b 

b calculate E(X) and E(X  2) 

c fi nd the value of  Var(X).

3 A pack of  10 cards numbered from 1 to 6 is shuffl ed.

a Find the probability that the number on the bottom 

card is larger than the number on the top card. Justify 

your answer.

Let S be the random variable ‘sum of  the numbers on the top 

and bottom cards’.

b Find P(S = 4).

c Construct a table for the probability distribution of  S.

d Find E(S) and Var(S).

4 Find the fair price to pay to enter a game in which you can win 

£20 with probability 0.2, win £10 with probability 0.4 or lose the 

amount you paid.

EXAM-STYLE QUESTION

5 A random variable T takes only integer values and has 

probability distribution function defi ned by: 

 









    

2

2

      if 1, 2, 3

( ) P( ) 8  if 4, 5, 6, 7

0        otherwise  

kt t

f t T t k t t

where k is a constant.

a Find the value of  k

b Calculate P(T = 4), P(T ≤ 4) and P(T = 4|T ≤ 4).

c Find E(T  ) and Var(T  ).

d Determine the mode of  T

There are three 

equations here for f  (t). 

Choose the equation 

that corresponds to 

each value of t to work 

out Σ f  (t), then  nd k
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6  Use the properties of  addition and multiplication to show that 

Σ (x – μ)2 P (X = x) = Σ x 2P (X = x) – μ2

Cumulative distribution function

➔ The cumulative distribution function (CDF), F, of  a discrete 

random variable X is defi ned by: 

F = P P ==x X x X t

t x

( ) ( ) ( )≤
≤

∑

F(x) gives the probability that the variable X takes values that do not 

exceed x. To fi nd its value we need to add together the values of  the 

probabilities P(X = t) for all values of  t less than or equal to x

The median of  X is defi ned as 



1 2

2

x x

m  where 

 x
1
 is the maximum value for which F (x

1
) ≤ 0.5 and 

 x
2
 is the minimum value for which F (x

2
) ≥ 0.5 

Example 

Construct the cumulative distribution table for the number of  heads 

when four coins are tossed. 

Hence fi nd the median of  the distribution.

Answer

Let X be the random variable 

‘number of  heads obtained 

when four coins are tossed’. 

P
1

16
X = =0( )

P 1 =
4

16
X =( )

P 2
6

16
X = =( )

P( 3) =
4

16
X =

P 4
1

16
X = =( )

The CDF of  X is

x 0 1 2 3 4

F(x)
1

16

5

16

11

16

15

16
1

Median of  X = 
1 2

2
1.5

+
=

X can take the values 0, 1, 2, 3 

and 4. There are 16 possible outcomes, 

HHHH, HHHT, and so on. 

P(X = 0) = P(TTTT)

4 of  the outcomes have just one head. 

6 outcomes have exactly two heads.

4 outcomes have exactly three heads.

P(X = 4) = P(HHHH)

F(1) < 0.5 and F(2) > 0.5

This shows that 

Var(x) = E(x)2 − (E(x))2

The CDF, sometimes 

just called the 

distribution 

function, models 

the cumulative 

relative frequencies 

of the outcomes of an 

experiment.

The number of heads 

is a discrete random 

variable.
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Example 

Construct the cumulative distribution table for the larger number obtained 

when two dice are thrown and fi nd the median of  the distribution.

Answer

Let X be the random variable ‘the larger number obtained when 

two dice are thrown’.
X can take the values

1, 2, 3, 4, 5 and 6.

P(X = 6) is the probability of  

rolling either a double 6, or 6 

on the fi rst dice and a number 

between 1 and 5 on the second 

or 6 on the second dice and a 

number between 1 and 5 on the 

fi rst.

  
1

36
P 1X

  
3

36
P 2X

  
5

36
P 3X

  
7

36
P 4X

  
9

36
P 5X

  
11

36
P 6X

x 1 2 3 4 5 6

F(x)
1

36

4

36

9

36

16

36

25

36
1

Median of  X = 
4 5

2
4.5

+

=

Add together the values of  the 

probabilities P(X = t) for all 

values of  t less than or equal to x 

to obtain the CDF table.

F(4) < 0.5 and F(5) > 0.5

Exercise 10C

1 A discrete random variable X has the probability distribution 

shown in the table.

x 5 10 15 20 25 30

P(X = x)
1

15

2

15

3

15

4

15

3

15

2

15

a Find P(X ≤ 15).

b Construct the CDF table for this distribution.

c Hence fi nd the median of  the distribution.

2 An emergency call centre has fi ve service lines that operate 

24 hours every day. 

A random variable L denotes the number of  lines in use during 

any specifi c 5-minute period.

Data collected over a long period of time shows that L has this PDF:

n 0 1 2 3 4 5

P(L = n) 0.07 0.21 0.25 0.31 0.12 0.04

a What is the probability that at least three lines are in use 

simultaneously?

b Find E(L) and Var(L).

c Construct the CDF table for this distribution.

d Hence fi nd the value of  the median of  the distribution.

See p 515 for more 

details on this.
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3 A fair dice has faces numbered 1, 2, 2, 3, 3 and 3. The dice is 

thrown twice. S is the random variable ‘sum of  numbers on the 

uppermost face of  the dice’

a Construct tables for the probability distribution f  and 

cumulative distribution F of  S.

b Find the mean, median and mode of  S.

c Calculate the standard deviation of  S.

4  The probability distribution of  a discrete random variable X is 

given by

 f  (x) = kx where x = 1, 2, . . ., n and k is a parameter.

a Show that 



2

2

n n
k b Hence fi nd E(X)

5 The probability distribution of  a discrete random variable X is 

given by f  (x) = 3a x where x = 1, 2, 3, . . . and a is a parameter.

a Show that a = log
3
 2

b Hence fi nd an expression for the cumulative distribution of  S

. Binomial distribution

In a TV game show the fi nal round consists of  a Wheel of  Fortune 

game. Each contestant that reaches this round has the chance to 

double the amount won in previous rounds. The Wheel of  Fortune 

is a roulette wheel with 10 slots, one of  which is gold. The 

contestant spins the wheel and wins if  the ball lands in the gold slot. 

The producer of  the show wants to know roughly how much will be 

paid in prize money so he needs a probability model that allows him 

to estimate the number of  times the contestants will win in the last 

stage during the 50 planned sessions of  the contest.

This Wheel of  Fortune game is a typical example of  a real-world 

situation that you can model mathematically.

➔ The characteristic features of  this type of  problem are:

● There are a fi xed number of  trials n.
●  The trials are independent and are done under exactly the 

same conditions.
●  Each trial has exactly two possible outcomes: success and

failure

● For each trial the probability of  success p is constant. 
●  The probability of  failure is denoted by q = 1 – p which is 

also constant.

Jacob Bernoulli 

(1654–1705), a 

member of the 

famous Swiss family 

of mathematicians, 

was the  rst person to 

extensively study 

problems like this.

Probability models 

make interesting 

topics for the Extented 

Essay.
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Experiments with these characteristics are called Bernoulli or 

binomial experiments. The binomial distribution is a theoretical 

probability distribution that models situations that meet the 

Bernoulli experiment specifi cations listed above.

Example 

For each of  these situations decide whether or not they are Bernoulli 

experiments. In the case of  a Bernoulli experiment, indicate the values 

of  n, p and q.

a  A fair coin is tossed ten times and the number of  heads obtained is 

noted.

b  A bag contains ten blue balls and eight red balls. Five balls are 

removed from the bag and are not replaced. The number of  blue 

balls is noted.

c A bag contains ten blue balls and eight red balls. A ball is removed 

from the bag and its color is noted. The ball is then replaced. The 

experiment is repeated fi ve times and the total number of  blue balls 

is recorded.

Answers

a This is a Bernoulli experiment. 

n = 10 and p q= =

1

2

b This is not a Bernoulli 

experiment.

c This is a Bernoulli experiment   

n = 5, 

p = =

10

18

5

9
 and 

q = =

8

18

4

9

10 independent trials, two outcomes, 

probability of  success (H) is constant.

Probability of  getting a blue ball 

changes each time.

5 independent trials, two outcomes, 

probability of  success (blue ball) is 

constant because the ball is replaced.

{ Continued on next page

Investigation – the Galton Board

This mechanical device was invented by the British mathematician 

Sir Francis Galton (1822–1911), one of the pioneers of statistical theory. 

The original model was built in 1873 and is kept at University College, London.

You can to use a simpli ed version to discover the probability function of a binomial random 

variable X that represents the number of successes x out of n trials, each of them with 

probability of success p. 

The Galton Board has an array of pins mounted on a vertical board. Balls are dropped on to the 

pin at the top of the array. When a ball hits a pin, it bounces to the left or right with equal 

probability, and then falls down one level, where it hits one of the two closest pins. At the 

bottom of the board it falls into one of the bins below the bottom row.

In general, when you 

make selections from 

a population without

replacement, the trials 

are not independent 

and the experiment 

is not a Bernoulli 

experiment. However, 

when the size of 

population is much 

larger than the number 

of trials the change in 

f is negligible. This can 

be approximated to a 

binomial experiment 

as the change in 

probability of success 

is very small. 
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From this investigation, you have discovered the formula for the 

binomial distribution which is:

➔ P( = )X r =
⎛

⎝
⎜

⎞

⎠
⎟

n

r
p q

r n r  where r = 0, 1, . . ., n

The binomial probability distribution is built into most GDCs but, 

for small values of  n, you can calculate binomial probabilities using 

the formula for combinations of  r elements selected out of n
n

r

n

r n r

⎛

⎝
⎜

⎞

⎠
⎟ =

( )
!

! !

You can also use Pascal’s Triangle, as 
n

r

⎛

⎝
⎜

⎞

⎠
⎟  is simply the (r + 1)th

entry of  its nth row.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

0C0

1C0 1C1

2C0 2C1 2C2

3C0 3C1 3C2 3C3

4C0 4C1 4C2 4C3 4C4

=

➔ P( = )X r =
⎛

⎝
⎜

⎞

⎠
⎟

n

r
p q

r n r

 is the probability distribution of  the 

random variable X, where X is the number of  successful 

outcomes in n Bernoulli trials. In this case, X follows a 

binomial distribution with parameters n and p, and we write

X ~ B (n, p), and we write

 The third parameter is q, where q = 1 − p

For more on 

Pascal’s triangle and 

combinations, see 

Chapter 1.

You can write 

P(X = r ) or P
r

The parameters are 

the values that stay 

 xed through the 

experiment.

The rows of Pascal’s 

Triangle are numbered 

such that row n = 0 is 

at the top. The entries 

are numbered from 

the left, begining with  

r = 0

a The diagram shows a Galton board with four levels. 

The circles represent the pins. Suppose that a ball 

is dropped onto the device. Write inside each circle 

the probability that the ball hits that pin, 

as a fraction.

b Suppose that the pins are manipulated so that the probability 

that a ball bounces to the left is double the probability that it 

bounces to the right. Recalculate the probability that the ball 

hits each pin. Copy the diagram and write the new probabilities 

on it.

c Consider a general case when the probability of bouncing left 

is p and of bouncing right is q = 1 – p. Find an expression for 

the probability of the ball hitting each pin in the diagram. 

Observe the expressions written in each level of the diagram 

and describe any patterns observed.

d Now consider a Galton board with n levels and a random variable X

that counts the number of balls in the r th bin counted from the left 

to the right. Find an expression for P(X = r ) in terms of n, r, p and q

Look at the 

coef cients and 

the variables in the 

expressions.
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Example 

In an inspection scheme, a sample of ten items is selected at random from 

a large batch and the number of defective items is noted. If  the number 

of defective items is less than two, the batch is accepted. Data collected 

over the year shows that the proportion of defective items in a batch is 2%. 

Write down an expression for the probability that a batch is accepted.

Answer

Let X be the random variable 

‘number of defective items in the 

sample’. The batch is accepted when 

X < 2 which means X = 0 or X = 1. 

X ~ B (10, 0.02)

P < 2
10

0
0.02 1 0.02

10

1
0.02 1 0.02

0 10

1

X( ) ⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

= −

+ − 99

10 trials, p = 0.02

P (X < 2) = P(X = 0) + P(X = 1)

In Example 8, you assumed that X followed a binomial distribution. 

This is reasonable as the batch is large and therefore, although the items 

are not replaced, the change in the probability of selecting a defective 

item remains very small, giving the accuracy needed for calculation 

purposes. The trials are independent as the items are selected randomly.

The binomial distribution is an important discrete distribution as you 

can use it to model many real-life situations. For this reason your GDC 

has built-in binomial PDF and binomial CDF functions that allow you 

to calculate binomial probabilities quickly, as shown in this example:

Example 

X is the random variable ‘number of  sixes obtained when you roll a 

dice seven times’.

a Identify, with reasons, the distribution followed by X and state 

clearly its parameters.

b Calculate P(X = 3) c Calculate P(X ≤ 3)

Answers

a  Each time the dice is rolled 

the probability of  obtaining 

a 6 is constant and each 

outcome is independent of  

previous ones.

X follows a binomial 

distribution with parameters 

n = 7 and p =

1

6

X ~ B 7,
1

6

⎛
⎝
⎜

⎞
⎠
⎟

Verify requirements of  a 

binomial distribution.

Number of  times the dice is rolled 

and probability of  getting 6.

You have to decide 

what counts as a 

success when you 

de ne the variable. 

This might not be 

the usual concept of 

success. For example, 

you might decide that 

 nding a defective 

piece is a success, as 

in Example 8.

{ Continued on next page
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b 3

0.0781(3 sf )

21875

279 936
X =

=

=( )

c 3

0.982(3 sf )

34375

349992
X ≤ =

=

( )

Use either the GDC binomial 

distribution function or

P( = )X r =
( )

= ⎛
⎜

⎞
⎟

⎛
⎜

⎞
⎟

n

r n r

p q
r n r!

! !

!

!( )!

7

3 7 3

1

6

5

6

3 4

Use GDC cumulative distribution 

function or

   


  
r

X 3 X r
3

0

P

Parameters of the binomial distribution

The random variable, X, in a binomial distribution is a discrete 

variable.

➔ The mode of  X is the x-value or values for which the 

probability distribution function has a maximum.

➔ If  F denotes the binomial CDF of  X

The median of  X is defi ned as 


 1 2

2

x x
 where x

1
 is the

maximum value for which F (x
1
) ≤ 0.5 and x

2
 is the minimum 

value for which F (x
2
) ≥ 0.5

This example shows you how to use the GDC built-in 

functions to calculate the mode and the median of  a binomial 

random variable.

Look carefully at b

and c. In b you use 

the GDC bulit in 

binomial PDF and in c

you use binomial CDF. 

Why?

See Section 10.1 for 

de nition of mode and 

median of a discrete 

random variable.

Recall that a PDF may 

have more than one 

mode.
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Example  

Let X ~ B (4, 0.25)

Find a The mode of  X b The median of  X

Answers

x 0 1 2 3 4

P (X = x) 0.316 0.421 0.210 0.046... 0.003

P (X ≤ x) 0.316 0.738 0.949 0.996 1

a mode of X = 1 as this is the maximum PDF value.

b P(X ≤ 0)< 0.5 and P(X ≤ 1) > 0.5

      median of  X = 
0 1

2
0.5

+

=

PDF is 

maximum 

when x = 1

Exercise 10D

1 A fair coin is tossed ten times. Find the probability of  getting:

a exactly four heads b at least six heads

c not more than fi ve heads.

2 A coin is biased so that the probability of  obtaining head is 0.6. 

Find the probability of  getting:

a exactly 2 heads if  the coin is tossed 5 times

b at least 3 heads if  the coin is tossed 7 times

c more heads than tails if  the coin is tossed 9 times.

EXAM-STYLE QUESTIONS

3 In the mass production of  light bulbs the probability that one 

bulb is defective is 1%. Bulbs are selected at random and put in 

packs of  eight.

a If  a pack is selected at random, what is the probability that it 

will contain:

i at least one defective bulb 

ii not more than two defective bulbs?

b Given that a pack selected at random contains at least one defective 

bulb, what is the probability that it contains exactly two defective bulbs?

4 Let X ~ B (6, 0.35). Find

a The mode a of  X

b The median b of  X

 c P(X < 2a|X > b)

5  Let X ~ B (n, 0.4)

a Construct three tables for the binomial CDF of  X when n = 2, 

5 and 10

b Given that P(X ≤ 10) > 0.5, fi nd the largest possible value of  n.

6 If  X ~ B (n, 0.3) and P(X > 3) > 0.7, fi nd the least possible value of  n.

What assumption do 

you need to make to 

answer question 3?
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7 The probability that it rains in Raincity on any day of  the year is 0.45.

 Calculate the probability that in any given week:

a it rains every day b it rains on at least two days

c it rains on exactly three consecutive days.

8 The probability that Joerg hits a target is 0.6. Find the fewest number 

of  attempts Joerg needs to make to ensure that the probability of  

hitting the target at least once is more than 95%.

➔ ● The mean μ of  a discrete random variable X including 

binomial is given by 

 = = =∑( ) ( )E PX x xX

● The variance of  X is given by

σ 2 = Var ( ) = E( ) (E( )) = P( = )2 2 2 2
X X X x X x− −∑ 

● σ is the standard deviation of  X

The next investigation discovers formulae for the parameters μ and σ2

of  a binomial variable X ~ B(n, p) in terms of  n and p

Investigation – parameters of a binomial variable
Suppose that a coin is tossed n times. The probability of getting a tail 

each time the coin is tossed is constant and is denoted by p. 

For each value of n and p, consider the random variable X which represents 

the number of tails obtained when the coin is tossed n times. Assuming 

that X ~ B (n, p), use your GDC or a spreadsheet to complete the table:

n p q = 1 – p
E(X )

=
=

xp qx

x

n
n x

0

∑

E(X2)

=
=

x p qx

x

n
n x2

0

∑

Var(X )

= E(X2) – (E(X ))2

1 0.5

5 0.5

10 0.5

1 0.2

5 0.2

10 0.2

1 0.8

5 0.8

10 0.8

Observe the table and conjecture a formula for E(X ) and Var(X ) in 

terms of the parameters n, p and q  Test your conjecture for 

other values of the parameters.
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➔ If  X ~ B (n, p) then E(X ) = μ = np and Var(X ) = σ 2 = npq 

 where q = 1 – p

Example 

An apple is picked from a large number of  apples in a container. 

The probability that the apple is bad is 0.05

A sample of  15 apples is selected at random. 

Find the expected number of  bad apples.

Answer

Let X be the random variable 

‘number of  bad apples in the 

sample’.

Assume that X ~ B(15,0.05)

E(X) = 15 × 0.05 = 0.75

Sample is selected randomly and the 

probability of  selecting a bad apple is 

constant.

E(X) = μ = np

Example 

A coin is biased so that it is twice as likely to show tails as heads. 

The coin is tossed fi ve times and the number of  tails is noted. 

The random variable X represents the number of  tails shown. 

a Draw a table showing the probability distribution of  X

b Hence fi nd E(X) and Var(X).

Answers

a X ~ B 5, 
2

3

⎛
⎝
⎜

⎞
⎠
⎟

The probability distribution function of  X is 

P( )
5 2

3

1

3

5

X r
r

r r

 =
⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

where r = 0, 1, 2, 3, 4 and 5

x P(X = x)

0 0.0041

1 0.0412

2 0.1646

3 0.3292

4 0.3292

5 0.1317

The trials are independent and

the probability of  obtaining a tail 

is constant. The probability of  a tail is 
2

3
and of  a head is 

1

3

Find the table of  values 

for the probability 

distribution using your 

GDC and the built-in 

binomial probability 

distribution function.

Some GDCs have built-

in spreadsheets that 

are useful in exercises 

like this. If your GDC 

does not have a 

spreadsheet, you 

can also use lists to 

obtain the probability 

distribution.

{ Continued on next page
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b   x P(X = x) x P(X = x) x2 P(X = x)

0 0.0041 0 0

1 0.0412 0.0412 0.0412

2 0.1646 03292 0.6284

3 03292 0.9877 2.9630

4 0.3292 1.3169 5.2675

5 0.1317 0.6584 3.2922

Total 1 3.3333 12.2222

E(X) = 3.33 (3 sf)

E(X 2) = 12.22. . .

Var(X)  = 12.22. . . –(3.33)2

= 1.11(3 sf)

Use your GDC to obtain 

the table.

E(X) is the total of  the third column.

E(X 2) is the total of  the fourth column.

Var(X) = E(X 2) – ( E(X)) 2

You can check your answers using the formulae

E(X ) = np and Var(X) = npq

E = 5 = 3.33 (3sf )
2

3
=

10

3
X( ) ×

Var = 5 =1.11 (3 sf)
2

3

1

3
=

10

9
X( ) × ×

Exercise 10E

1 Given that X ~ B(8, 0.4), fi nd:

 a P(X = 5) b P(X ≤ 5) c P(X < 5)

d the mean of  X e the variance of  X.

2 Given that Y ~ B (7, 0.3), fi nd:

a P(Y = 1) + P(Y = 2) b P(Y ≤ 2) 

c P(Y ≥ 2) d the median of  Y

3 Given that T  B 5
1

2
,

⎛
⎝
⎜

⎞
⎠
⎟

a Show that P T = =( )5
1

32
b Construct a table for the probability distribution function of  T. 

Hence state the mode of  T

c Construct a table for the distribution function F of  T

d Write down the value of  the median of  T

4 The probability that it rains on any given day in June of  any 

given year in Drycity is 0.02. 

a What is the probability that it rains on exactly three days in 

June in a given year?

b What is the probability that it does not rain on the fi rst fi ve 

days in June in a given year?

c Find the expected number of  rainy days in Drycity in June.

EXAM-STYLE QUESTION

5 A random variable R follows a binomial distribution B(n, p) with 

mean 2 and variance 1.5. Find the values of  n and p.

As this question says 

‘hence’ you must use 

the table to calculate 

the parameters of 

the distribution. Here 

the formulae for E(X) 

and Var(X) can only 

be used to check the 

answers.

Only round at the  nal 

values. Early rounding 

can give you incorrect 

answers.
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EXAM-STYLE QUESTIONS

6 In a multiple choice test there are 20 questions. For each question 

there is a choice of  four answers and only one of  these is correct. 

a If  a student guesses each answer fi nd the probability that he gets

i none correct ii more than ten correct

iii not more than fi ve correct.

b Calculate the mean and standard deviation of  the number of  

correct answers.

c Suppose that fi ve students guess the answers to the test. 

What is the probability that at least two of  them get more than 

ten answers correct?

7 In a large city 18 % of  the people are left-handed.

If  a random sample of  ten people from this city is selected:

a fi nd the probability that exactly two of  them will be left-handed

b fi nd the probability that at least one person in the sample is left-handed

c fi nd the most likely number of  left-handed people in the sample.

If  another sample of  25 people from the city is selected,

d fi nd the expected number of  left-handed people in the sample.

e fi nd the variance of  the number of  left-handed people in this sample.

If  a sample of  size n is to be selected randomly,

f Find the minimum value of  n for which the probability that it 

contains at least two left-handed people will be greater than 95%.

g In the same city the percentage of  left-handed women is 16% 

and the percentage of  left-handed men is 22%. 

A random sample of  fi ve women and fi ve men is selected from the 

population of  the city. What is the probability that the sample 

contains at least one left-handed woman and one left-handed man?

8  On a TV news channel, the evening news starts at the same time every 

day. The probability that Mr Li gets home from work in time to watch 

the news is 0.3 

a Calculate the probability that, in a particular week of  fi ve working 

days, he gets home in time to watch the news:

 i on exactly four days ii on at least three days.

b What is the probability that Mr Li gets home in time to watch the 

news on three consecutive days?

9 Let X ~ B(9, p)

a Draw bar graphs to represent the probability distribution of  X

when p = 0.1, 0.3, 0.5, 0.7 and 0.9.

b Compare the graphs obtained in part a and comment on their 

symmetries.

c For each value of  p in part a, fi nd the mean, median and mode of  

the distribution and comment on their values in relation to the 

symmetries (or asymmetries) of  the graph.
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10   Consider two independent random variables X and Y such that 

X ~ B(2, a) and Y ~ B(2, b). 

Let W be the random variable that represents the product of  

each value of  X with each value of  Y

a Construct a table showing the probability distribution 

of  W

b Hence fi nd an expression for E(W) in terms of  a and b

. Poisson distribution

The Poisson distribution is named after Siméon-Denis Poisson

(1781–1840) who fi rst discovered this model as an approximation 

to the binomial distribution when the number of  trials n gets larger 

and larger while the probability of  success p gets smaller and 

smaller. 

➔ A discrete random variable X follows a Poisson distribution 

when it models situations that satisfy these conditions:

● The occurrence of  an event at a particular point in space 

or in time is independent of  what happens elsewhere.

● The probability of  an event occurring within a 

small fi xed interval (or in a small region of  space) is 

constant.

● There is no chance that two events will occur at precisely 

the same moment or at the same place.

In theory, the Poisson distribution has no upper value, and in this 

way it differs from the binomial distribution.

➔ If  an event is randomly scattered in time or space, the discrete 

random variable X that models the number of  its occurrences 

in a given interval follows a Poisson distribution with 

parameter m, X ~ Po(m)

 The probability distribution function (PDF) of  X is

f x X x
m xm

x
( ) ( )= = =P

e

!
 where x = 0, 1, 2, ....

 The Poisson cumulative distribution function (CDF) is

F x X x
m t

t

x m

t
( ) ( )= ≤ =

=

∑P
e

!0

Poisson was an 

extremely hard-working 

mathematician. 

His major work on 

probability was a 

book with over 400 

pages where just one 

was dedicated to 

the derivation of the 

Poisson distribution.
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Example 

The random variable X follows a Poisson distribution such that 

X ~ Po(2)

Calculate P(X = x) for x = 0, 1, 2, 3, 4, 5 and draw a bar graph to 

illustrate the distribution.

Answer

X P(X = x)

0 0.1353

1 0.2707

2 0.2707

3 0.1804

4 0.09022

5 0.03609

32 41 5
t

p

0.3

0.2

0.1

0

Use GDC and 

P
e

X x
2 x

2

x!
=( ) =

×

or use built-in Poisson PDF function 

to calculate the probabilities.

Example 

X ~ Po (m) and P(X = 0) = 0.2

a Find the value of  m

b Calculate P(X ≤ 4).

Answers

a  P = 0 = 0.2 0.2
e

0

X
m

m
( ) ⇒ =

0!

e m = 0.2

m = –ln(0.2) or 1.61(3 sf)

b P(X ≤ 4) = 0.976 (3 sf)

P X x
x

= =( )
e

!

m x
m

m0 = 1 and 0! = 1

Apply logarithms to both sides 

or use GDC.

P(X ≤ 4)

= P(X = 0) + P(X = 1) + P(X = 2)

+ P(X = 3) + P(X = 4)

Exercise 10F 

1 X ~ Po(m). Calculate P(X = x) for x = 0, 1, 2, 3, 4, 5 and draw 

bar graphs to illustrate the distributions for m = 1, 3 and 5.

2 Y ~ Po(3). Find the probability that

a P(Y = 3) b P(Y < 3)

c P(Y > 3) d P(Y = 4| Y > 3)

Alternatively, you can 

use software like 

Autograph to create 

the required graph and 

probability values.
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Examples of  typical real-life situations that can be 

modeled by a Poisson distribution include 

● the number of  phone calls received during a given 

period of  time

●  the number of  car accidents at a certain location 

during a given period of  time

●  the number of  particles emitted by a radioactive 

source in a given time

● the number of  typing errors on a randomly 

chosen page of  a book

● the number of  fl owers in a randomly chosen area of  a fi eld

● the number of  fl aws in a given length of  material.

Example 

The number of  accidents in a randomly chosen day at a road crossing 

can be modeled by a Poisson distribution with parameter 0.5.

Find the probability that, on a randomly chosen 

day, there are 

a exactly two accidents 

b at least two accidents. 

Answers

If X represents the number of  

accidents on the given day then 

X ~ Po (0.5) and 

P
e 0.5

0.5

X x

x

x!
= =

×
( )

( )

a P 2
e (0.5)

2!

0.5 2

X = =
×

( )

= 0.0758 (3 sf)

b P(X ≥ 2)  = 1 – P(X ≤ 1)

P(X ≥ 2)  = 0.0902

Substitute 0.5 for m in 

P
e

X x
m x

m

x!
= =( )

Make x = 2 or use your GDC

P
e e

X 1

0.5 0 0.5 1

0.5

0!

0.5

1!
≤ = +

− −
× ×

( )
( ) ( )

or use the GDC built-in Poisson CDF.

If  you have to calculate the parameter of  a Poisson variable, 

the nature of  the expression of  a Poisson PDF might lead to an 

equation or inequality that you can solve numerically only with 

your GDC.

You should work with 

several signi cant 

 gures and avoid 

early rounding as it 

may lead to incorrect 

answers.
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Example 

If  X ~ Po(λ) fi nd the value of  λ, correct to 4 decimal places, given that 

P(X = 1) = 0.25 

Answer

P(X = 1) = 0.25

e

1!

l 1

0.25
λ

=

l = 0.3574 (4 dp)

P =
e

X x

x

x!
=

−λ
λ

( )

Use GDC numerical solver.

Exercise 10G

1 The number of accidents in a randomly chosen week at Safe 

School can be modeled by a Poisson distribution with parameter 

0.7. Find the probability that, in a randomly chosen week, 

there are

a exactly two accidents 

b at least two accidents.

2 The number of  bacteria per millilitre of  a certain liquid follows a 

Poisson distribution with parameter 3. Find the probability that 

in a millilitre of  the liquid there will be

a at least 4 bacteria 

b not more than 2 bacteria.

3 X ~ Po (m). Find the value of  m if  P(X = 1) = 0.1

4 X ~ Po (m). Find the value of  m if  P(X ≤ 1) = 0.5

Parameters of the Poisson distribution

The variable X in a Poisson distribution is a discrete variable, and 

therefore you can use the formulae

E ( )X x X x
x

( ) = =
=

∞

∑ P
0

 and Var E( ) EX X( ) ( )( )= −2 2
X

to calculate the mean and variance. The variable X can take an 

infi nite number of  values: 0, 1, 2, 3, 4,… so instead of  a fi nite sum 

for E(X ) and Var(X ) you get infi nite series. As the study of  infi nite 

series is beyond the scope of  this course, you cannot directly deduce 

formulae for these parameters.

This example shows you how to estimate the values of  the mean 

and variance of  a Poisson variable using your GDC.

The exact calculation 

of the expected 

value and variance 

of Poisson variables 

requires knowledge of 

techniques that are 

part of the Calculus

option.
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Example 

X ~ Po(m) and P(X = 0) = 0.2

Use a GDC to estimate E(X) and Var(X).

Answer

E P( )
0

X x X x
x

( ) ∑= =
∞

=

= 1.60944 = 1.61 (3 sf)

Var(X ) = E(X 2) – (E(X))2

= 4.19973. . . – (1.60944. . .)2

= 1.60944. . .

So E(X) = Var(X ) = 1.61 (3 sf  )

Estimate the value of  this series by 

adding a great number of  its terms, 

e.g. 1000

Properties of Poisson distributions

Example 17 suggests an interesting relation between the parameter 

of  the Poisson variable and its mean and variance, which is explored 

in this investigation.

Investigation –  parameters of a Poisson 
distribution

1 Let X ~ Po (m) 

2 Copy and complete the table.

m x X = x
x

P
 = 0

100

( )∑ x X = x
x

2

 = 0

100

P( )∑ x X = x
x

2

 = 0

100

P(∑ x X = x
x

P
 = 0

100

( )⎛
⎝⎜

⎞
⎠⎟∑

0.1

0.2

0.3

…

3 Compare the results in the second and fourth columns and write 

down your conjecture.

4 Increase the number of terms of each series and test your 

conjecture.

5 Write down your conclusions.       

Discussion point: how 

many terms do you 

need to consider to 

be sure of the result?
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From the investigation you have discovered an important 

characteristic of  the Poisson distribution.

➔ If  X ~ Po(m) then E(X) = Var(X) = m

Another important property of  the Poisson distribution 

is the relation between the mean and the length of  the 

associated interval.

➔ If  X ~ Po(m) and X is the number of  successes in an interval 

of  length l, the number of  successes in an interval of  length kl

(k > 0) is modeled by another Poisson variable with parameter 

(or mean) km

Example 

In a book of  520 pages there are 135 misprints.

a What is the mean number of  misprints per page?

b Find the probability that pages 444 and 445 do not contain any 

misprints.

Answers

a Let X ~ Po(m)

m = = =
135

520

27

104
0.2596...

b Let X be the number of  

misprints found on 2 pages

X m Po 2( )

P = 0 0.595 (3sf)X( ) =

For two pages the mean is 2 m 

Use X

2m 0

2m

0

P 0

e

!

=

=
×

( )

( )

or Poisson PDF on GDC.

Bortkiewicz was born in Saint Petersburg where he graduated 

from the Law Faculty in 1890. In 1898 he published a book 

about the Poisson distribution, The Law of Small 

Numbers. In this book, which made the Prussian horse-kick 

data famous, he showed that events with low frequency in a 

large population follow a Poisson distribution even when the 

probabilities of the events vary. The data collected includes 

the number of soldiers killed by being kicked by a horse each 

year in each of 14 cavalry corps over a 20-year period. 

Bortkiewicz showed that those numbers follow a Poisson 

distribution

Modeling randomness518



Example 

On Sunday mornings, cars arrive at a petrol station at an average rate 

of  30 per hour. Assuming that the number of  cars arriving at the petrol 

station follows a Poisson distribution, fi nd the probability that:

a in a half-hour period 12 cars arrive

b no cars arrive during a particular 5-minute interval

c more than 5 cars arrive in a 15-minute interval.

Answers

a  In a half-hour period, the 

number of  cars arriving at the 

petrol station can be modeled 

by a Poisson random variable 

Y ~ Po(15)

P(Y = 12) = 0.0829 (3 sf)

b In a 5-minute interval, the 

number of  cars arriving is 

modeled by Y ~ Po(2.5)

P(Y = 0) = 0.0821 (3 sf)

c In a 15-minute interval, the 

number of  cars arriving is 

modeled by Y ~ Po(7.5)

P(Y > 5)  = 1 – P(Y ≤ 4) 

= 0.868 (3 sf)

Mean is 
1

2
30 = 15×

Use P
e

Y 12

15 12

15

12!
=( )

( )
=

×

The mean is 5 × 
30

60
 = 2.5

Use P
e

Y 0

2.5 0

2.5

0!
= =

×
( )

( )

Use P(Y ≤ 4  )

=  P(Y ≤ 0  ) + P(Y = 1 ) + P(Y = 2 )

+ P(Y = 3 ) + P(Y = 4 )

Exercise 10H

1 The mean number of  bacteria per millilitre of  a given liquid is 3.5 

Find the probability that

a in 2 ml of  the liquid there will be fewer than 7 bacteria

b in 0.5 ml of  the liquid there will be at least 2 bacteria.

2 The mean number of  fl aws per square metre of  fabric produced 

on a machine is 0.01. If  fl aws occur randomly and their number 

is modeled by a Poisson variable fi nd the probability that

a in a randomly chosen 100 square metres of  fabric there will be   

exactly two fl aws

b in 25 square metres of  chosen randomly fabric there will be at 

least one fl aw.

Use built-in functions 

on your GDC to 

calculate these 

probabilities.
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3 The number of  phone calls received by a school between 8:00 

and 9:00 on any weekday is modeled by a Poisson distribution. 

If  the mean number of  phone calls per hour is 12, calculate

a the expected number of  phone calls received between 8:00 

and 8:15 in a given day

b the probability that more than fi ve calls are received between 

8:00 and 8:10 in a given day.

4 X ~ Po (3.5)

a Calculate 

i P(X = 3) ii P(X > 3) iii P(X < 5|X > 3)

b Write down the values of  E(X) and Var(X)

c Hence fi nd the value of  E(X 2 ).

EXAM-STYLE QUESTION

5 The random variable X is Poisson distributed with mean m and 

satisfi es

 P(X = 0) + P(X = 1) – P(X = 4) = 0

a Find the value of  m correct to four decimal places

b Hence calculate P(2 ≤ X ≤ 4).

6 Let X be a random variable with a Poisson distribution, such that 

P(X > 3) = 0.555 

Find P(X < 3)

EXAM-STYLE QUESTION

7 The random variable P has a Poisson distribution with 

mean λ > 0.

Let p be the probability that P takes the value 0, 1 or 2.

a Write down an expression for p in terms of  λ

b Show that p = p(λ) is a decreasing function.

c Sketch the graph of  p for 0 < λ ≤ 6, showing clearly 

concavities and any points of  infl ection.

.  Continuous random variables

In the previous section you studied discrete random variables

whose density functions are suitable models for situations where the 

outcomes have distinct values, usually integers. In many other 

situations, when we you need to model the behavior of  variables like 

height, weight, mass and time, you use continuous random 

variables. 

➔ A variable X is random when its value is the result of  a random 

experiment and it is continuous when it is not possible to list 

all of  its values but only the range of  values it can take.

The values of a 

continuous random 

variable form an 

uncountable set. 

What is the meaning 

of uncountable? Is 

the set of rational 

numbers uncountable? 

What is the difference 

between countable 

and uncountable?
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Example 

State whether each of  these is a discrete or a continuous random 

variable

● the heights H of  the students in an IB school

● the grades G of  the students of  a Math HL class

● the time T spent by IB students preparing for a particular exam

● the number of  exercises N done by each student in an IB class

● the age A of  the students in an IB class.

Answer

H and T are continuous random 

variables. 

G is a discrete random variable.

N is a discrete random variable. 

A is a special type of  continuous 

random variable. 

H and T can take any value on an 

interval of  real numbers.

G can only take the values 1, 2, 3, 4, 5, 

6 and 7

N can take the values 

0, 1, 2, 3, …, n.

Similarities

Both discrete and continuous random variables

● are used to model the results of random experiments or 

phenomena

● have probability distributions that describe the behavior of the 

variable and allow us to make prediction

● have parameters.

Discrete Continuous

● Discrete random variables 

always model situations 

whose outcomes have distinct 

values.

● Each possible value d
1, 

d
2, 

... of a discrete random 

variable D has an associated

probability p
1, 

p
2,...

 where 

0 < p
i
≤ 1

● The characteristics of the 

probability distributions of 

discrete and continuous 

random variables are 

different.

● Continuous random variables 

model situations whose 

outcomes are measured.

● For a continuous random 

variable C the probability that 

C has a particular value is 

always zero.

● The characteristics of the 

probability distributions of 

discrete and continuous 

random variables are 

different.

Ages of people can be 

treated as discrete 

variables – for 

convenience their 

values are rounded 

down to an integer but 

in fact they can take any 

value in an interval 

of non-negative real 

numbers.

A typical mistake is 

to apply properties 

of continuous 

distributions to 

discrete distributions. 

Learn the differences 

between them!
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Probability density function of a continuous 
random variable

The behavior of  a continuous random variable X is described by a 

function with domain  called the probability density function of  X

or simply the PDF of  X.

➔ If  a function f is a probability density function (PDF) of  a 

random variable X, it has these properties

● f  (x) ≥ 0 for all values x ∈

●

+∞

∞

f  (x) dx = 1

The defi nition above is a general defi nition. In most situations the 

PDF is only positive for values in an interval [a, b] and takes the 

value zero elsewhere. For this reason, it is common to restrict the 

domain of  PDF functions to the interval [a, b]. This is particularly 

convenient when you need to test the second condition. By 

considering the restriction, you only need to verify that
b

a

f  (x) dx = 1

Example 

Consider the function defi ned by f x
x x

( )
⎧
⎨
⎩

=
≤ ≤3 if 0 1

0 elsewhere

2

Show that f is a well-defi ned probability density function.

Answer

f  (x) ≥ 0 for all real values of  x

1

0

f  (x) dx = 
1

0

3x 2 dx

= = − =
0

x 3
1

1 0 1⎡⎣ ⎤⎦

Therefore f is a well-defi ned

probability density function.

The range of  y = 3x2 is [0, + ∞[

The function is positive only for 

values on the interval [0, 1], so you 

only need to show that 
1

0

f x dx 1( ) =

3x dx x C2 3= +

Both conditions are satisfi ed.

Parameters of a continuous random variable

Consider a continuous random variable X whose PDF function is 

defi ned on the interval [a, b]. The table shows you the formulae you 

can use to calculate the values of  the parameters of  X

You may want to 

convince yourself of 

the truth of these 

results. Although you 

can use your GDC to 

graph f  and evaluate 

the integral, in ‘show 

that’ questions you 

will need to give the 

algebraic argument.

1 2 3–1–2–3
x

y = x3

y

6

9

12

3

0
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Parameter Formula

Mean μ (expected value) μ = E(X ) =
b

a

x f  (x) dx

Median Value of m that is the solution of the 

equation 
m

n

f  (x) dx = 
1

2

Mode Value(s) of x for which f has a maximum

Variance σ2 σ2 = Var(x) = 
b

a

(x − μ)2 f  (x) dx

Standard deviation σ  = Var X

Example 

A continuous random variable X has a PDF given by 

f x
x x x

( )
( )

=
− ≤ ≤⎧

⎨
⎪

⎩⎪

3

4
2 0 2

0

if

elsewhere

Find the values of

a E(X)            b VAR (X) 

c median of  X        d mode of  X

Answers

a E(X ) = 
2

0

3

4

2 2 dx x x( )

=
3

4

2

0

(2x 2 − x 3) dx

= − =
3

4

2

3

1

4

3 4

0

2

1x x
⎡
⎣⎢

⎤
⎦⎥

E(X) = 

b

a
x f x dx( )

VAR(X) = 
b

a

(x μ)2 f  (x) dx

Expand and simplify

b VAR(X)

=
2

0

x x x x

x
f x

− −1 2 d
2

2

3

4
( ) ( )⎛

⎝
⎜

⎞
⎠
⎟

( )
( )



 

  

=
3

4

2

0

(−x4 + 4x3 − 5x2 + 2x) dx

        
x x x x

2

5 4 3 2

0

3 1 5

4 5 3
0.2

See p 533 for an 

alternative formula for 

variance. 

Differential and 

integral calculus is 

covered in Chapters 4, 

7 and 9.

{ Continued on next page
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c    3

4
2 where 0 2f x x x x   

3

4

m

0

(2 ) d2 1

2
x x x− =

2 3

0

3 1 1

4 3 2
=

m

x x
 
  

2 33 1 1

4 3 2
m m

   
 

m = 1

median of  X = 1

d 
3

4
( ) (2 )f x x x 

3

4
( ) (2 2 )f ' x x 

( ) 0 when 1f ' x x 

As f  ′(x) is a decreasing function, 

f  ″(1) < 0 

So the mode is 1.

m

a
f x dx

1

2
( ) =

Use GDC solver 

Find the x-coordinate(s) of

points where f  has a 

maximum.

Example 22 is typical of  a continuous distribution where the 

mean, mode and median take the same value. If  you draw the 

graph of  the PDF of  X you can see why this happens.

The graph is symmetrical about the vertical line x = 1 and has a 

maximum at (1, 0.75) which is why the parameters, mean, mode 

and median, all have the same value of  1.

➔ Helpful tips for obtaining parameters of  continuous variables:

● Before using calculus to calculate the parameters of  

continuous random variables, it is worth checking for 

symmetries on the graph.

● In situations when a GDC is not available you should know 

the shapes of  some typical functions like linear, quadratic, 

simple cubics, exponential and trigonometric functions. If  

you are familiar with the graph of  the PDF of  the variable, 

sketch it and look for symmetries or easy ways of  

calculating the area under the graph.

● If  a GDC is available, you can quickly plot the graph of  the 

PDF of  X and use built-in functions that allow you to 

calculate the parameters numerically.

1.51 20.5
x

f (x)

0.5

0.6

0.7

0.8

0.9

0.4

0.3

0.2

0.1

0

(1, 0.75)

Area : 0.5

y =    (2–x)
3

4x
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➔ ● An alternative way of  fi nding Var(X ) is given by 

the formula

Var = E E2 2
X X X( ) ( ) ( )( )−  where E(X 2) = 

b

a

x 2f  (x) dx

In Example 22, part b, you could have used

 E(X 2) = 

2

0
x 2 f  (x) dx

 = 
3

4

2

0
2x 3 − x 4 dx

 = 
3

4

2

0

x x4 5

2 5

⎡

⎣
⎢

⎤

⎦
⎥

0

2

 = 
6

5
 = 1.2

Var(X) = 1.2 − 1 = 0.2

Exercise 10I

1 State whether each of  these is a discrete or a continuous 

random variable.

a The number of  books sold per day in a bookshop.

b The time Mrs Smith spends reading every day.

c The age of  each person who visits the local museum.

d The amount of  milk each customer buys in a supermarket.

2 Consider the function defi ned by f x
x x

( ) =
⎧

⎨
⎪

⎩⎪

≤ ≤
1

2
 if 

   elsewhere

0 2

0

Show that f  is a well-defi ned probability density function. 

EXAM-STYLE QUESTION

3 A continuous random variable X has PDF given by 

f  (x) = 6x (1 – x) where 0 < x < 1.

Find the values of:

a E(X) 

b Var(X)

 c median of  X 

 d mode of X.

From a E(X) = 1
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Example 

A continuous random variable X has PDF given by

 
 sin

2
where 0

x
f x x   

Without using your GDC, sketch the graph of  f. Hence write down the 

values of  the median, the mean and the mode of  X

Answer

rr

2

x

y

1

0

The graph is symmetrical about 
2

x




The median, mean and mode of  this distribution are 

all equal to 
2



Example 

A continuous random variable X has PDF 

f x
a

x x
x( ) =

2
4

where 1 3≤ ≤

and a is a constant.

a Use your GDC to fi nd the value of  a.

b Hence calculate E(X) and VAR(X).

Answers

a

3

1

a

x x
x

2
4

d 1=

   a = –1.82 (3 sf  )

b E(X) = 2

VAR(X) = 0.359 (3 sf  )

Use GDC numerical solver 

to fi nd the value of  a.

For some GDC models 

the instructions 

and syntax may be 

different.
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Exercise 10J

EXAM-STYLE QUESTIONS

1 A continuous random variable X has PDF given by 

      
4

2cos 2  where 0f x x x

a Sketch the graph of  f. 

b Find the values of  the median, mean and mode of  X.

2 A continuous random variable X has PDF defi ned by 

f  (x) = ax (1 – x)2 where 0 ≤ x ≤ 1 and a is a constant.

a Use your GDC to fi nd the value of  a.

b Hence, calculate E(X) and Var(X).

3 Consider the function defi ned by

 






 

  

 for 0 2

2  for 2 3 

0 otherwise    

k x

f x k x

a Determine the value of  k given that f is a PDF of  a random 

variable X

b Sketch the graph of  f and use it to fi nd the median of  X

c Find the values of  E(X) and Var(X).

4 A continuous random variable X has PDF defi ned by

f  (x) = ax + b where 0 ≤ x ≤ 3 where a and b are constants.

a Find, in terms of  a, the value of  b.

b Given that the median of X is 1, determine the values of a and b.

c Find the values of  E(X) and Var(X).

5 A continuous random variable T has PDF defi ned by

f t t
t

( ) = ≤ ≤
6
2

3where 2

Find the values of

a E(T  ) b Var (T  )

c median of  T d mode of T.

Cumulative distribution function and 
calculation of probabilities

If  X is a continuous random variable with probability density 

function f  defi ned on the interval [a, b], then the cumulative 

distribution function of  X (CDF of X) is

F(X ≤ x) = 

x

a
f  (t) dt where a ≤ x ≤ b

One of  the main differences between discrete and continuous 

random variables is the way probabilities are calculated.

You can use your GDC 

to calculate or check 

your answers to these 

questions.
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For a discrete random variable P(X = x) = f  (x), but for a continuous 

random variable P(X = x) = 0 for every value in the domain of  the 

variable X.

For a continuous variable you can only calculate the probability that 

the value of  X lies in an interval, which can be quite small but is still 

a range of  values.

To calculate the probabilities of  a continuous variable X use the 

formula

P F Fr X s s r≤ ≤ = − =( ) ( ) ( )
s

r

f  (t) dt

 As the probability of  any individual value of  X is zero,

                 P P P Pr X s r X s r X s r X s

The next two examples show you how to 

● determine expressions for the CDF of  a continuous random 

variable given the expression of  the PDF 

● use the CDF to calculate probabilities with and without a GDC.

Example 

A continuous random variable X has probability density function 

 
2

=
k

x x
f x


 for 1 ≤ X ≤ 2

a Use a GDC to determine the value of  k correct to 4 decimal places.

b Hence fi nd the value of  P(1 ≤ X ≤1.75)

Answers

a 

2

1

k

x x
x

2
d 1

+
=

k

x
x x

=

+

1

d
1

2

1

2

∫
k = 3.4761 (4 dp)

b

 P(1 ≤ X ≤ 1.75) = 0.838 (3 sf)

Rearrange equation to solve 

for k

Use GDC numerical integration. 

Use GDC numerical integration
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Example 

A continuous random variable X has PDF defi ned by

   1 cos
= where 0

x
f x x





 

a Find an expression for the distribution function F of  X, (CDF of  X ).

b Determine the exact value of  
6 2

P X
    

 

Answers

a F(x) = 
x

0

1 cos
dt

+ t( )


= sin
1

0
t t

x

+ ( )⎡⎣ ⎤⎦

   sin
F =

x x
x





F(X ≤ x) =
x

0

f  (t) dt

b

P = F F
6 2 2 6

   
≤ ≤X

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

=

   

 

2 2 6 6

1

2

1 1

4

1

2

1

4

1

2

sin sin

= =

+ +

+ − − −

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

 

P = F Fr T s s r≤ ≤( ) ( ) ( )

Substitute values of  sin 


2
 and

sin 


6

Example 

Data collected over a long period of  time suggests that the time T

that vehicles have to wait until they can enter the main road of  

Straightcity has PDF

  5 2

6 5
= 1f t t

 
 
 

 where 0 ≤ t ≤ 2 minutes

a Find an expression for the distribution function of  T (CDF of  T  ).

b Calculate P(0.5 ≤ T ≤ 1.5).

Answers

a F(T ≤ t) = 
t

0

5

6

2

5
1 dx x

⎛
⎝
⎜

⎞
⎠
⎟

= =
5

6 5

5

6 5

2 2

0

x t
x t

t

− −
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

b P(0.5 ≤ T ≤ 1.5) = F(1.5) – F(0.5)

= 1.5 0.5 = 0.6
5

6

1.5

5

0.5

5

2 2

− − +
⎛
⎝⎜

⎞
⎠⎟

P(T < t) = 
t

0

f  (x) dx

P F Fr T s = s r≤ ≤( ) ( ) ( )

See Chapter 9 

for integration of 

trigonometric functions.

When a GDC is not 

allowed, you can make 

calculations easier 

by using fractions 

instead of decimals to 

represent values.
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Exercise 10K

1 Find an expression for the cumulative distribution of  the random 

variable X with density function

a f x
x

( ) =
2

72
 where 0 ≤ x ≤ 2

b     21

9
( ) 1 where 0 2f x x x

c f x x x( ) cos= ≤ ≤( ) where 0
2



2 The probability density function of  a continuous random variable X is

f x
x x x

( ) =
( ), 0

1

4
4

0, otherwise.

2− ≤ ≤⎧

⎨
⎪

⎩⎪

2

a Find an expression for the cumulative distribution of  X

b Calculate 
 
 
 

  3

2
P 1 X  and P(X > 1).

3 The probability density function of a continuous random variable X is

f  (x) = k|x2 – x| for 0 ≤ x ≤ 2 and where k is a constant.

a Sketch the graph f

b Find the value of  k

c Calculate P(1 ≤ X ≤ 2).

EXAM-STYLE QUESTIONS

4 The continuous random variable T has probability density 

function f  where

f  (t) = k (e – e kt), 0 ≤ t ≤ 1, and k is a constant

a Show that k = 1

b What is the probability that the random variable T has a 

value that lies between 
1

3
 and 

2

3
? 

Give your answer in terms of  e.

c Find the mean and variance of  the distribution. 

Give your answers exactly, in terms of  e.

The random variable T above represents the lifetime, in years, 

of  a certain type of  cell.

d Find the probability that a cell lives more than six months.

5 The probability density function f  (x) of  the continuous random 

variable X is defi ned on the interval [0, a] by

f x

x

x a

x

x

( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

=
≤ ≤

≤ ≤

4

5

0 2

2

 for 

 for 
2

a Find the value of  a

b Defi ne the distribution function of  X.

Usually when exact 

answers are required, 

you need to calculate 

the values by hand.
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6 A continuous random variable Y has PDF

 
 




   


3  for 3 3

0     otherwise

y y
f y

where λ is a constant.

a Show that  =

1

18

b Find an expression for the cumulative distribution F of  Y.

c Hence or otherwise, calculate P(0 ≤ Y <1) and P(Y > 1).

d Find the values of  E(Y) and E(Y  2). Hence calculate Var(Y ).

e Solve the equation F( y) = 0.25. Which statistic does this value 

model?

EXAM-STYLE QUESTIONS

7 A continuous variable X has PDF defi ned by f  (x) = ax2 + bx +c

for 1 ≤ x ≤ 4.

Given that the mode of  X is 2 and the mean is 1, fi nd the values 

of  the constants a, b and c

8 The probability density function of  X is defi ned by 

f  (x) = α (1 +sin x ) for 
p p

2

5

2
≤ ≤x , where α is a constant to be 

determined.

a Show that 


=

1

2

b Hence, calculate P(X < π) and P(X < 2π), giving your answers 

exactly.

c Sketch the graph of  f. What is the value of  the median of  X?

d Find an expression for the distribution function F of  X (CDF 

of  X).

e Find the inter-quartile range of  X, i.e., the value of  a – b

where the values of  a and b are such that F (a) = 0.75 and 

F (b) = 0.25 

Re ect and discuss:

●  What is the geometrical meaning of the de nition of the distribution function of a continuous random 

variable?

●  What is the relation between the graph of the probability density function of a continuous random 

variable that models the heights of a group of n students and the histogram that would represent the 

set of data if we measure their heights?

●  How does the relation between the graph of a density function and the histogram of the actual data 

explains the way probabilities of continuous variables are calculated?

● Sometimes, histograms are used to represent discrete distribution functions, for example, when 

ages, heights or weights are treated as discrete variables. How different are histograms that 

represent probability distribution of discrete and continuous variables? Which characteristics are 

relevant in each case for the calculation of probabilities?
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. Normal distribution

The normal distribution is the most important continuous 

theoretical probability distribution. 

➔ The PDF of  the normal distribution is

f x

x

( ) =

( )
1

2

2

2
2

s p

m

se , where x ∈ℝ

The values of  f  (x) depend on two parameters, μ and σ

➔ The random variable X described by the PDF is a normal

variable that follows a normal distribution with mean μ and 

variance σ 2  We write X ~ N (μ, σ 2)

The PDF of the normal distribution is built into your GDC. To obtain 

the graph of a normal PDF you just insert the values of its parameters.

The graph of  a normal PDF is called a normal curve. Normal 

curves have interesting properties that you will discover in this 

investigation.

Investigation – the normal curve

1 Use your GDC to graph the normal curves for each of these 

normal variables.

a X ~ N (1, 1) b X ~ N (2, 1)

c X ~ N (3, 1) d X ~ N (4, 1)

Describe differences and similarities between these normal curves. 

How does the value of the parameter μ affect the normal curve?

2 Graph the normal curves associated with these normal variables.

e X ~ N (0, 1) f X ~ N (0, 2)

g X ~ N (0, 3) h X ~ N (0, 4)

Describe differences and similarities between these normal curves. 

How does the value of the parameter σ affect the normal curve?

3 Explore some other normal curves and write down your conclusions 

about the effects of the parameters parameters μ and σ on the 

graphs of the normal variables.

4 The normal curves are de ned by just two parameters, the mean and 

the variance of the distribution. Based on your knowledge of the shape 

of a normal curve, explain why it is not necessary to include the values 

of the median and the mode of the distribution.

The normal 

distribution was 

 rst studied by the 

French mathematician 

Abraham De 

Moivre (1667–1754) 

and later by Carl 

Friedrich Gauss

(1777–1855), 

who deduced an 

expression of its 

probability density 

function. For this 

reason the normal 

distribution is 

also known as 

the Gaussian 

distribution
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Properties of a normal curve

➔ A normal curve 

● is a smooth bell-shaped graph

● is symmetrical about the vertical line x = μ

● has a maximum point at x = μ

● has a horizontal asymptote, the x-axis

● has two infl exion points at x = μ ± σ

Example 

State, giving reasons, whether or not each of  these graphs could be a 

normal curve.

a           b           c

–1–4
x

y

0.4

0.6

0.8

1.0

0 1 2 3 4–1–2–3–4
x

y

0.2

0.3

0.5

0.1

0 210 3–2 –1–3
x

y

6

5

3

2

1

Answers

a No

The curve goes below the x-axis.

b No

The curve has two maximum points

c No

The area under the curve is more than 1. The triangle ABC with 

A(1, 0), B(0, 4) and C(−1, 0) fi ts in the region under the graph and 

has area 2.

Why is the normal distribution so important?
As the characteristics of  the normal curve and its shape suggest, the 

normal distribution is a suitable model for situations where very 

large and very small values are rather rare, but values in the middle 

of  the range are common. This is typical of  many populations in 

everyday life so the normal distribution makes a good model.

Normal variables include (under certain strict conditions)

● height, weight, age 

● mass, volume

● time taken to complete an activity

● scores in tests and exams

● random errors in experiments or processes.

Challenge:

Use the expression 

of the normal PDF to 

prove the properties of 

the normal curve.

Use your GDC 

to con rm these 

properties

In statistics the 

population is the 

universal set from 

which you take a 

sample.

21 3 4–2 –1–3–4
x

y

0
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Calculating probabilities of normal variables

Suppose that X ~ N (μ, σ 2). As X is a continuous random variable, you 

can calculate the probability that X takes values in an interval [a, b].

➔ As in any continuous distribution 

● P (a ≤ X ≤ b) =

b

a

f  (x)dx, where f  (x) is the PDF of  X

Alternatively, if  you consider the cumulative normal 

distribution function F, 

● P (a ≤ X ≤ b) = F(b) – F(a)

You can calculate the probabilities of  normal variables using the 

normal CDF built-in to your GDC as in this example.

Example 

Given X ~ N (3, 22), calculate P(1 < X < 3)

Answer

P(1 < X < 3) = 0.341 (3 sf  )

The normal PDF f is defi ned for all real values. To obtain the values of  

the corresponding normal CDF, you need an improper integral,

F(x) = 

x

∞

f  (t)dt, where x ∈ℝ

The study of  this type of  integral is part of  the option Calculus

However, you can still calculate with great accuracy the probability of  

normal variables of  the form P(X < a) = F(a) and P(X > b) = 1 – F(b) 

using your GDC as shown in this example.

Example 

Given X ~ N (3, 22), calculate

a P(X < 2)  b P(X > 4)

Answers

P(X < 2) = 0.309 (3 sf)

b P(X > 4) = 0.309 (3 sf)

Use a very large negative lower 

bound like –9 × 10999

P(X > 4) = 1 – F(4)

Use the built-in normal 

CDF and enter the 

limits and parameters.
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Exercise10L

1 Given X ~ N (1, 22), calculate 

a P(0 < X < 1.5)

b P(0 < 0.5)

c P(X ≥ 3)

2 If  X ~ N (50, 202), fi nd the values of

a P(X < 45)

b P(37 ≤ X < 65)

c P(X ≥ 52)

3 Given that X ~ N (35, 49)

a state the value of  the mean and standard deviation of  X

b calculate P(X < 25), P(29 ≤ X ≤ 41) and P(X ≥ 45)

The next example shows a typical situation modeled by a normal 

variable and solved using a GDC.

Example  

The heights of  Grade 6 boys at a large school follow a normal 

distribution with mean 151.6 cm and standard deviation 7.9 cm. If  a 

boy of  this group is selected at random, what is the probability that he 

has height

a less than 152 cm

b between 150 and 157 cm.

Answers

a Let H be the random variable 

‘height of  grade 6 boys at the 

school’.

H ~ N (151.6, 7.92)

P(H < 152) = 0.520 (3 sf)

b P(150 < H < 157) = 0.333 (3 sf)

Defi ne the variable 

and indicate clearly 

its parameters

If  F is the CDF of  a normal variable X, then F is an increasing 

function and therefore one-to-one. 

This means that F has inverse F−1 which is useful in determining 

values of  the normal variable X when you are given information 

about the probability that X is less or greater than certain values. 2–2 x

y

1

0

f1(x) = f(x)
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Example 

Given X ~ N (1, 32) fi nd the values of  a and b such that

a P(X < a) = 0.506   b P(X > b) = 0.198

Answers

a

 P(X < a) = 0.506

a = 1.05 (3 sf)

b  P(X > b) = 0.198

so P(X ≤ b) = 0.802

P(X ≤ b) = 0.802

so b = 3.55 (3 sf)

Use F – 1 (1.05)

Use P(X > b) = 1 – P(X < b)

Use F – 1(1.05)

Exercise 10M

1 A packing machine produces bags of  fl our whose weights are 

normally distributed with mean 150 kilograms and standard 

deviation 0.5 kilograms. 

If  a bag produced by this machine is selected at random, what is 

the probability that its weight is

a less than 149 kilograms

b more than 151.5 kilograms

c between 149 and 151 kilograms?

2 A farmer loads 850 cabbages to sell in the local market. 

The  weight of  this type of  cabbage follows a normal distribution 

with mean 1.1 kilograms and standard deviation 150 grams. 

a Consider the random variable M. If  M denotes the weight of  a 

cabbage from this load, defi ne the distribution of  M indicating 

clearly its parameters.

b If  the farmer picks one cabbage at random, what is the 

probability that it will have a weight between 1.2 and 1.3 

kilograms?

c Estimate how many cabbages will have a weight greater than 

1.4 kilograms.

The inverse of  the 

normal CDF is another 

built-in function on 

your GDC.

Be careful with the 

units you use.
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3 A continuous random variable T follows a normal distribution 

with mean 20.4 and standard deviation 3.5 

a Find the values of  P(T < 18.1) and P(T > 17.9) 

b Hence calculate P(T < 18.1|T > 17.9)

c Find the value of  t if  P(T < t) = 0.444.

Although most of  the time you will be expected to use 

your GDC to calculate normal probabilities, the normal 

distribution has interesting properties that allow you to 

estimate those probabilities and, in some cases, even 
fi nd them.

In this investigation you are going to discover some 

of  the most useful properties of  the normal curves.

Investigation –  further properties of the 
normal curve

1 Use your GDC to calculate these probabilities.

a P(1 < X < 3) when X ~ N(2, 12)

b P(0 < X < 4) when X ~ N(2, 22)

c P(–1 < X < 5) when X ~ N(2, 32)

d P(–1 < X < 3) when X ~ N(2, 22)

What do these examples have in common? 

How does it affect the values of the probabilities you calculated?

2 If X ~ N(μ, σ 2) what is the value of P(μ σ < X < μ + σ)?

3 Investigate normal curves further to  nd the values of 

a P(μ – 2σ < X < μ + 2σ)

b P(μ – 3σ < X < μ + 3σ)

c P(μ – 4σ < X < μ + 4σ)

when X ~ N(μ, σ 2)

4 Sketch the graph of the normal curve with mean μ and variance σ2. 

If a is positive, use your sketch to compare these probabilities.

    a P(X > μ + a) and P(X < μ a)

    b P(X > μ a) and P(X < μ + σ)

    c P(X > μ a) and P(μ σ X < μ + a)

Remember that the 

normal curve is the 

graph of a continuous 

PDF and that the 

area under a density 

function is always 1.

You may want to use 

your GDC to explore a 

few examples before 

attempting the general 

case.

In general, you use your GDC to 

calculate normal probabilities as you 

cannot integrate the normal PDF. This 

is beyond the level of this course. 
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The next example shows you how to use some of  the properties of  

the normal curves you investigated.

Example 

A variable X follows a normal distribution with mean 2. 

Given that P(X < 3) = 0.8, fi nd the values of  these probabilities.

a P(X > 3)

b P(X < 1)

c P(1 < X < 3)

Answers

a P(X > 3) = 1 – 0.8 = 0.2

b P(X < 1) = 0.2

c P(1 < X < 3) = 0.8 – 0.2 = 0.6

P(X > 3) = 1 – P(X < 3)

P(X < 1) = P(X > 3)

P(1 < X < 3) = P(X < 3) – P(X < 1)

Exercise 10N

1 A continuous random variable X follows a normal distribution 

with mean 5.

 Given that P(X < 3) = 0.3, and without using a calculator, fi nd 

these probabilities.

a P(X ≥ 7) b P(X < 7) c P(3 ≤ X < 7)

2 A continuous random variable Y follows a normal distribution 

with mean 12.

Given that P(10 ≤ Y < 14) = 0.6, and without using a calculator, 

fi nd these probabilities.

a P(Y ≥14)

b P(Y < 10)

c P(12 ≤ Y < 14)

d P(Y < 14|Y > 12)

3 If  X ~ N (–5, σ 2) and P(X < –3) = 0.8, write down the values of  

these probabilities.

a P(X < –7)

b P(–7 ≤ X < –5)

c P(X < –7) + P(X > –3)

4  If  X ~ N(10, 25)

a State the mean and standard deviation of  X

b Calculate P(X < 5) and P(X ≥ 15). Comment on the values 

you obtain.

c Find the value of  a for which P(X < a) = 0.223 

Hence state the value of  b for which P(X > b) = 0.223 

Use the properties 

you discovered in the 

previous investigation.
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Standardized normal distribution 
and its importance

These normal curves were graphed on the same axes

N(μ, 1) for μ = –2, –1, 0, 1, 2

Notice that the only change in the graphs of  the 

normal curve in the diagram is its position.

➔ The parameter μ determines the position of  the normal curve 

in relation to the y-axes. 

Now look at a family of  normal curves that have the same 

mean but different standard deviations.

32 51 4–1–2–3–4–5 x

f(x)

0.8

N(0,9)
N(0,4)

N(0,1)

N(0,0.64)

N(0,0.25)

0

You can see that the normal curve gets wider as the standard 

deviation increases and narrower as the standard deviation 

decreases

In fact, changes in the parameters μ and σ of  a normal curve 

can be regarded as changes in position and scale as in these 

diagrams. 

321–1–2–3 x

f(x)

0.5

0.2

0.1

0 642–2–4–6 x

f(x)

0.25

0.1

0.05

0

μ is the same in both cases but σ2 is different, so the positions of  

both curves are the same but the scales are different.

In the fi rst diagram at the top of  the page, the fi ve normal curves 

have different values of  μ but the same value of  σ 2 so the positions 

are different but the scale is the same for all the curves. 

32 51 4–1–2–3–4–5
x

f(x)

0.5

0

Use dynamic graph 

software to produce 

more examples of 

normal curves and 

to study the effects 

of the parameters μ

and σ on the normal 

curves.
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This means that

➔ All normal curves can be related to a single reference 

distribution called the standard normal distribution which has 

mean 0 and standard deviation 1.

➔ The standard normal variable is denoted by Z ~ N(0, 1).

 The PDF of  Z is always denoted by φ and its CDF by Φ

Both φ and Φ are very important in statistics and for this reason

 when you use your GDC to calculate normal probabilities, by 

default, your calculator assumes that μ = 0 and σ = 1.

Example 

Consider Z ~ N(0, 1). Find the value of

a Φ(1) b Φ 1(0.8)

Answers

a

Φ(1) = 0.841 (3 sf)

b

Φ 1(0.8) = 0.842 (3 sf)

Φ(1) = P(Z ≤ 1) because Φ is CDF of  Z

Use the built-in inverse normal function

Standardized normal variable

If  you have to solve a problem where you do not know the mean or

 the variance of  a normal variable you have to use the standardized

normal variable

To standardize a random variable X ~ N(μ, σ2) into the standardized 

normal variable Ζ ~ N(0, 1) you use the transformation

Z
x

=





which is the algebraic translation of  the relation observed between the 

normal curves of  X and Z. 

φ is the lower case  

Greek letter phi and Φ

is the upper case.
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Example 

Consider X ~ N (2, 32)

a Calculate P(X ≤ 1) and P
1

3
Z ≤ −⎛

⎝
⎜

⎞
⎠
⎟

Compare your results.

b Calculate P(–1 ≤ X ≤ 2)

Hence state the value of  P(–1 ≤ Z ≤ 0)

Answers

a 

P(X ≤ 1) = 0.36944...

P = 0.36944...
1

3
Z ≤ −⎛

⎝
⎜

⎞
⎠
⎟

The results are the same.

b P(–1 ≤ X ≤ 2) = 0.34134...

When 
1 2

3
= 1, = = 1X Z

 

 

when X Z= 2, = = 0
2 2

3

P(–1 ≤ Z ≤ 0) = 0.34134....

Use GDC built-in normal CDF.

Upper bound 1

3

, μ = 0, σ = 1

When X = 1, Z = 
2

3
 = 

1

3

Upper bound = 1, μ = 2, σ = 3

Use GDC built-in normal CDF.

Exercise 10O

1 Consider Z ~ N(0, 1). Find, correct to 4 decimal places, the 

values of:

a Φ (–1.2) and Φ (1.2)

b Φ (–2.3) and Φ (2.3)

c Φ (–2.6) and Φ (2.6)

    Comment on the values obtained. 

2 Consider Z ~ N(0, 1). Find the values of

a Φ–1 (0.3) and Φ–1 (0.7) b Φ–1 (0.4) and Φ–1 (0.6)

     Comment on the values obtained. 

3 Consider Z ~ N(0, 1)

a Find the value of  φ(0.45) and φ–1(0.45)

b Write down the values of  a and b such that 

P(Z ≤ a) = 0.5 and P(Z ≤ 0.5) = b

GDC note:

The instructions may 

vary for different GDC 

models. For example, 

if you use any of the 

TI-83 or TI-84 models, 

you can obtain your 

answers without 

entering the values of 

the parameters of Z.
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4 Consider X ~ N(1, 22) 

a Calculate P(X ≤ 3) and P(Z ≤ 1). Compare your results. 

b Calculate P(0 ≤ X ≤ 2). 

Hence, using the transformation

Z
x= 


write down the value of   
 
 
 1 1

2 2
P <z

5 Consider X ~ N(–6, 32) and Z ~ N(0, 1)

Calculate P(0 ≤ Z ≤ 1.5). 

Hence, using the transformation Z
x= 


, write down the value 

of  P(–6 ≤ X ≤ 1.5)

6 Explain why each of  these statements is false.

a X ~ N(7, 22) and P(X ≤ 5) > P(X > 9)

b X ~ N(15, 25) and P(X ≤ 10) > P(10 ≤ X ≤ 20)

c X ~ N(–2, 22) and Y ~ N(2, 22) and P(X > 0) > P(Y < 0)

The next two examples show you how to use the standardized 

normal curve to determine one or both parameters of  the normal 

variable. 

Example 

Consider X ~ N (μ, 4)

Find the value of  μ given that P(X ≤ 2) = 0.556

Answer

P  2 = 0.556

so P = 0.556
2

2

X

Z

≤ 

≤

( )
⎛
⎝
⎜

⎞
⎠
⎟



 12

2
= 0.556




2

2
= 0.14083...



μ = 1.72 (3 sf)

=
X

Z




P(Z ≤ a) = b ⇒ a = Φ 1(b)

Use GDC built-in inverse normal.

Solve for μ

Explore further the 

relation between 

normal curves and 

standardized normal

curve and prove that 

the transformation

Z
X

=



 is always

valid.

Avoid early rounding 

as it can lead to 

incorrect answers.

Do not use calculator 

notation.
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Example 

Consider X ~ N (μ, σ2)

Find the values of  μ, and σ given that P(X ≤ 2) = 0.546 and 

P(X ≤ 3) = 0.743

Answer

 




   

P 2 = 0.546

2
so P Z = 0.546

X

 






  
 

P 3 = 0.743

3
so P = 0.743

X

Z

 12
= 0.546




  and 

 13
0.743




 

μ + Φ–1 (0.546) σ = 2 and 

μ + Φ–1 (0.743) σ = 3

μ = 1.78 (3 sf) and 

σ = 1.86 (3 sf)

=
X

Z




P(Z ≤ a) = b ⇒ a = Φ 1(b)

Rearrange equations and use GDC 

to solve simultaneously

Exercise 10P

1 If  X ~ N (μ, 9), fi nd the value of  μ given that P(X ≤ 5) = 0.754 

2 Consider X ~ N(μ, σ 2). Find the values of  μ and σ given that 

P(X ≤ 1) = 0.345 and P(X ≤ 3) = 0.943

EXAM-STYLE QUESTIONS

3 The random variable X is normally distributed with mean μ and 

variance σ 2

Given that P(X > 58.44) = 0.022 and P(X < 48.84) = 0.012 fi nd 

the values of  μ and σ

4 A machine is used to fi ll 1 kg bags of  fl our. When the bags are 

checked it is found that their average weight is 1.03 kg. Assuming 

that the weights of  the bags are normally distributed, fi nd the 

standard deviation if  1.8% of  the bags weigh below 1 kg. 

Give your answer correct to the nearest 0.1 gram.

5 A random variable X is normally distributed with mean μ and 

standard deviation σ, such that P(X > 50.1) = 0.119, and 

P(X < 43.6) = 0.305

a Find the values of μ and σ b Hence fi nd P
 

 
 

 
2

X
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6 The marks in an exam were normally distributed with mean μ

and standard deviation σ

If  10% of  the candidates scored at least 80 marks and 20% scored 

less than 45, what are the values of  μ and σ?

7 The masses of  the lettuces sold at Freshgreens supermarket are 

normally distributed with mean 550 grams and standard 

deviation 20 grams.

a If  a lettuce is chosen at random, what is the probability that 

its mass lies between 500 g and 600 g?

b Find the mass that is exceeded by 10% of  the lettuces.

c In one day, 1200 lettuces are sold. Estimate the number of  

lettuces that weigh more than 540 grams.

d At the nearby Goodvalue supermarket, 15% of  the lettuces 

sold weigh at least 600 grams and not more than 10% of  them 

weigh less than 540 grams. Assuming that the mass M of  

these lettuces follows a normal distribution fi nd the expected 

value and variance of  M

8 Sweetworld company produces one-kilogram bags of  sugar. 

Assuming that the mass M of  the bags follow a normal 

distribution with mean 1.02 kg, what is the maximum value of  

the variance of  M if  less than 1% of  the bags are underweight? 

. Modeling and problem solving

This section looks at some typical exam style questions involving the 

probability distributions studied in this chapter. When tackling these 

problems it is important that you keep in mind the characteristics of  

the distributions you use and the assumptions you make so that you 

can comment on the validity of your results.

Example 

The weights W, in grams, of  female sparrows is modeled by a normal 

distribution with mean μ and standard deviation σ. 

a Experimental data shows that 84% of  the birds weigh at least 

20 grams and 44% of  the birds weigh more than 22.5 grams. 

Calculate the values of  μ and σ, correct to 5 decimal places.

b A random sample of  fi ve sparrows is collected.

If  B denotes the number of  birds in the sample that weigh more 

than 23 grams calculate P (2 ≤ B ≤ 4).

c A researcher thinks that the number of  eggs E laid by these 

sparrows is modeled by the Poisson distribution with mean m.

Given that P(E ≥ 4) = 0.9071, correct to 4 decimal places, 

i determine the value of  m  

ii give a reason why this distribution cannot be an exact model in 

this case.

{ Continued on next page
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Answers

a  






  
 

P W

Z

20 = 0.84 

20
so P = 0.16

 






  
 

P 22.5 = 0.44

22.5
so P = 0.66

W

Z

 





 120
= 0.16

20
= 0.9944578...

 





 122.5
= 0.66

22.5
= 0.4124631...

μ = 21.76708 and 

σ = 1.77693 (5 dp)

b B follows a binomial 

distribution with n = 5 and 

p = P(W > 23) = 0.243888... 

and P(2 ≤ B ≤ 4) = 0.353 (3 sf)

c i m = 6.7984 (4 dp)

ii A Poisson variable is 

theoretically defi ned for 

all n ∈ and a bird cannot 

lay more than a fairly 

small number of  eggs.

Standardize the distribution

Use the built-in GDC inverse 

function of  the standardized normal 

CDF to obtain simultaneous 

equations in μ and σ

Solve the simultaneous equations 

using a GDC

Assume independence of  the weights 

of  the 5 birds and use GDC and the 

answer to part a to calculate p and 

the required probability:

Use GDC numerical solver.

Compare the assumption you need to 

make to apply a distribution with the 

real situation.

Read carefully the 

instruction regarding 

the accuracy required.

Save values of 

parameters to avoid 

errors caused by early 

rounding.

Dr Clio Creswell, 

an Australian 

mathematician, 

has been one of 

the  rst to apply 

mathematics to 

human relationships, 

to predict the optimal 

number of partners to 

have before settling 

down, the amount of 

compromise needed 

to sustain a marriage, 

how dating services 

determine your perfect 

match, and why we 

 nd certain people 

attractive. How do you 

think mathematics 

can be used to predict 

human behavior?
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Exercise 10Q

1 Live Better, a consumer magazine, commissioned a study about 

on-time arrivals of  airlines at the country’s main airports. The 

study showed that 5% of  the fl ights arrived before the scheduled 

arrival time and 2.3% arrived more than 30 minutes after the 

scheduled time.

a Let T be the random variable ‘difference between scheduled 

time and actual arrival time’ of  the fl ights at these airports. 

Assuming that T follows a normal distribution, determine 

the value of  its parameters.

b Calculate P (|T| ≤ 5 )

c On a given day, 500 fl ights are due to arrive at these airports. 

What is the probability that at least 50 fl ights arrive within 

5 minutes of  the scheduled time?

d State any assumptions you have made in your answer to part c

e Comment on the limitations of the models used in this problem.

2 Mr Jones, the manager of  the restaurant Dolce Vita, collected 

data about customers’ habits during one year. 

a According to the data, 6% of  the customers who make 

reservations do not show up. On a given day, 200 people made 

reservations. What is the probability that 2 people will not 

show up? State any assumption you made.

b Mr Jones’ data also shows that the mean time customers stay 

in the restaurant is 52 minutes with standard deviation 15 

minutes. What is the minimum interval of  time between two 

reservations of  the same table that Mr Jones should allow if  

he wants the probability of  double booking to be less than 

1%? State any assumptions you made.

c On a busy day, Dolce Vita can operate well with a minimum 

of  15 waiters. The data shows that in average 7.5% of  the 

waiters miss work on any day. Calculate the minimum number 

of  waiters Mr Jones needs to hire if  he wants to reduce the 

probability of  having less than 15 waiters to less than 5%. 

State any limitation of  the probability model you used.

3 Records over the past years show that 5% of  the loans made by 

the bank Easylife have defaulted. At present Easylife has 5520 

customers with loans. What is the probability that not more than 

250 loans will default?

State any assumptions and limitations of  the model you used.
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EXAM-STYLE QUESTIONS

4 A large exhibition center collected data about attendance at its exhibitions. 

This weekend a major event is taking place at this centre and historical 

data shows that the average daily attendance for this type of event is 7850 

people with standard deviation 367 people.

a What is the probability that more than 7000 people will try to attend 

the event on Saturday?

b If  the capacity of  the exhibition centre is 8500 people, what is the 

probability that the centre will reach its full capacity on Sunday?

The data also shows that, on each day, the mean arrival time of  the 

visitors after opening time is 155 minutes.

c Assuming that the arrival times of  the visitors to the centre follow 

a Poisson distribution, calculate the percentage of  visitors that will 

arrive in the fi rst 3 hours after the opening of  the exhibition on Saturday.

5 A coffee vending machine automatically pours different types of  coffee 

into cups. Statistical historical data shows that the amount of  coffee 

dispensed by this type of  machines can be modeled by a normal 

distribution with mean 120 ml and standard deviation 

8.3 ml. 

a If  cups with a capacity of  130 ml are used, what is the probability 

that a cup overfl ows?

b If  the machine is loaded with 500 of  these cups, how many of  these 

do you expect will overfl ow when served?

c The data also shows that the machine successfully dispenses a 

cup 99% of  the times it is used. Mr Li uses the machine twice 

a day and pays 2 yuan each time. How many days is he likely 

to use the machine before he can expect to lose more than 5 yuan 

due to error in dispensing of  the cups?

6 A sample of  two hundred sheets of  aluminum alloy 

were examined for surface fl aws. The number of  sheets 

with a given number of  fl aws per sheet is recorded in 

this table.

a Calculate the mean m of  the number of  fl aws on 

the sheets of  the sample.

b Assuming that the number of  surface fl aws 

per sheet of  aluminum alloy produced by the 

same machine is modeled by a Poisson 

distribution with mean m, calculate the probability 

that the number of  fl aws on the surface of  a randomly chosen 

sheet exceeds 5.

c Give reasons to support the claim that the variable number of  

fl aws follows a Poisson distribution.

Number of fl aws Frequency

0 28

1 42

2 53

3 29

4 31

5 9

6 8
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Review exercise

 The table shows the probability distribution of  a discrete 

random variable X

X 1 2 3 4

P(X = x) 2a
2 3a 3a

2 + 2a 2a
2 + a

a Find the value of  a

b Hence, calculate the mean, the mode and the median of  X

EXAM-STYLE QUESTIONS

 A continuous random variable X has probability density 

function defi ned by

f x

x

x

k
( )

− −
=

− ≤ ≤

< ≤

1

2

2 3

0

when 1 1

when 1 5

othe

x

x

rrwise

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

a Sketch the graph of  f   and use it to fi nd the value of  k

b State the median and modal values of  X.

c Find P(0 ≤ X ≤ 3 | X ≥ 1)

 The probability that a student entering Toprank College will

 graduate is 
4

5
. If  fi ve of  these students are selected at random,

 fi nd the probability that

a none will graduate

b all will graduate

c at least two will graduate.

 A geography quiz consists of  ten true/false questions. A 

student who knows the correct answers to fi ve of  the questions 

decides to choose at random the answers to the remaining 

questions. 

a What is the probability that the student answers all the 

questions correctly? 

 For each correct answer the student scores two marks, for 

each incorrect answer one mark is subtracted whereas 

no marks are gained or lost if  no answer is given.

b Calculate the student’s expected number of  marks and 

compare it with the score he can obtain if  he answers 

only the questions for which he knows the correct answers.

✗
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 If  T ~ Po(m) and E(T 2) = 6, fi nd 

a the value of  m

b P(X = 0)

EXAM-STYLE QUESTION

 A continuous random variable X has CDF function given by

F x

x x

( ) =

≤ ≤tan             for 

                       for

0

0

4



                        for 

x

a x

<

>

⎧

⎨

⎪
⎪

⎩

⎪
⎪

0

4



a State the value of  a.

b Find the median value of  X.

c Find expressions for f, the PDF of  X.

d Calculate 
 

 
 

P
6

X

Review exercise

EXAM-STYLE QUESTIONS

 Data collected over a long period of  time shows the mean 

width of  the pieces of  wood produced by a lathe is 20.05 mm 

with a standard deviation of  0.02 mm. Assume that widths of  

pieces of  wood follow a normal distribution.

Find the probability that a piece selected at random has width

a between 20.02 mm and 20.06 mm  

b less than 20.00 mm

 The average life of  a certain type of  motor is 15 years, with a 

standard deviation of  two years. If  the manufacturer is willing 

to replace not more than 0.1% of  motors that fail, how many 

complete years of  guarantee should he offer? 

 Assume that the lives of  the motors follow a normal distribution.

 A continuous random variable X has probability density function

f x
x

k

x( ) = ≤ ≤⎧
⎨
⎪

⎩⎪
+2

2
0 2 for 

0      elsewhere

Find

a the value of  k

b P X ≤⎛
⎝
⎜

⎞
⎠
⎟

1

2

c E(X)
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 According to empirical data the number of  monkeys seen on 

a river bank is, on average, two per hour. Assume that the 

number of  monkeys can be modeled by Poisson distribution. 

 If  Kathy takes a two-hour tour along this river, what is the 

probability that she will see 

a at least one monkey

b more than fi ve monkeys?

 A continuous random variable X has PDF given by 

f x x
a

x x
( ) = ≤ ≤

4
2

where 1 3 and a is a constant.

a Find the value of  a correct to 5 decimal places

b Calculate the mean and variance of  X

c Find P(X < 2).

 Mr Kalt, the manager of  a new ice cream store conducted a 

survey to collect information about the preferences of  160 

potential customers: 

The results are shown in the table.

Favorite ice cream fl avour Votes

Chocolate 71

Vanilla 30

Cherry 1

Strawberry 14

Cookies and Cream 16

Mint 9

Coffee 4

Lime 1

Other 11

Do not like ice cream 3

 Assuming that the results represent the preferences of  

Mr Kalt’s customers:

a Estimate how many customers will buy chocolate ice 

cream in a day when 250 customers go to Mr Kalt’s shop.

b If  fi ve customers arrive at Mr Kalt’s shop, what is the 

probability that

  i three of  them buy vanilla ice-cream

ii two of  them do not buy any ice cream?

c  A customer arrives at the shop and asks for an ice cream 

cone with two fl avors. What is the probability that the 

customer orders strawberry and cherry? Which assumptions 

have you made to answer this question?
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CHAPTER 10 SUMMARY

Random variables and distributions 

● The probability distribution function (PDF) of  a discrete 

random variable X has the properties

0 ≤ f  (x) ≤ 1 and f x( ) =∑ 1

● The mean or expected value of X is given by μ = ∑ x P(X = x)

● The variance of X is given by σ 2 = ∑(x − μ)2 P(X = x)

● σ 2 = Var(X) = E(X 2) − E(X )2 where E(X 2) = ∑ x2 P(X = x)

●  = ( )Var X  is called the standard deviation of  X

 The mode of  a probability distribution function is the value of  x for which the 

probability distribution function has a maximum.

● In cases where the PDF of  X has a maximum value, this value 

is called the mode of  X. X may have more than one mode.

Binomial distribution

● If  X ~ B (n, p), then P X r
n

r
p qr n r=( ) = ⎛

⎝
⎜

⎞

⎠
⎟  where r = 0, 1, ..., n and 

q = 1 − p

● E(X) = μ = np and Var(X ) = σ 2  = npq where q = 1 − p

Poisson distribution

● X ~ Po(m) has PDF given by f x X x
m

x

m x

( ) = =( ) =P
e

!
where x = 0, 1, 2,... 

● If  X ~ Po(m) then E(X) = Var(X) = m

Continuous random variables and distributions

● The probability density function of  a random variable X 

(  PDF of X) has the properties: 

f  (x) ≥ 0 for all values of  x ∈  and 

+∞

∞

f  (x) dx = 1

● μ = E(x) = 

b

a

x f  (x) dx and σ 2 = Var(X ) =
b

a

 (x − μ)2 f  (x) dx,

where f  (x) is defi ned on the interval [a, b].

● σ 2 = Var(X ) = E(X 2) − E(X )2 where E(X 2) = 

b

a

x2 f  (x)dx

● The median m is the solution of  the equation 
m

a

f  (x)dx = 1

2

and 

the mode is the value(s) of  x for which f  has a maximum value.

Normal distribution

● If X ~ N( μ, σ 2) and 





X
 then Z ~ N(0, 1)
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Statistical evidence on trial
In the UK in 1999, Sally Clark was 

convicted of the murder of her two 

children, both of whom died in 

early infancy – one in 1996 and 

one in 1998. She was convicted 

on the basis of medical evidence 

now recognized to be  awed, and 

a statistical statement made by a 

paediatrician, Professor Roy 

Meadows. His crucial mistake was 

to assume that Sudden Infant 

Death Syndrome (SIDS) deaths in 

the same family were independent 

events, though as genetic and 

environment factors seem to be 

implicated in SIDS, this is unlikely. 

very inaccurate. 

jury's attention to the statistical 

‘evidence’ in his summing up. The 

jury reasoned that the probability 

of two siblings dying by SIDs was 

so small, Clark had to be guilty. But 

they should also have considered 

that statistically it is more rare for 

a mother to kill both her children.

Clark was  nally freed in 2003.

 How can we be sure that juries 

are properly directed, and 

statistical evidence is clearly 

explained in court? 

 Should statisticians alone be 

allowed to handle statistical 

children in the

of SIDs was 

was probably 

that would have

ry easily if

rtroom had had 

nding of

nately, Clark's 

 response was 

Mark Twain’s 

, and statistics”,

ally directed the 

Decisions, decisions 
■ How should we proceed before making important decisions? 

■

■ How reliable are statistical methods?

■ Should we just trust our intuition?

Theory of knowledge

“One must either accept some theory or else believe one's own 

instinct or follow the world's opinion.”

Gertrude Stein, American writer and poet (1874–194)

“Nothing is more 

difficult, 

and therefore 

more precious, 

than to be able to 

decide.”

Napoleon 

Bonaparte 

(179–1821)

In 2011 a UK judge ruled 
that Bayes' theorem 

could no longer be used 
in court cases to analyze 

statistical evidence. 
The Royal Statistical 
Society’s working group 

on statistics and the law 
challenged this decision, 
which they believed was 
based on an inaccurate 

understanding of 
probability theory.  

Theory of knowledge: Decisions, decisions 
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Genetic fi ngerprinting 
In a  ction series like CSI, the evidence that 

often closes the case is a DNA match. As 

an individual’s DNA is almost unique, once 

the police have matched a suspect's DNA 

to evidence from the crime scene, then the 

case looks closed. However, some 

statistical thinking is required to understand 

exactly what a match is…

Genetic  ngerprinting was developed in 

1984 by Professor Alec Jeffreys at the 

University of Leicester, in the UK. Each one 

of us has a unique genetic make-up which 

is contained in the DNA we inherit from our 

parents. The DNA can be extracted from 

cells and body  uids and analyzed to 

produce our ‘genetic  ngerprint’. 

Comparing the characteristic bands in 

genetic  ngerprints for a match has led to 

criminal convictions, but the  eld is under 

constant scrutiny due to its reliance on 

probability. Usually between 10 and 20 

bands are examined and compared. 

Experimental evidence has suggested that 

the probability of one band matching by 

coincidence is 
1

4
 (although this  gure is 

subject to debate). The probability of two 

bands matching will therefore be 
1

16
. 

 Explore the role of probability in this 

 eld.

You can  nd out more by searching ‘DNA 

matching’ at http://plus.maths.org

“Life is just an endless chain of  judgments... 

The more imperfect our judgment, the less perfect our success.”

B. C. Forbes, Scottish fi nancial journalist and author,

founder of Forbes magazine (1880–194)

Predicting the future
Paul the Octopus, who lived in the Sea Life 

Center in Oberhausen, Germany, correctly 

predicted the results of  12 out of  14 football 

matches between 2008 and 2010. Two boxes, 

each containing a mussel and marked with the 

fl ag of  one of  the national teams in an 

upcoming match were placed in his tank. 

His choice of  which mussel to eat fi rst was 

interpreted as predicting that the country with 

that fl ag would win. 

Paul’s predictions were correct 86% of  the 

time.

 Why do people want to believe that 

something or someone can predict the 

future, when rationally predicting the 

future seems to be illogical?

Lehman Brothers, a US investment bank fi led 

for bankruptcy in September 2008. Despite its 

large assets – $639 billion – it had a huge $619 

billion debt. As the fourth-largest US 

investment bank, it had 25 000 employees 

worldwide. 

 How did incorrect assumptions in 

probability models contribute to the fall of  

Lehman Brothers investment bank? 

 How reliable are predictions of  future 

performance based on past performance?

 What are the dangers of  extrapolation?

http://plus.maths.org/content/how-maths-

killed-lehman-brothers



CHAPTER OBJECTIVES:

4.1 Concept of a vector; representation of vectors using directed line segments;

 unit vectors; base vectors i, j, k; components of a vector

Algebraic and geometric approaches to the following: the sum and difference of 

two vectors; multiplication by a scalar, k v; position vectors

4.2  The de nition of the scalar product of two vectors; the angle between two 

vectors; perpendicular vectors; parallel vectors

4.3  Vector equation of a line in 2 and 3 dimensions; simple applications to 

kinematics; the angle between two lines

4.4  Coincident, parallel, intersecting and skew lines; points of intersection.

4.5  The de nition and properties of the vector product of two vectors; geometric 

interpretation of |v × w|

4.6 Vector equation of a plane. Cartesian equation of a plane: ax + by + cz = d

4.7 Intersections of: a line with a plane; two planes; three planes

 Angle between: a line and a plane; two planes

11
Inspiration 
and formalism

Skills check

1 a Find the distance between P(−1, 5) 

and Q(2, 1).

 b  Find the coordinates of  the midpoint 

of  PQ when P(−2, −3) and Q(4, −1).

2 A is the point (1, 3) and B is the point (4, 9).

a Find the gradient of  the line 

segment [AB].

b Write down an equation for the line AB.

You should know how to: 
1 Calculate the distance between two 

points using their coordinates, and fi nd 

the midpoint of  the line segments joining 

them e.g., given that A(−1, 3) and 

B(3, −5), AB  =        
22

1 3 3 ( 5)

= 80 = 4 5.

The midpoint M 
− + + −⎛

⎝
⎜

⎞
⎠
⎟

1 3

2

3 5

2
,

( )
 = (1, –1).

2 Represent a line in the plane by a Cartesian 

equation e.g., given A(−1, 3) and B(3, −5), 

the equation of  the line AB is 

y – 3 = –2(x + 1) i.e., y = −2x + 1.

Before you start
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From vector geometry to vector 
algebra

The computer animations used in movies and video games are a 

result of  an ingenious application of  mathematics – vector geometry. 

The process may begin with an artist’s sculpture which is scanned to 

produce a highly detailed three-dimensional digital image known as 

a wireframe model. The resulting model, whose surface can be made 

up of  as many as six million triangles, can be viewed and colored in 

real three-dimensional life.

When fi lming a scene for a movie, the position and direction of  the 

light source and the camera lens are known. This makes it possible 

to calculate the position of  each point on the model’s surface that 

is highlighted by the light source and color it accordingly.

The relationship between the orientation of  the surface of  the model 

and the light source can be described algebraically using vector 

algebra – the area of  mathematics explored in this chapter.

For more detail on 

how vectors are used 

in the creation of 

computer-generated 

movies, use your 

internet search engine 

and the term ‘maths 

and movies’.

[ Most modern computer 

animations allow 

movement. Animators 

can interact with 

their images, 

manipulating them 

with a mouse or 

controller.
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. Geometric vectors and basic operations

In previous chapters, you have studied many important concepts 

and explored several of  their applications to solve real-life problems. 

Further applications of  mathematics to areas such as mechanics 

require a deeper knowledge of  mathematics – particularly, a class of  

mathematical objects called vectors

The idea of  a vector is closely related to translations. 

For example, the diagram shows a triangle, ABC, 

and its image, A′ B′ C′, after a translation.

To describe this translation you say: ‘Triangle ABC is 

translated 10 units to the right’. You can also draw a 

directed line segment with an arrowhead to illustrate 

the effect of  the translation.

When describing the effects of  a translation, you need 

to mention the magnitude and the direction to defi ne it, 

as illustrated by the directed line segment.

➔ A vector is defi ned by direction and magnitude.

This chapter uses two different approaches to defi ne and study 

vectors: geometric and analytic.

A geometric vector

or directed line segment, for example, AB.

AB can be interpreted in different ways according to 

the context.

B B'

d

B B'

initial point

directionmagnitude

B

A

Geometric vectors are frequently used in physics because 

they are convenient for representing quantities such as 

force, velocity or acceleration, which possess magnitude and 

direction. In such cases, it is useful to adopt a simple notation 

such as F or F  to represent a force and v or v  to represent 

velocity.
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➔ In mathematics, AB usually represents either the position 

vector of  B relative to A or the displacement from A to B.

A is called the initial point and B the terminal point

This representation shows the properties of  the vector, that is, 

● the direction of  the directed line segment with initial point A 

and terminal point B (as indicated by the arrow), and 

● the magnitude given by the length AB.

Magnitude or size is represented by a number called a scalar. 

➔ When we work with vectors you need to distinguish the vector 

from its magnitude, which is a non-negative scalar.

The magnitude of  AB is simply the length AB and is denoted 

by |AB|. If  AB = a then you can represent its magnitude by 

|a| or simply by a

Equal or equivalent geometric vectors

The vectors AB and CD are equal or equivalent as they have the 

same direction and magnitude. In this case, AB = CD.

BA  has the same length but the opposite direction to AB and so 

they are not equal. Vectors with the same magnitude and opposite 

direction are called opposite vectors. 

Example 

ABCD is a rectangle. Using the given points, 

write down pairs of  vectors that

a have the same direction and magnitude

b have the same magnitude and are parallel 

but have different directions

c are non-parallel and have the same magnitude.

Answers

a AB and DC

 or

AD and BC

b AB and CD

 or

AD and CB

c AC  and BD

The opposite sides of  a rectangle 

have the same length and are 

parallel.

Modify the answer from part a 

by keeping one of  the vectors and 

taking the opposite of  the other.

The diagonals of  a rectangle 

have the same length but are not 

parallel.

To distinguish vectors 

from other quantities, 

we write them in bold, 

d, or use a right-

pointing arrow above 

the letter, d, or a tilde 

below the letter, d
~
. 

When you handwrite 

vectors, you cannot 

use the bold typeface, 

so use the arrow or 

tilde notation.

B

A

D

C

B

A D

C

The opposite of a 

vector is also called 

its negative
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➔ Special case

The vector AA has no defi ned direction and is represented by 

a single point A. This vector is called a null vector or zero 

vector and it is the only vector that has a magnitude of  zero.

Exercise 11A

1 The diagram shows a regular hexagon 

ABCDEF.

a 

show that AB = ED

b Using the given points, write down all 

the vectors that have

 i the same direction as AB

ii the same magnitude as CF

2 Consider the regular pentagon ABCDE and the 

vectors shown in the diagram.

a Use the properties of  regular pentagons to 

show that the vectors in the diagram are all 

distinct.

b Is it possible to defi ne a pair of  non-trivial

equivalent vectors using the points given? Give reasons.

Basic operations with geometric vectors

➔ The sum of  two vectors is determined by the parallelogram 

law: BA + BC = BD where ABCD is a parallelogram.

The parallelogram law is a practical rule used in physics that works 

very well when applied to vectors with different directions but the 

same initial point.

In mechanics, looking at the effect of  forces, the initial point is very 

important as it represents the point of  application. The effect of  the 

force is determined not only by its intensity but also by the point at 

which it is applied. Since the initial point is not one of  the properties 

that defi nes a vector, a more general defi nition is needed for the 

addition of  geometric vectors which may not have the same initial 

point.

Draw an accurate 

diagram of a hexagon 

with sides 3 cm. Which 

of the geometric 

properties of this 

shape have you used?

A

F

B

E

C

D

O

A

B

E

C

D

Is the parallelogram 

law a good de nition?

What about AB + AB

or AB + BD?

A

B

C

D

Investigation – regular polygons

Explore other regular polygons and the vectors de ned by their 

vertices. Find examples of regular polygons whose vertices do not 

de ne a pair of non-trivial equivalent vectors.

A zero vector is also 

called a trivial vector. 

A non-trivial vector

has a magnitude 

greater than zero.
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Here are two vectors AB and CD.

These vectors have different initial points. To determine 

AB + CD consider the vector BE = CD and obtain 

AB + CD = AE, the geometric vector with initial point 

A and terminal point E.

➔ This defi nition is called the triangle law and has the advantage 

that it can easily be applied to the addition of  several vectors.

Example 

Consider the vectors shown in the diagram.

Find AB + CD + EF.

Answer

Draw BP  = CD and PQ = EF

AB + CD + EF = AQ (represented 

in red in the diagram).

AB + CD + EF = AQ

The triangle law allows you to geometrically verify the properties of  

vector addition.

➔ Properties of vector addition

Commutative property: u + v = v + u

Associative property: (u + v) + w = u + (v + w)

Additive identity property (the zero vector): u + 0 = 0 + u = u

Additive inverse property (the opposite vector):

u + (–u) = (–u) + u = 0

B

E

C

D

A

E

C

FB

A

D

P

E

C

F

Q
A

D

B

Later in the chapter 

these properties 

can be veri ed 

algebraically.

You may think of the 

triangle law as the 

‘elephant rule’. Why?
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Example 

Draw a diagram to show that the addition of  vectors is commutative.

Answer

Draw two vectors u and v with the 

same initial point. Then use the 

triangle law to obtain u + v and 

v + u which are the same vector.
u + v = v + u

u

u

v

v

Example 

Draw a diagram to show the relationship between the zero vector and 

opposite vectors.

Answer

Draw two parallel vectors u and

v with the same magnitude and 

opposite directions. Then add 

them using the triangle law to 

obtain a vector represented by a 

point – the zero vector.

u v

u + v = 0 = v + u

v = – u

The existence of  opposite vectors provides a natural defi nition for 

the difference of  two vectors.

➔ The difference of  two vectors u and v is the vector obtained 

when you add u to the opposite of  v

Another operation with vectors that arises naturally from vector 

addition is the multiplication of  a vector by a scalar (in general, a 

real number) – scalar multiplication

➔ The product of  a vector u and a positive scalar k is another 

vector v with the same direction as u and magnitude 

|v| = k|u|

The symbol | | has different meanings dependent on the context. 

For example, when applied to a scalar it signi es absolute value, but when 

applied to vectors it signi es magnitude. Are there other mathematical 

symbols that also have different meanings in different contexts?

Why are the 

parallelogram law 

and the triangle law 

equivalent?

AB + AB = 2AB = AC

AB + AB + AB = 3AB = AD

A

B

C

D
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➔ In general, the product of  a vector u and a negative scalar k is 

another vector v with the opposite direction to u and 

magnitude 

|v| = |k||u| = −|k u|.

Example 

The diagram shows the vectors a and b

Draw the vectors

a 2a b –3b c 2a – 3b

Answers

a

2a

a

b

b – 3b

c

2a

2a – 3b – 3b

 Draw a vector in the same direction as 

a with magnitude equal to twice the 

magnitude of  a

 Draw a vector in the opposite direction 

to b with magnitude equal to three 

times the magnitude of  b

 Use the triangle rule to add the vectors 

found in parts a and b

➔ Properties of scalar multiplication

Commutative property: αv = v α

Associative property: α ( β v) = (αβ  ) v

Distributive property (1): α (u + v) = α u + α v

Distributive property (2): (α + β   ) v = α v + β v

Multiplicative identity property: 1v = v

Property of  zero: 0v = 0 and α 0 = 0

b

a

What is the result of 

the multiplication of 

the scalar 0 by any 

vector?

When writing 

expressions that 

involve both scalars 

and vectors, it is 

common to use a 

Greek letter to denote 

the scalar quantity.

A

B

C

D

–AB = BA, 

–2AB can be de ned as 

2(–AB ) = CA.
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Exercise 11B

1 Draw a diagram to show that the addition of  vectors is 

associative.

2 The diagram shows a regular hexagon ABCDEF.

A

F

B

E

C

D

O

Using only vectors defi ned by the vertices of  the hexagon, copy 

and complete these statements.

 a AF  + BC = ...

 b 
1

2
 AD + ED = ...

 c 2FE  – AF – FE  = ...

 d 
1

2
 (AD + BE ) = ...

 e 
1

2
 FC  + BC  = ...

 f –2ED – AF  + AB = ...

3 The diagram shows a parallelepiped ABCDEFGH. 

A B

C

F

G

D

E

H

 a  Let u = AB, v = AD and w = AG. Express each of  these 

vectors in terms ofu, v and w

 i AC ii HB iii CE iv AF

 b Given that |AD| = 3, |AB| = 4 and |AC| = 6, fi nd

 i the angle ABC

 ii the area of  the parallelogram ABCD.

4 Use the properties of  vector addition and scalar multiplication to 

solve these equations for x

 a 3x – u = 6v + 2u

 b 2(x – u) + 3(u – v) = 0

 c 
1

2
 (x – u) = 

1

3
 (x + v)
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. Introduction to vector algebra

In this section, vectors will be defi ned analytically in terms of  

components. Vector operations will then be defi ned in terms of  

these components and you can explore the properties of  the 

operations using vector algebra.

In 2-D, consider a pair of  perpendicular axes 

that meet at a point O, the origin, and use the 

same unit for both axes. Each axis has an 

associated unit vector: i in the positive 

direction of  the x-axis and j in the positive 

direction of  the y-axis.

A vector v = AB in the plane is represented 

by two numbers a and b which indicate the 

horizontal and vertical displacement from A 

to B respectively, as illustrated in the diagram. 

The numbers a and b are components of  the vectorv

and they defi ne the vector.

The column vector 
 
 
 

a

b
 represents the vector v in 

component form and means v = ai + bj

v is a linear combination of  the vectors i and j

➔ In 2-D space, i = 
1

0

⎛

⎝
⎜

⎞

⎠
⎟ , j = 

0

1

⎛

⎝
⎜

⎞

⎠
⎟  and O(0, 0).

Example 

Given A(−1, 2) and B(3, 1),

a write down the vectors OA and OB  as column vectors

b fi nd AB

Answers

a OA = 
1

2

⎛

⎝
⎜

⎞

⎠
⎟  and OB  = 

3

1

 
  
 

b AB   = OB  – OA = 
3

1

1

2
=

4

1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Subtract the components.

Similarly, in 3-D there are three mutually perpendicular axes: the 

x-axis, the y-axis and the z-axis. The corresponding unit vectors are 

i, j and k respectively and a vector is defi ned by its three components: 

v =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a

b

c

 which means v = ai + bj + ck

a

V

A

B

b

Different texts may 

use different notations 

to represent vectors, 

for example, row 

vectors <a, b>.

32 41 5
x

y

3

4

5

2

1

0 i

j

v

The analytic treatment 

of vectors has its roots 

in the 17th century 

when Descartes

(1596–1650) used a 

pair of numbers 

(x, y) to locate a point 

in the plane and a 

triple of numbers 

(x, y, z) to represent 

a point in space. In 

the 19th century, 

mathematicians 

including Arthur

Cayley (1821–95) 

realized that there 

is no mathematical 

reason to stop with 

three numbers, but the 

geometric images that 

help us to illustrate 

concepts are not 

available in greater 

than three dimensions.
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➔ In 3-D space, i =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

0

0

, j =
⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

0

1

0

 and k =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0

0

1

The origin O has coordinates (0, 0, 0)

Example 

Given A(1, 3, −1) and B(3, −1, 1),

a write down the vectors OA  and OB  as column vectors

b express AB as a linear combination of  the unit vectors of  the 

Cartesian axes.

Answers

a OA = 

1

3

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and OB = 

  3

1

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

b AB  = OB − OA

= 

  3

1

1

1

3

1

=

2

4

2

− −
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 Therefore, AB = 2i – 4j + 2k

OA  = 

A

A

A

x

y

z

 
 
 
 
 

, OB  = 

B

B

B

x

y

z

 
 
 
 
 

Exercise 11C

1 The diagram shows four identical parallelograms ABEF, BCDE, 

FEHG and EDIH.

 Let A(−1, 3), C(5, 4) and I(7, 8).

a Find in component form

 i AB ii AE iii CD

b Express as a linear combination of  the unit vectors of  the 

Cartesian axes

 i BF ii CH iii DG

c Find the position vectors of  the points B, D, E, F and G.

2 Given P(0, 2, −1) and Q(2, 1, 1)

a write down the vectors OP  and OQ in component form

b express PQ  as a linear combination of  the unit vectors of  the 

Cartesian axes.

3 The diagram shows a parallelepiped ABCDEFGH.

 Given OA = 

1

1

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, OB  = 

2

3

3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, OD = 

3

0

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 and OE  = 

3

2

1−

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

You will learn more 

about 3-D vector 

geometry in 

Section 11.3.

A B C

F

I

E

G H

D

A B

C

F

G

D

E

H

k

v

Origin

i
j

a

c

b

x

z

y
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 fi nd in component form:

a AB b AD c AE

d AG e BD f BH

4 Let P(−3, 1), Q(5, 7) and R(−1, 5).

a Write down the vectors OP, OQ and OR as column vectors.

b  Find the coordinates of  M and N, the midpoints of  the line 

segments PQ and PR respectively.

c Show that QR = 2MN.

Vector algebra in two dimensions

➔ Given two vectors in the plane, u = 
u

u

1

2

⎛
⎜

⎞
⎟  and v = 

v

v

1

2

⎛
⎜

⎞
⎟ , and a 

real number : 

● The sum of  the two vectorsu and v is defi ned by 

u + v = 
u

u

v

v

u v

u v
1

2

1

2

1 1

2 2

+ =
+

+

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

● The product of  a scalar λ and a vector u is defi ned 

by λu = 1

2

u

u




 
 
 

● The zero vector or null vector is 0 = 
 
 
 

0

0

● The opposite vector of  u = 
 
 
 

1

2

u

u
 is – u = 

 
 
 

1

2

u

u

Example 

Let a = 
1

3
 
 

 and b = 
2

2

 
 
 

a Find a + b in component form.

b Draw a diagram to represent a, b and a + b

Answers

a a + b = 
1 2 3

3 2 5

     
     
     

=+

b

a
a + b

b

Add each component of  a to the 

corresponding component of  b

a + b represents a horizontal 

displacement of  3 units to the 

right and a vertical displacement 

of  5 units up.

Use the formula for 

the midpoint of a line 

segment.

These de nitions are 

consistent with the 

previous geometric 

de nitions.
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Example 

Let a = 
1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a Find 2a, 3a, −a and −4a in component form.

b Draw a diagram to represent all the vectors, showing that the geometric and analytic 

defi nition of  scalar multiplication are consistent.

Answers

a 2a = 
2

4⎝
⎜⎜

⎠
⎟⎟ , 3a = 

3

6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   , 

a = 
1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  and –4a = 

4

8

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

b

a

2a
a –4a

3a

2a has the direction of  a and its magnitude is 

twice that of  a

3a has the direction of  a and its magnitude is 

three times that of  a

−a is the opposite of  a

−4a has the opposite direction of  a and its 

length is four times the length of  a

For scalar multiplication, multiply each component 

by the scalar in front of  the vector:

2a = 
2 1

2 2

×
×

⎛
⎝
⎜

⎞
⎠
⎟

Draw the vectors using their components.

a
2

1

Verify that the results obtained algebraically are 

the same as the results you would obtain using the 

geometric defi nition.

The analytic treatment of  vectors allows us to verify the properties 

of  operations without the need for diagrams.

Example 

Use plane vector algebra to show that the addition of  vectors is 

commutative.

Answer

For any two vectors u and v,

u + v = 
1 1

2 2

u v

u v

   
   
   

+

   
   
   

   
   

   

1 1 1 1

2 2 2 2

1 1

2 2

u v v u

u v v u

v u

v u
v u

+ +

= =

+ +

= =+

Use the commutative property of  

addition of  real numbers.
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Example 

Use plane vector algebra to show that the zero 

vector 0 = 
0

0

 
 
 

 is the identity element of  vector addition.

Answer

For any vector u,

u + 0 = 
1 1

2 2

00

00

u u

u u

    
    

    

+

+ =

+

1

2

u
=

u

 
 
 

 = u and

0 + u = 
    
    

     

1 1

2 2

00

00

u u

u u

+

+ =

+

1

2

u

u

 
 
 

=  = u

Use the fact that 0 is the identity 

element for the addition of  real 

numbers.

Exercise 11D

1 Use plane vector algebra to show that

a u + (–u) = 0, for any vector u and its opposite –u. 

b u + (v + w) = (u + v) + w, for any vectors u, v and w

c α (βu) = (αβ)u = β(αu), for any scalars α and β

d α (u + v) = αu + αv, for any vectors u and v and any scalar 

e (α + β)u = αu + βu, for any vector u and any scalars  and 

f 0u = 0, for any vector u

g 0 = 0, for any scalar 

2 Solve these equations.

a 2 3 5
1

2

x

y

y

x

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ =

−
⎛

⎝
⎜

⎞

⎠
⎟ b 2

2

2

1

3y

x⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟− − = 0

3 Simplify these expressions, stating all the properties that you use.

a u + (v + 2u) b (u – v) + 2 (v – 2u) c      
 

 1 1

6 3
3 u v v u

EXAM-STYLE QUESTION

4 The vectors a and b are given by a = 2i – 3j and b = – i – 2j

 Find the values of  the scalars  and  such that αa + βb = 3i – j

Hence, write 6i – 2j as a linear combination of  a and b

Magnitude of a vector

➔ If  v =
 
 
 

1

2

v

v
then the magnitude of v is given by 

v = |v| = v v1

2

2

2
+

Use the properties 

of vector addition on 

page 573.
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This formula can be deduced directly by using Pythagoras’ 

Theorem.

v 2 = |v
1
|2 + |v

2
|2 v

|v1|

|v2|

Example 

Let u = 
4

3

⎛

⎝
⎜

⎞

⎠
⎟  and v = 

6

k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a Calculate the magnitude of  u

b Find the values of  k such that the magnitude of  v is 10.

Answers

a |u| = 4 3 16 9

25 5

2 2
+ = +

= =

( )

b |v| =  2 210 6 10k+ =

36 + k2 = 100

k2 = 64 ⇒ k = ±8

Use |u| = u u1

2

2

2+

Use |v| = v v1

2

2

2+

Square both sides of  the equation.

Solve for k.

Given two points A and B, the distance between them, AB, is 

numerically equal to the magnitude of  the vector AB.

Example 

Let A(3, 5) and B(−1, 3).

a Find the distance AB.

b If  P(x, y) and AP = BP, express y in terms of  x. State the geometric meaning of  your result.

Answers

a AB = 
   
      
   

  

 
=

1 3 4

3 5 2

AB = |AB| 

= ( 4) + ( 2) = 16 + 4

= 20 = 2 5

2 2− −

Use AB = OB – OA

Use |u| = 2 2

1 2+u u

b AP = 
3

5

x

y

 
 
 

 and BP = 
1

3

x

y

 
 
 

+

AP BP

3 5

1 3

2 2

2 2

=

+

= + +

⇒ − −x y

x y

( ) ( )

( ) ( )

⇒ x2 – 6x + 9 + y2 – 10y + 25 

= x2 + 2x + 4 + y2 – 6y + 9
21

4 8 21 2
4

y x y x    = = +

The point P lies on a straight line.

Use AP = OP – OA  and 

BP  = OP – OB

Use |u| = 2 2

1 2+u u  and the fact that AP = BP. 

Square both sides, expand, simplify and then solve for y.

Function y is of  the form y = ax + b, which represents the 

equation of  a straight line.

B

A

AB = |AB|
t

Some GDC models 

allow you to calculate 

the magnitude of 

vectors using the 

Norm command.
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Investigation – locus of a point

Choose two points in the plane, A and B. Let P(x, y) be any point in 

the plane such that AP = BP. Express y in terms of x, that is,  nd 

an equation for the locus of the point P of the form y = f (x). 

Repeat for other pairs of points A and B.

a State your conjecture.

b Prove your conjecture algebraically.

c For each pair of points investigated, plot the points and graph y = f (x). 

What is the relationship between the graph of y and the line segment AB? 

Give a geometric argument that justi es this relationship.

For a reminder about 

triangle facts see 

page Chapter 14, 

section 3.

Unit and collinear vectors in the plane

A unit vector is any vector with a magnitude of  1 unit. 

The base vectors i
 
 
 


1

0
 and 

 
 
 


0

1
j  are special examples of  unit 

vectors as their directions are the direction of  positive coordinate 

axes x and y. You can obtain a unit vector with the direction of  any 

given vector v

➔ If  v
 
 
 

 1

2

v

v
, the unit vector in the direction of  a non-zero 

vector v is 
1

u
v

v =
+

+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

v

v v

v

v v

1

1

2

2

2

2

1

2

2

2

➔ Two vectors 
 

  
 

1

2

u

u
u  and v = 

 
 
 

1

2

v

v
 are collinear if  u = kv or 

v = ku for some scalar k

If  k > 0, u and v have the same direction; 

if  k < 0, u and v have opposite directions.

Given a non-zero vector v = 
 
 
 

1

2

v

v
, you can determine a collinear 

vector u with a given magnitude m using the formula 
m

 
v

u v

The plus and minus signs refer to the same or the opposite direction 

for the collinear vectors.

C

B

A

Sometimes the unit 

vector in the direction 

of v is represented 

by v̂

Geometrically, three 

points are collinear if they 

lie on a straight line.
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Example 

Given v = 
3

4

 
 
 

, fi nd all possible collinear vectors with magnitude 2.

Answer

|v| = 5

Let u be a collinear vector.

|u| = 2 ⇒ u = ±
2

5
v

So, u = 

6

5

8

5

 
 
 
 
 
 

 or u = 

6

5

8

5

 
 
 
 
 
 

Use |v| = 2 2

1 2v v+

Use u = ± 
m

v
v with m = 2. 

Use λu =
l

l

u

u

1

2

⎛

⎝
⎜

⎞

⎠
⎟

This example shows you a very important property of  the 

zero vector and justifi es the need for the term ‘collinear’.

Example 

Show that the zero vector and any other vector are collinear.

Answer

Let v = 1

2

v

v
 
 

 be a vector.

0 = 
0

0

0

0
0

1

2

1

2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= =

v

v

v

v
 = 0v

Therefore, 0 and v are collinear.

Choose and label any vector.

Use λv =




 
 
 

1

2

v

v

Exercise 11E

1 Find unit vectors in the same direction as each of  these vectors.

a 
 
 
 

1

  5
b

 
 
 

5

12
c

 
 
 

3

  0
d

 
 
 

  1

1

2 Find unit vectors that are collinear with each of  these vectors.

a 
 
 
 

2

  1
b 

 
 
 

5

2
 c 

 
 
 

  0

1
 d

 
 
 

1

1

3 Find, in component form, the unit vector v in the same direction 

as u = 2i – 3j. 

4 Given that v and u are collinear and |v| = m, determine v when

a 
 

  
 

2

3
u  and m = 2

b 
 

   
 

2

5
u  and m = 2 

c 
 

  
 
 

2 2

3 2
u  and m = 13 

The zero vector has 

no direction de ned. 

In this case, the 

term ‘parallel’ is not 

appropriate.
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5 Find the vector w with magnitude 13 in the same direction as 

u = –4i – 6j. 

6 Given u = i – 3j, fi nd the collinear vector t with magnitude 5.

7 Show that if  v = 
 
 
 

1

2

v

v
the vector 

 
 

 
   

 
  

1

2 2

1 2

2

2 2

1 2

1

v

v v

v

v v

v
u v  is the unit 

vector with the direction of v

8 Given a non-zero vector v = 
 
 
 

1

2

v

v
 show that the collinear vectors 

 
m

v
u v have magnitude m (m ≥ 0).

.  Vectors, points and equations of lines

Each point P in the plane can be described by two coordinates: (x, y). 

This point can also be described by a position vector OP  = 
 
 
 

x

y
. 

Similarly, a vector u = 
 
 
 

x

y
 can be interpreted as a position

vector of  a point P(x, y) or as a displacement vector 

AB  = 
 
 
 

x

y
where A(x

1
, y

1
), B(x

2
, y

2
), x = x

2
 – x

1
 and y = y

2
 – y

1

This important fact means you can use coordinate geometry in the study of  

vectors, and also makes vector algebra a powerful tool in coordinate geometry.

Example 

Let A(1, 3) and B(4, 5).

a 

b Find the vector AB

c Find the length of  AB

Answers

a

32 41 x

y

3

4

5

2

1

0

A

B

b AB = 
3

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c |AB| = 3 2 132 2
+ =

Plot the points A(1, 3) and B(4, 5) and draw a vector 

with initial point at A and terminal point at B.

The horizontal component is 3 units across.

The vertical is 2 units up.

The displacement from A to B is 3 units to the right 

and 2 units up. Use |v| = v v1

2

2

2
+

32 41 5 x

y

3

4

2

1

0

A

B

displacement vector

position vector

Show that u has the 

direction of v and 

magnitude 1.
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Example 

Given AB = 
1

2
 
 

 and A(2, 3), fi nd the coordinates of  B when A(2, 3).

Answer

Method 1:

If  B(x, y), then x – 2 = –1 and 

y – 3 = 2.

So, x = 1 and y = 5, that is, B(1, 5).

Method 2:

OB = OA + AB = 
2 1 1

3 2 5

     
          
     

+ =

So, B(1, 5).

Rearrange AB = OB – OA

➔ Three points A, B and C in the plane are collinear when AB

and AC are collinear vectors, that is when AC = kAB  for 

some scalar k

Example 

Show that the points A(−1, 1), B(1, 4) and C(−5, −5) are collinear.

Answer

AB = 
1 1

4 1

2

3

− −( )
=

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

AC  = 
− − −
− −
5 1

5 1

4

6

( )
=

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

AC  = 
4

6
2

2

3

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟=  = –2AB

Therefore, AC  and AB are collinear 

and hence A, B and C are collinear.

For the points to be collinear, you need 

to show that AC = k AB for some 

scalar k. First fi nd AB and AC using

AB= OB – OA and AC = OC – OA

Now show that AC = k AB with 

k = –2. 

Exercise 11F

1 The diagram shows a parallelogram ABCD.

a Write down the coordinates of  A, B, C and D.

b Find AB , AC and AD in component form (column vectors).

c Use your answers to part b to determine 

BD in component form.

Geometrically, points 

are collinear if they lie 

on the same line.

In Example 18, other 

pairs of vectors could 

be used to show that 

collinear, e.g. AC 

and BC

32 6541
x

y

3

4

6

5

2

1

0

D

A

B

C
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2 

a Determine AB  in component form.

b Calculate the length of  AB. Hence, state the magnitude of  AB .

c Find the coordinates of  M such that AM = MB .

What is the geometric meaning of  AM = MB ?

d 

AQ  = –2QB .

magnitude, AB  or PQ .

3 Show that the points P(4, −1), Q(6, −3) and R(2, 1) are collinear.

4 Find the value of  a such that the points A(a, a − 1), B(2, 2a) and 

C(0, 3a) are collinear.

5 Show that the points S(2, −3), U(−1, 2) and N(1, −4) defi ne a 

triangle.

6 Show that if  P(a, b), Q(c, d), R(e, f  ) and 
f b

d b

e a

c a
= , then P, 

Q and R are collinear points.

EXAM-STYLE QUESTION

7 Consider the points A(sin x, −1 + cos x) and B(sin 2x, cos 2x), 

where 0 < x < π

a Show that AB  is collinear with the vector 
sin

cos

 x

 x

⎛
⎜

⎞
⎟

b Show that AB < 1 for any 0 < x < π

3-D coordinate geometry and vector algebra

In 3-D space, points are represented by three coordinates and 

vectors by three components. Although all abstract properties of  

vectors are independent of  the dimensions of  the space, it is more 

diffi cult to visualize points and vectors in 3-D than in 2-D because 

you cannot draw them on paper. All you can do is draw diagrams 

where points and vectors are represented using perspective rules.

For example, to represent the point A(x
a
, y

a
, z

a
), draw a cuboid with 

dimensions |x
a
| by |y

a
| by |z

a
| and place the origin O at one of  the 

vertices so that the edges from O lie on the coordinate axes Ox, Oy

and Oz. If  none of  the coordinates of  A are zero, OA is a diagonal 

of  the cuboid.

You can draw diagrams with axis in different positions. However, you 

need to be careful to position the axes so that when you read them 

counter-clockwise: starting from Ox, you have Oy and then Oz

Three points de ne a 

triangle when they are 

NOT collinear.

x

A

xa

za

ya

y
OA

O

z

y
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A practical way of checking the correct position of the 

axes is to imagine that you grab the z-axis with your right 

hand, keeping your thumb pointing up along the positive 

part of the z-axis. As you close your hand, you should 

move from the direction of the x-axis to the y-axis.

x y

z

Example 

Draw a diagram to represent the points A(−1, 1, 1), B(1, −1, 2) and 

C(1, 1, −1).

Answer

1

1

–1

–1

–1

x

y

2

1

0

A

C

B

The vector algebra techniques used in 2-D space can be extended to 

3-D space.

Points, position vectors and displacement 
vectors in 3-D space

➔ Two points A(x
1
, y

1
, z

1
) and B(x

2
, y

2
, z

2
), have displacement

vector AB = 

 
 
 
 
 

x

y

z

 where x = x 
2
 – x 

1
, y = y 

2
 – y 

1
 and z = z 

2
 – z 

1

You can also assign a position vector to each point 

OA = 

 
 
 
 
 

1

1

1

x

y

z

 and OB = 

 
 
 
 
 

2

2

2

x

y

z

Similarly, given a 3-D vector v = 

x

y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, it can either be 

● a position vector of  a point with coordinates (x, y, z), or

● a displacement from (x
1
, y

1
, z

1
) to (x

2
, y

2
, z

2
), where x = x

2
 – x

1
, 

y = y
2
 – y

1
 and z = z

2
 – z

1 
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Example 

Given the points P(3, 1, 2), Q(−1, 3, 1) and R(0, −1, −1),

a fi nd PQ in component form

b express PR as a linear combination of  the unit base vectors.

Answers

a PQ = 

1 3 4

3 1 2

1 2 1

     
   
   
       

  =   

PQ represents the displacement 

from P to Q, that is, 

PQ = OQ – OP

b PR = –j – k – (3i + j + 2k)

 = (0 – 3)i + (–1 –1)j + (–1 – 2)k

 = – 3i – 2j – 3k

PR =  OR  – OP where 

OR =  –j – k and 

OP =  3i + j + 2k

Vector addition and scalar multiplication in 3-D space

➔ Given two vectors in 3-D space, u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and v = 

v

v

v

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and a real number 

● The sum of  the two vectorsu and v is defi ned by u + v =

u

u

u

v

v

v

u v

u v

u v

1

2

3

1

2

3

1 1

2 2

3 3

⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟
+
⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟
=

+
+
+

⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟⎟

● The product of  a scalar λ and a vector u is defi ned by λu = 
1

2

3

u

u

u







 
 
 
 
 

● The zero vector or null vector is 

 
 

  
 
 

0

0

0

0

● The opposite vector of  u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 is −u = 

−
−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u

u

u

1

2

3

Example 

Given the vectors u = –2i + 3j + k and v = –i + 2j – 3k,

a write down u and v in component form

b fi nd u + v, 2u – 3v and 3(u – v).

Answers

a u =

 
 
 
 
 

2

3

1

and v =

1

  2

3

 
 
 
 

u = u
1
i + u

2  
j + u

3
k means u = 

1

2

3

u

u

u

 
 
 
 
 

This example shows 

that the techniques 

used in 2-D and 3-D 

are similar. Compare 

it to Example 7 on 

p 572.

{ Continued on next page
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b u + v = 

       
     

      
           

2 1 3

3   2   5

1 3 2

 or u + v = –3i + 5j – 2k

 2u − 3v = 

    
   
   
   
   

2 1

2 3 3   2

1 3

      
     

        
     
     

4   3 1

  6 6   0

  2   9   11

 or 2u – 3v = –i + 11k

For vector addition, use

u + v =
1 1 1 1

2 2 2 2

3 3 3 3

u v u v

u v u v

u v u v

     
     

       
     

 or 

u + v = (u
1
 + v

1
)i + (u

2
 + v

2
)j + (u

3
 + v

3
)k

For scalar multiplication, use λu







 
 
 
 
 

1

2

3

u

u

u

 or 

λu = (λu
1
)i + (λu

2
)j + (λu

3
)k

Then add the vectors.

 3(u – v) = 

            
        

          
        
        

2 1 1 3

3 3   2 3   1   3

1 3   4  12

 or 3(u – v) = –3i + 3j + 12k

Add u to the negative of v and then multiply by the 

scalar 3.

Magnitude of a vector in 3-D space

➔ The magnitude of  a vector v = 

 
 
 
 
 

v

v

v

1

2

3

 is given by v = |v| = v v v1

2

2

2

3

2
+ + . 

To fi nd the magnitude of  a vector in 3-D space, draw a cuboid 

whose edges are parallel to the coordinate axes and one of  whose 

diagonals represents v. Then apply Pythagoras’ theorem to fi nd the 

length of  the diagonal of  the cuboid.

w 2 = v
1

2 + v
2

2

v 2 = w 2 + v
3

2

⇒ v 2 = v
1

2 + v
2

2 + v
3

2  

x

A

v

w

v1

v2

v3

z

y

Distance between two points in 3-D space

➔ Given two points A(x
1
, y

1
, z

1
) and B(x

2
, y

2
, z

2
), the distance 

between A and B is given by the magnitude of  the vector AB

AB = |AB | = x x y y z z2 1

2

2 1

2

2 1

2
( ) + −( ) + −( )
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Unit and collinear vectors in 3-D space

➔ The unit vector in the direction of  a non-zero vector v is u = 
1

v

v = 

1

2 2 2

1 2 3

2

2 2 2

1 2 3

3

2 2 2

1 2 3

v

v v v

v

v v v

v

v v v

 
 
  
 
 
 

  
 
 
   

➔ Two vectors u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and v = 

v

v

v

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 are collinear if  u = kv

or v = ku for some scalar k. If  k > 0, u and v have the same 

direction; if  k < 0, u and v have opposite directions.

Given a non-zero vector v = 

v

v

v

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 you can determine a collinear 

vector u with a given magnitude m using the formula u = 
m

v

v

Example 

Given the vector v = 

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 determine in component form

a the unit vector u in the direction of  v

b the unit vectors parallel to v

c the vector with magnitude 7 in the direction of  v

Answers

a |v| = 1 4 9 14  

u = 

1

14
2

14
3

14

 
 
 
 
 
 
 
 
 

Use |v| = 
2 2 2

1 2 3v v v 

Use u = 
1

v
v = 

2 2 2

1 2 3

2

1

2 2 2

1 2 3

1

2

2 2

2 3

3

v

v v v

v

v v v

v

v v v

 
 
  
 
 
 

  
 
 
   

In this book, we 

have adapted the 

convention of column 

vectors. However, this 

is not the only the 

convention in use. 

Does the country of 

learning in uence the 

notation used?

{ Continued on next page
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b u = 

1

14
2

14
3

14

 
 
 
 
 
 
 
 
 



c u = 

7

14

14

14

21

14

 
 
 
 
 
 
 
 
 

The unit vectors parallel to v are the 

unit vector in the direction of  v and its 

opposite.

Multiply each component of  the vector 

found in part a by 7.

Example 

Let A(−1, 3, 5) and B(3, −5, 1).

a Find the coordinates of  M such that AM  = MB

b What is M in relation to [AB]?

Answers

a Let M(x, y, z).

 AM = MB ⇒ 

( 1) 3

3 5

5 1

x x

y y

z z

     
   

      
       

x + 1 = 3 – x ⇒ x = 1 

y – 3 = – 5 – y ⇒ y = –1

z – 5 = 1 – z ⇒ z = 3 

Therefore, M(1, –1, 3).

b M is the midpoint of  [AB].

Label the coordinates x, y and z.

Write down the given condition in terms of  these 

coordinates.

Equate the components of  the vectors and solve.

M is between A and B because AM and MB have the 

same direction. M is exactly in the middle because these 

vectors have the same magnitude.

➔ In general, the coordinates of  the midpoint M of  a line 

segment [AB], with A(x
1
, y

1
, z

1
) and B(x

2
, y

2
, z

2
), are given by 

x x y y z z1 2 1 2 1 2

2 2 2

+ + +⎛
⎝
⎜

⎞
⎠
⎟, ,

Exercise 11G

1 Given the vectors u = –2i + 3j + k and v = –i + 2j – 3k, fi nd

a u + v b –3u

c 4u – 2v d –2(u – v)
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2 Given the vectors a = 

2

3

1−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, b = 

−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

2

  2  and c = 

 0

1

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 fi nd

a a + b + c b 2a – b + c c 2(a b) – 3c

d 
1

2
(a – 3b) e |a| f |b| 

g |a + b|  h |a b| 

3 Let A(0, 2, 1), B(−1, −1, −2) and C(1, −3, 0).

a Find the vectors AB  and AC in component form.

b Determine AB  − AC in component form.

 Hence, write down BC  as a linear combination of the base vectors.

4 Given the vector v =

0

1

2−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, determine in component form

a the unit vector u in the direction of  v

b the unit vectors parallel to v

c the vector with magnitude 5 in the direction of  v

5 Consider this cuboid.

A B

C

F

G

D

E

H

 Let A(4, −1, 3), C(0, −2, 5), D(5, 1, 6) and G(1, −4, 6).

a Find AC, AD and CG in component form.

b Hence, determine the position vectors of the points B, E, F and H.

Straight lines in 2-D

A straight line is defi ned by two points. Given two points A and B 

there is exactly one line that contains both of  them, which is the 

line (AB).

➔ A point R is on the line (AB) when AR = λAB  for some real 

value of  λ. This is called a vector equation of the line AB.

If  the point R has position vector r, the point A has position 

vector a, and AB  = u, the direction vector, then the vector 

equation AR = λAB  can be re-written as r = a + λu

A R B

a

r

mu

u

y

0 x
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Lines in 2-D

➔ If the line (AB) lies in the plane x ⋅ y, then you can represent 

the vector in component form r = 
x

y

⎛

⎝
⎜

⎞

⎠
⎟ , a = 

x

y
1

1

⎛

⎝
⎜

⎞

⎠
⎟  and 

u = 
u

u
1

2

⎛

⎝
⎜

⎞

⎠
⎟  This gives a pair of  parametric equations

x = x
1
 + λu

1
 and y = y

1
 + λu

2

or 1 1

1 2

x x y y

u u


 


If  both components of  the vector are non-zero, eliminate 

the parameter λ to obtain a Cartesian equation of  

the line (AB):

y y x x
u

u
− = −( )1

2

1

1

This can be reduced to the form y = mx + c where m = 
u

u

2

1

 is the 

gradient of  the line and 2
1 1

1

u

u
c y x  is the y-intercept.

Example 

Given the points A(1, 3) and B(2, 5), represent the line (AB) by

a a vector equation b parametric equations

c a Cartesian equation.

Answers

a OA =
1

3

 
 
 

 and OB  = 
2

5

 
 
 

AB  = 
2 1 1

5 3 2

   
   

   

Therefore, r = 
1 1

3 2

   
    

   

Write down the position vectors of  A 

and B in component form.

use AB  = OB  − OA

r = a + λu where a = OA  and 

u = AB

b x = 1 + λ and y = 3 + 2λ

c 
3

1
2

y
x  

⇒ 2(x – 1) = y – 3

⇒ y = 2x + 1

For the parametric equations, use 

x = x
1
 + λu

2
 and y = y

1
 + λu

2
 where 

x
1
 and y

1
 and u

1
 and u

2
 are the 

components of  the position vector of  

point A and vector u respectively. 

For the Cartesian equation, eliminate 

λ from the equations in part b and 

solve for y.

y = mx + c is the 

gradient–intercept 

form of the equation 

of a straight line and 

y – y
1
 = m(x – x

1
) is 

the point–slope form.
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When one of  the components of  the vector u is zero, the line is 

parallel to one of  the axes.

● If  u = 
u1

0

⎛

⎝
⎜

⎞

⎠
⎟ , u

1
≠ 0, the line is parallel to the x-axis, contains the 

point (x
1
, y

1
), and its equation is of  the form y = y

1

● If  u = 
0

2u

⎛

⎝
⎜

⎞

⎠
⎟ , u

2
≠ 0, the line is parallel to the y-axis, contains 

the point (x
1
, y

1
), and its equation is of  the form x = x

1

Example 

Write down vector, parametric and Cartesian equations for the lines 

through A(−1, 2) parallel to 

a u = 2i  b v = 3j

Answers

a r = 
   

    
   

1 2

2 0

x = –1 + 2λ and y = 2

y = 2 

b r = 
   

    
   

1 0

2 3

x = –1 and y = 2 + 3λ

x = –1

Vector equation: use r = a + λu where 

a = OA  and u = 2i

Parametric equations: use 

x = x
1

+ λu
1
 and y = y

1
+ λu

2

As u
2
 = 0, the Cartesian equation is of  

the form y = y
1

Vector equation: use r = a + λu where 

u = v = 3j

Parametric equations: use 

x = x
1

+ λu
1
 and y = y

1
+ λu

2

As u
1
 = 0, the Cartesian equation is of  

the form x = x
1
. 

Straight lines in 3-D space

➔ If  the line (AB) lies in 3-D space, r = 

x

y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, a = 

x

y

z

1

1

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and 

u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, the vector equation r = a + λu can be transformed 

into three parametric equations

x = x
1
 + λu

1
, y = y

1
 + λu

2
 and z = z

1
 + λu

3 

where 
  

  1 1 1

1 2 3

x x y y z z

u u u


If  all the components of  the vector are non-zero, eliminate 

the parameter λ to obtain Cartesian equations of  

the line (AB)

x x

u

y y

u

z z

u
= =1

1

1

2

1

3

Different textbooks 

may use different 

notation for lines, 

segments and their 

lengths. Here we use 

IB notation: [AB] is 

the line segment with 

end points A and B, 

AB is the length of 

[AB], and (AB) is the 

line containing points 

A and B.
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When one of  the components of  the vector u is zero the line is 

parallel to one of  the coordinate planes. If  two components are 

zero, the line is parallel to one of  the axes.

Example 

Given the points A(1, 3, −1) and B(2, 5, 0), represent the line (AB) by

a a vector equation

b parametric equations

c Cartesian equations.

Answers

a AB = 

2   1 1

5   3 2

0 1 1

     
     

      
     
     

r = 

   
   

   
   
   

  1 1

  3 2

1 1

b  x = 1 + λ

y = 3 + 2λ

z = –1 + λ

c 
3

1 1
2

y
x z   

Write the position vectors of  A and B 

in component form and use 

AB = OB  − OA

r = a + λu where a = OA  and 

u = AB

For the parametric equations, 

use x = x
1
 + λu

1
, y = y

1
 + λu

2 
and 

z = z
1
 + λu

3 

where 

x

y

z

1

1

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 = a

and 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 = u

For the Cartesian equations, eliminate 

λ from the equations in part b and 

equate.

This example shows you how to determine a vector parallel to a line 

and one of  its points given its Cartesian equations.

Example 

A line l has Cartesian equations 2 1

3 2
2 1

x y
z

 
  

Find the coordinates of  one of  the points on line l and 

a vector parallel to l

A line in 3-D is de ned 

by two Cartesian 

equations.

The equations of the 

coordinate axes are:

x-axis: y = z = 0

y-axis: x = z = 0

z-axis: x = y = 0

If a vector is parallel 

to a line it is called a 

direction vector of the 

line.

{ Continued on next page
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Answer

2 1

3 2

1
2 1 2

13 2

2

2 1
x y

z
x y

z
 

 

  

  

So, 
1

A 2, 1,
2

 
 
 

 is a point on line l

and u = 3i − 2j + 
1

2
k is parallel 

to l.

Re-arrange the equations to 

the form 1 1 1

1 2 3

x x y y z z

u u u

  
 

where (x
1
, y

1
, z

1
) are the coordinates of  

a point on the line and 

u = u
1
i + u

2   
j + u

3
k has the direction 

of  l

Exercise 11H

1 Given the points P(1, 3) and Q(2, 5), fi nd vector, parametric and 

Cartesian equations for PQ.

2 Write down vector, parametric and Cartesian equations for the line 

through the point A(1, −1, 1) in the direction of  u = 2i – j + 3k

3 Given the equation 
x y

z
+

= = −
1

3

2

3
1 of  a line l, write down the 

coordinates of  one of  its points and the components of  a vector 

in its direction.

4 A line L has vector equation r = 

   
   
   
   
   



  1 1

  1   0

1   3



a Find the coordinates of  three distinct points on L.

b Show that the point P(0, 3, 2) does not lie on the line.

c Write down a vector equation of the line through P parallel to L

5 A line has vector equation r = (1 + k)i – kj + 2k. 

a Write down the coordinates of  two of  its points.

b Find, in component form, a vector u with magnitude 4 

parallel to the line.

. Scalar product

Although a vector is an abstract concept, vector algebra has many 

applications due to a remarkable fact: it is possible to defi ne more 

than one multiplication between vectors. Moreover, each 

multiplication has a geometric meaning and provides a useful tool 

when solving different geometric problems.

u = 6i − 4j + k

is another vector 

parallel to l whose 

components are 

integers.
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Scalar product of two vectors

The scalar product of  two vectors, also known as the inner product

or the dot product, is defi ned geometrically as

➔ Given two non-zero vectors u and v, u v = |u||v| cos θ, 

where θ is the angle betweenu and v. 

i

u

v

[ To measure the angle between 

two vectors, the vectors must 

have the same initial point.

i

u|v| cosi

v

[ |v|cosθ is called the projection 

of v in the direction of u

➔ Here are some important consequences of  the geometric 

defi nition of  the scalar product.

● The scalar product of  two vectors is always a number.

● The defi nition of  scalar product does not depend on the 

dimensions of  the space.

● u v = 0 if  and only if  u = , v =  or u and v are 

orthogonal

● u v = |u||v| if  u and v are parallel.

● u u = |u|2

● u v > 0 when θ is acute and u v  0 when θ is obtuse.

● u v = v u

● u (v + w) = u v + u w

● (λ u) v = λ (u v ) 

You can prove all of these properties, for example:

1 u v = 0 when u and v are orthogonal because the angle between them 

is ±90° and, therefore, 

u v = |u||v| cos θ = |u||v| cos 90° = |u||v|  0 = 0

2 u v = ± |u||v| when u and v are parallel because the angle between 

them is either 0° or 180° and therefore, 

u v = |u||v| cos θ = |u||v| cos 0° = |u||v|  1 = |u||v|, 

or u v = |u||v| cos 180° = |u||v| ⋅ ( –1) = –|u||v|

It is common to use 

the terms orthogonal, 

normal and 

perpendicular when 

the angle between 

the directions of the 

vectors is a right 

angle.

If one of the vectors 

is the null vector, the 

scalar (or dot) product 

is zero.

Orthogonal means ‘at 

right angles’.
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Example 

Find the scalar product of  the vectors u and v given that 

|u| = 2, |v| = 3, and the angle between u and v is 60°.

Answer

u v  2 ×× cos 60°
1

2 3 3
2

   

Use u v = |u||v| cosθ

Sometimes vectors are defi ned by the vertices of  a polygon. 

Use the properties of  the polygon to work out the magnitudes of  

vectors and the angles between them.

Example 

A B

O

CD

Consider the unit square ABCD. Let O be the 

Find OA  · AB 

Answer

|AB | = 1

|AC | = 2

|OA | = 
2

2

θ = 45º

OA AB  = 
2

2

2

2

1

2
1× × =

[AB] is a side of  the unit square.

Use Pythagoras’ theorem to calculate the 

length of  the diagonal AC

As O is the midpoint of  AC, 

|OA| = 
1

2
|AC|

Δ ABC is an isosceles right-angled 

triangle, so the angle between OA and 

AB is 45°.

Use u v = |u||v| cosθ to 

fi nd OA AB

Similarly, you may need to use the properties of  polyhedra 

to answer questions about the scalar product of  vectors in 

3-D space.

For a reminder about 

the names and 

properties of polygons 

see Chapter 14, 

section 3.
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Example 

Consider the unit cube ABCDEFGH. 
Let O be the point where its four 
diagonals meet.

Find OA  · OB 

Answer

|AB | = 1

AF

AG AF FG

= + =

= +

= + =

1 1 2

2 1 3

2 2

2 2

d = 3

|OA | = |OB | = 3

2
Apply the cosine rule to ΔOAB

2 2

2 3 3 3 3
1 2 cos

2 2 2 2

1
cos

3





   
          
   

 

|OA |  |OB | 
3 3 1 1

2 2 3 4
  

The length of  the side AB of  the unit cube is one unit.

Use Pythagoras’ theorem twice to fi nd the length of  the 

diagonal d of  the cube.

As O is the midpoint of  AG, |OA | = 
1

2
|AG|

AB2 = OA2
OB2 − 2(OA)(OB) cosθ

Use u · v = |u||v| cosθ to 

fi nd OA · OB 

Exercise 11I

1 Find the scalar product of  the vectors u and v given that 
|u| = 1.5, |v| = 4 and the angle betweenu and v is 30°.

2 Use the diagram to show that given two non-zero 
vectors u and v,  u · (–v) = –(u · v) = (– u) · v

3 

Find AB · BC + BC · AC

4  In right-angled triangle ABC, Â = α, B̂ = 90 , AB = x and AC = y

Find, in terms of  x, y and α

 a AB  · AC b CA · CB c AC · CB

5 A triangle ABC has area 4. 

Given that AB = 2 and AC = 5, fi nd the possible values of  AB  · AC

To remind yourself of 

the cosine rule, look 

back at Chapter 8.

A B

C

F

G

D

E

H

O

i

r i

uu

v

C

x

y

BA

a
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EXAM-STYLE QUESTIONS

6 Show that u u = |u|2, for any vector u

7 Use the result in question 6 to show that given two 

vectors u and v, u v = 0 if  |u + v| = |u – v|

8 Consider the cuboid ABCDEFGH with centre O 

shown here.

 Using the information given on the diagram, fi nd

 a OB  · OC b AO · OE

9 The work done by any force F  when it produces a 

displacement d  is given by W = F  · d .

 a  Kathy is dragging her toy elephant along a corridor. Assuming 

that she walks in a straight line, and that both the force and 

angle α between the force and displacement vectors remain 

constant, fi nd the work done when |F | = 1.2 and |d | = 5, 

in terms of  α

 b  If  Kathy spins her toy around her, she produces no work. 

Use the diagram below to explain why this happens.

Centripetal

force

Kathy
Path of

inertia

Algebraic defi nitions of scalar product 
in two and three dimensions

➔ Given two vectors in the plane, u = u
1
i + u

2
j and v = v

1
i + v

2
j,

u v = u
1
v

1
+ u

2
v

2

In 3-D space, given two vectors, u = u
1
i + u

2
j + u

3
k and 

v = v
1
i + v

2
j + v

3
k,

u v = u
1
v

1 
+ u

2
v

2
+ u

3
v

3 

These algebraic defi nitions are especially useful for calculating the 

scalar product of  vectors given in component form or when the 

coordinates of  the initial and terminal points are known.

A B

C

F

G

D

E

H

3cm

2cm

7cm

O

To calculate the work 

done by a force, you 

only need to consider 

the component of 

that force along 

the direction of the 

displacement it 

produces.

The path of an object 

moving due to a 

centripetal force is 

a circle. Its velocity 

vector at each instant 

has the direction of the 

tangent to the circle.

The scalar product 

has been de ned in 

two different ways. 

Do you need to prove 

their equivalence 

or can one be an 

extension of the 

other?
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Example 

Find u v when:

a u

2

3

 
  
 

 and v
1

2

 
  
 

b u

1

  2

3

 
 

  
 
 

 and v

4

1

  2

 
 

  
 
 

Answers

a u v = 2 × (–1) + 3 × (–2) = –8

b u v =  –1 × (– 4) + 2 × (–1) –3 × 2 = – 4

Use u v = u
1
v

1
+ u

2
v

2

Some GDC models allow you to calculate the dot 

product of  vectors.

Use u v = u
1
v

1
+ u

2
v

2
 + u

3
v

3 

Example 

Given the points A(–1, 0, 2), B(0, 1, –2) and C(1, 1, 1), fi nd AB  BC.

Answer

AB = 

0 ( 1)   1

1 0   1

2 2 4

    
   

    
        

 and

BC = 

1 0 1

1 1 0

1 ( 2) 3

   
   

    
       

AB  BC  = 1 × 1 + 1 × 0 − 4 × 3 

= −11

First fi nd AB and BC using 

AB = OB − OA 

and BC = OC OB 

Then use u v = u
1
v

1
 + u

2
v

2
 + u

3
v

3
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Exercise 11J

1 Find u v when

 a u
 
 
 

1
=

4
 and v

 
 
 

12
=

6
 b u

 
 
  
 

1

= 3

5

 and v  
  
 

1

= 1

  2

2 Given the points A(−1, 3, −2), B(−1, 1, 2) and C(1, −1, 1), 

fi nd AB  ·BC  and AC ·BC

3 The unit cube OABCDEFG in the diagram

has its faces parallel to the coordinate planes.

A B

C

F

G

O

E

D

 a Write down the coordinates of  its vertices.

 b Hence, fi nd OF OG and AF BG

EXAM-STYLE QUESTION

4 Consider a square-based pyramid ABCDE such that the x-axis 

contains B and D, the y-axis contains A and C and the positive 

part of  the z-axis contains E.

A B

CD

E

Given that the area of  the base is 4 square units and the volume 

of  the pyramid is 
8

3
 cubic units, fi nd

 a the coordinates of  its vertices

 b |EA| and EA  · EB

 c the size of  angle AEB

The coordinate planes are mutually 

perpendicular and intersect at the 

origin O.

z

x

y

0
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Equivalence of defi nitions

In mathematics, different defi nitions of  the same object, operation 

or property are accepted as long as you can prove that they are 

consistent.

Using trigonometric identities, we can show that the geometric de nitions 

imply the algebraic de nition.

1 Consider the plane vectors u = u
1 
i + u

2   
j and v = v

1 
i + v

2
j

Then v − u = (v
1
 − u

1
)i + (v

2
 − u

2
)j

Let θ be the angle between u and v. Using the cosine rule

|v − u|2 = |u|2 + |v|2 − 2|u||v| cosθ

As |v − u|2 (v
1
 − u

1
)2 + (v

2
 − u

2
)2, |u|2 = (u

1
)2 +(u

2
)2 and

|v|2 = (v
1
)2 + (v

2
)2

−2u
1
v

1
 −2u

2
v

2
 = −2|u||v| cosθ

u
1
 − v

1
 + u

2
 − v

2
 = |u||v| cosθ

Using the algebraic de nition of the scalar product of plane vectors

u v = |u||v| cosθ QED

2 Another important algebraic property of the scalar product is the 

distributive property

(a + b)  (c + d) = a c + a d + b c + b d

Consider the plane vectors u = u
1
i + u

2  
j and v = v

1
i + v

2 
j

u v = ( u
1
i + u

2
j)  (v

1
i + v

2
j)

Using the distributive property

u v = (u
1
i )  (v

1
i ) + (u

1
i )  (v

1  
j ) + (u

2  
j )  (v

1
i ) + (u

2  
j )  (v

2  
j )

As u v = |u||v| cosθ, where θ is the angle between u and v

(u
1
i )  (v

1
i ) = u

1
v

1
, (u

2   
j ) ⋅ (v

2
j ) = u

2
v

2
 and (u

1
i ) ⋅ (v

2  
j ) = (u

2  
j )  (v

1
i ) = 0

Therefore, u v = u
1
v

1
 + u

2
v

2 
as required. QED

The distributive 

property is extremely 

important as it is 

used to prove that the 

geometric de nition 

implies the algebraic 

de nitions.

As long as you use an orthogonal Cartesian referential the 

geometric and algebraic defi nitions are equivalent, which leads 

to a very important and useful formula

➔ cosθ = 
u v

u v
, where θ is the angle between the vectorsu and v

1 1 2 2

2 2 2 2

1 2 1 2

1 1 2 2 3 3

2 2 2 2 2 2

1 2 3 1 2 3

1 1

2 2

1 1

2 2

3 3

and cos

and cos

u v u v

u u v v

u v u v u v

u u u v v v

u v

u v

u v

u v

u v





    
   

    

   
    

   
      

   

 

 

u v

u v

= =

= =

i

u

v

A similar proof can be 

for 3-D vectors.

The proof for 3-D 

vectors is similar.

Inspiration and formalism590



Example 

Given u = 2i – 3j + 4k and v = i – j – k, fi nd the angle θ between the 

vectors u and v

Answer

u v = 2 + 3 – 4 = 1

|u| 4 9 16 29= + + =  and 

|v| 1 1 1 3= + + =

1

29 3

1

29 3

cos

arccos 83.8° to 3 sf
 
 
 

 



=

= =  

Use u v = u
1
v

1
 + u

2
v

2
 + u

3
v

3

|u| = 
2 2 2

1 2 3u u u+ +

cos θ = 
u v

u v

Example 

Find the values of  k for which the angle between the vectors u = 
1

k

 
 
 

and v = 
3

2

k 
 
 

 is 60°.

Answer

u v = 3k + 2k = 5k

|u| = 
21 k+  and |v| = 

29 4k +

cos 60° = 
2 2

5

1 9 4

k

k k+ +

2 2

1 5
0.215

2 1 9 4

or 3.10

k
k

k k

k

= =

+ +

 =

Use u v = u
1
v

1
 + u

2
v

2

|u| = 
2 2

1 2u u+

cos θ = 
u v

u v

If  you square both sides of  
1

2

5

1 9 42 2
=

+ +

k

k k
 and re-arrange, 

you obtain 9k 4 – 87k 2 + 4 = 0 which 

has four solutions. However, two of  

them are negative and therefore do not 

satisfy the original equation.

Exercise 11K

1 Given u = 2i – 3j and v = i + 2 j, fi nd the angle θ between the 

vectors u and v

2 Given u = i –2j + k and v = 2i – j + k, fi nd the angle θ between 

the vectors u and v

3 Given the points A(–1, 1, 1), B(1, –1, 2) and C(2, 3, –1), fi nd the 

angles between the vectors

a AB  and AC b BC  and AC

Hence, write down the sizes of  the internal angles of  the triangle 

ABC.

4 Given the vectors 
4

a

a

 
 
 

 and 
2

3

a 
 
 

, fi nd the values of  a for 

which the angle between the vectors is acute.

To learn how to use 

Solver on a GDC see 

the GDC Chapter on 

the CD.
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EXAM-STYLE QUESTION

5 Consider the vectors u = sin (3α) i – cos (3α) j + 2k and 

v = cos α i – sin α j – 2k, where 0 < α < 2π. Let θ be the angle 

between the vectors u and v

a Express cos θ in terms of  α

b Find all possible values of  α for which the angle between the 

two vectors is 150°.

c Show that the angle between the two vectors is always obtuse.

6 Using the algebraic defi nition of  the scalar product, show that 

 (a + b)  (c + d) = a c + a d + b c + b d

 for any vectors a, b, c and d in 3-D Cartesian space.

.  Vector (cross) product and properties

In many applications of  vector algebra it is necessary to fi nd a vector 

that is orthogonal to two given vectors. The vector product 

of  3-D vectors provides a very effi cient method for solving this type 

of  problem.

➔ Given u = u
1
i + u

2
j + u

3
k and v = v

1
i + v

2
j + v

3
k, 

the vector (cross) product of  u and v is the vector given by

u × v = ( u
2
v

3
 – u

3
v

2
 )i + ( u

3
v

1
 – u

1
v

3
 ) j + ( u

1
v

2
 – u

2
v

1
 )k

Example 

Given u = 2i – j + k and v = i + 2j + 5k, determine u × v

Answer

u × v =  (–1 × 5 – 1 × 2)i

+ (1 × 1 – 2 × 5)j

+ (2 × 2 + 1 × 1)k

= –7i – 9j + 5k

Use u × v =( u
2
v

3
 – u

3
v

2
 )i + (u

3
v

1
 – u

1
v

3 
)j + (u

1
v 

2
 – u

2
v

1 
)k

You can use a GDC to fi nd or check your answer.

The next example shows you how to prove an important property of  the 

vector product.

✗

While the dot product 

can be de ned in 

spaces of different 

dimensions, the cross 

product is just de ned 

in some dimensions. 

For example, the cross 

product is not de ned 

in dimension 2.
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Example 

Show that u × v = 0 if  and only if  u and v are collinear.

Answer

Let u = u
1
i + u

2
j + u

3
k and v = v

1
i + v

2
j + v

3
k

If  u × v = 0 then u
2
v

3
 – u

3
v

2
 = 0, 

u
3
v

1
 – u

1
v

3
 = 0, and u

1
v

2
 – u

2
v

1
 = 0

If  none of  the components of  v is zero, this 

implies that 
u

v

u

v

u

v
1

1

2

2

3

3

= =

Therefore, u and v are collinear.

If  one of  the components of  v, say v
1
, is zero, 

then u
1
v

2
 = 0 and u

1
v

3
 = 0 which implies that u

1
= 0 

or v
2
 = v

3
 = 0. Hence, u and v are collinear.

First prove that if  u × v = 0, u and v are collinear.

Use u × v = (u
2
v

3
 – u

3
v

2
 )i + (u

3
v

1
 – u

1
v

3
 )j + 

(u
1
v

2
 – u

2
v

1
 )k and make each component of  

u × v equal to zero.

Re-arrange the equations to the form u = kv

where k = 
u

v

u

v

u

v
1

1

2

2

3

3

= =

Choose any component of v to be zero and show that 

the corresponding component of  u is also zero or v is 

the zero vector.

Suppose now that u and v are collinear.

Then u
1
= λv

1
, u

2
= λv

2
and u

3
 = λv

3
 and 

u × v = 0

Now prove that if  u and v are collinear, u × v = 0

Collinear means that u = λv, λ ∈

Substitute u
1
 = λv

1
, u

2
 = λv

2
and u

3
 = λv

3
into 

u × v =  (u
2
v

3
 – u

3
v

2
 )i + (u

3
v

1
 – u

1
v

3
 )j

+ (u
1
v

2
 – u

2
v

1
)k

Investigation – properties of the cross product

Use your GDC to investigate the algebraic properties of the cross product of two vectors.

In each case explore several examples, make a conjecture and then prove it.

 For any vectors u and v, is u × v = v × u?

 For any vectors u and v, is (u × v) × w = u × (v × w)?

 For any vectors u and v and for any parameter λ, is (λu) × v = λ (u × v)?

 For any vectors u, v and w, is u × (v + w) = u × v + u × w?

Magnitude of the vector u × v

The magnitude of  the vector product of  two vectors u and v is 

given by |u × v| = |u||v| sin θ, where θ is the angle between the 

two vectors.

The proof  of  this result requires some heavy algebraic 

manipulation.

You can re-arrange this formula to obtain sin θ = 
| |

| || |

u v

u v

×

, but as the 

angle between two vectors can take any value between 0° and 180°, 

you cannot use this formula to fi nd the value of  θ

You can now defi ne the cross product of  two vectors geometrically.
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➔ u × v = (|u||v| sin  ) n̂where n̂ is a unit vector orthogonal 

(normal) to both u and v whose direction is given by the 

right-hand rule illustrated in the diagram.

This geometric defi nition highlights an important property of  the 

cross-product

u × v = –(v × u)

This means that when you calculate the cross product between two 

vectors you need to be careful – the order you write them is 

important! With this defi nition it is also easy to identify the property 

proved in example 36

u × v = 0 ⇔ u and v are collinear

However, the most important applications of  this defi nition come 

from the geometrical interpretation of  |u × v|.

Geometric interpretation of |u × v| 

Area = base • height
 = |u| • |v|sini

 = |u × v|i

u

h = |v|sini
v

A B

CD

➔ u = AB  = DC and 

v = AD = BC , the area of ABCD is numerically equal to |u × v|

The area of  triangle ABD equals 
2
|u × v|

Example 

Show that the volume of  the parallelepiped 

shown in the diagram is (u × v ) · w. 

Answer

V = area of  base × height

Area of  base = |u × v |

Height = |w|cos θ = where θ is 

the angle between w and u × v. 

V = |u × v||w|cos θ = (u × v) · w

Write down the formula for the volume 

of  a parallelepiped. Find the area of  a 

parallelogram.

cos θ = 
adjacent side

hypotenuse
θ (is acute)

Use the geometric defi nition of  the 

scalar product.

It is common to use 

the notation n̂ to 

represent a unit vector 

normal to a plane or 

to two given vectors.

b

a

a × b

b × a

= –(a × b)

O i

If the angle between 

the vectors u × v

and w is obtuse, the 

volume is given by the 

absolute values of the 

triple product.

u × v

u

v

w

(u × v) · w is called 

the triple (or mixed) 

product of these 

vectors.

Torque, or the moment 

of a force, is a 

measure of the turning 

force on an object.

Pushing or pulling the 

handle of a spanner 

connected to a nut 

or bolt produces a 

torque that loosens 

or tightens the nut 

or bolt. The torque 

produced by the force 

can be modeled by a 

vector product.
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➔ Summary of  the algebraic properties of  the vector 

(cross) product

● u × v = –v × u

● u × (v + w) = u × v + u × w

● (u × v) · u =  (u × v is orthogonal to u)

● (u × v) · v =  (u × v is orthogonal to v)

● u × v =  if  and only if  u and v are 

collinear.

● u × u = 

● (λ u) × v = λ (u × v)

● |u × v| = |u||v| sin θ, where θ is the 

angle between u and v

The Irish mathematician Sir William Hamilton

(1805–1865) introduced 4-D numbers, 

called quaternions, in 1843. 

Quaternions combine by the normal laws 

of algebra with the exception of 

multiplication, which is not commutative. 

You should have found in the Investigation 

on page 601 that the vector product is not 

commutative.

Quaternions have many computer graphic 

applications and allow rotations and 

movement of objects in 3-D.

Over 150 years later, the development of 

what seemed a strange theory at the time 

has been introduced to the general public through movies such as Jurassic 

Park and Lord of the Rings –  lms that would not be possible to create 

without the aid of mathematics and computer animations.

z axis

x axis

p

y axis

0

rotation

plane

rotation

axis

[ A quaternion can be used to 

transform one 3-D vector into 

another.

Exercise 11L

1 Given u = i – j – k, v = i – 2j + k and w = i – k,

determine in component form

a u × v b v × w c u × (v × w)

d (u × v) × w e u × w f (u × v) × (u × w)

g (u + v) × (u – w)

2 Give a counter-example to show that the vector product is 

not associative.

3 Show that if  a vector w is orthogonal to both u and v, then w

and u × v are collinear.

Are the parentheses 

in the scalar product 

necessary – does 

(u × v) ∙ u = u × v ∙ u?

i v

u × v

u

An interesting topic for 

an exploration or even 

an extended essay 

is the applications 

of vector methods in 

areas like computer 

animations which 

allow the creation of 

animated 3-D  gures 

that can move like 

the people or animals 

they represent.
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EXAM-STYLE QUESTION

4 Consider the points A(−1, 3, 4), B(5, 7, 5) and C(3, 9, 6).

a 

b Find AB  × BC

c Hence, fi nd the area of  parallelogram ABCD.

5 The diagram shows a parallelepiped ABCDEFGH.

Given that A(1, 0, 2), B(2, 3, 3), C(−3, −1, 2) and E(2, 1, 4), fi nd

a the coordinates of  D

b the volume of  ABCDEFGH.

6 Show that the vector product has these algebraic properties.

a u × v = –v × u b u × (v + w) = u × v + u × w

c u × v u = 0 d (λu) × v = λ (u × v)

. Vectors and equations of planes

A plane in 3-D space is defi ned by three non-collinear points. This 

means that for any given triangle ABC in 3-D space, there is exactly 

one plane that contains this triangle – the plane ABC.

A point R is on the plane ABC when RA = α AB  + β AC  for some 

real values of  α and β. This is called the vector equation of  ABC.

There are several ways of  defi ning a plane ABC. For example, 

ABC is the only plane that contains the lines [AC] and [AB]. 

In general, a plane π is defi ned when one of  its points with 

position vector a and two non-collinear vectors u and v

parallel to the plane are known.

➔ In this case, any point on the plane with position vector r

satisfi es the vector equation of a plane

r = a + α u + β v

This equation can be manipulated to obtain other equations of  

the plane π

Let r = 

x

y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, a = 

x

y

z

1

1

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and v = 

v

v

v

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The equations x = x
1
 + αu

1
 + βv

1
, y = y

1
, + αu

2
 + βv

2
 and 

z = z
1
 + αu

3
 + βv

3
 are called parametric equations of the plane.

➔ If  the parameters α and β are eliminated, an equation of  the 

form ax + by + cz = d is obtained. 

This equation is called a Cartesian equation of the plane

A B

C

F

G

D

E

H

A

B

C

O

R

A
R

r

O

a

v

u
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Example 

Given the points A(1, 0, 1), B(−1, 1, 0) and C(0, 1, −1), fi nd the 

equation of  the plane ABC

a in vector form

b in parametric form

c in Cartesian form.

Hence, show that the vector whose components are the coeffi cients 

of  the Cartesian equation is normal to the plane.

Answers

a AB  = 

1 1 2

1 0   1

0 1 1

     
       
       

AC = 

0 1 1

1 0   1

1 1 2

    
       
        

A vector equation of  the plane ABC is 

r = 

1 2 1

0   1   1

1 1 2

      
           
           

 

where α, β ∈ 

Find two non-collinear vectors, AB  and AC, parallel 

to the plane ABC.

Use r = a + αu + βv where a = OA, u = AB  and 

v = AC are vectors parallel to the plane.

You could use the point B or C and obtain 

an equivalent equation.

b x = 1 – 2α – β

y = α + β

z = 1 – α – 2β

c 1 2   (1)

        (2)

1 2   3

x

y

z

   


  
  

 
 


α = 1 – x – y  (1 + 2)

β = 1 – y – z  (2 + 3) 

Substitute into (2):

y = (1 – x – y) + (1 – y – z)

⇒ x + 3y + z = 2

As

1 2

3   1 2 3 1 0

1 1

   
           
   
   

 and

1 1

3   1 1 3 2 0,

1 2

   
           
   
   

the vector 

1

3

1

 
 
 
 
 

 is normal to the plane.

Express each component of  r = 

x

y

z

 
 
 
 
 

 in terms of  α

and β

Use pairs of  equations to fi nd expressions for α and 

β in terms of  x, y and z. Substitute these expressions 

into one of  the equations – so eliminating α and β – 

to obtain an equation of  the form ax + by + cz = d

The vector whose components are the coeffi cients of  

the Cartesian equation is 

1

3

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Show that the scalar product of  the vector whose 

components are the coeffi cients of  the variables in the 

Cartesian equation (part c

vectors parallel to the plane, AB  and AC, is zero.
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The previous example suggests that the Cartesian equation of  the 

plane can be deduced using the normal direction to the plane.

In fact, as illustrated by the diagram, AR ⊥ n if, and only if, R is a 

point on the plane. 

If  n = 

a

b

c

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, the plane is defi ned by the equation 

x x

y y

z z

a

b

c

−
−
−

⋅ =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1

1

0

which can be simplifi ed to obtain the Cartesian equation 

of  the plane.

➔ a (x – x
1
) + b (y – y

1
) + c (z – z

1
) = 0 

or ax + by + cz = d where d = ax
1
 + by

1
 + cz

1

Equation of  the plane (using the normal vector)

x x

y y

z z

a

b

c

−
−
−

⋅ =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1

1

0  this can also be written as 

x

y

z

a

b

c

x

y

z

a

b

c

⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

⋅ = ⋅
1

1

1

or r ⋅ n = a ⋅ n

Example 

a Find the equation of  the plane π which contains the point 

A(−1, 1, 2) and is normal to the vector n = 2i – j – k. 

b Hence, show that the point B(0, 4, −1) lies on the plane.

Answers

a x

y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

1

1

1

1

2

2

1

1

⇒⇒ − − = −2 5x y z

b x y z= = = −
⇒ − − − = −

0 4 1

2 0 4 1 5

,

( ) ( )

  and 

Therefore, B(0, 4, −1) lies on 

the plane π

Use r n = a n where 

r = xi + yj + zk and the 

position vector of  A(−1, 1, 2) is 

a = –i + j + 2k

To show that the point lies on the 

plane, show that the coordinates of  B 

are the solution to the equation from 

part a: 2x – y – z = –5

Exercise 11M

1 Given the points A(−3, 1, 1), B(1, 2, 0) and C(1, 1, −2), fi nd 

the equation of  the plane ABC

a in vector form b in parametric form

c in Cartesian form.

A
R

r

n

⊥ is shorthand for 

perpendicular.
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2 Find the equation of  the plane α which contains the point 

P(1, 0, 1) and is normal to the vector n = –i + 3j – k . Hence, fi nd 

the coordinates of  three distinct points on plane α

3 Find the Cartesian equation of  the plane α if

a a contains the point (−3, 4, 0) and has the normal vector 

  1

2

1

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

b α contains the point (−1, 1, 1) and the line x z
y− = =1

1

2
c α contains the lines 1 – x = y – 1 = 2z

and x = 2 – t, y = 1 + 2t, z = t.

4 Write down the Cartesian equations of  the coordinate planes:

a xz b xy c yz

5 Consider the pyramid shown where O is the origin 

and the points A, C and V lie on the  x-, y- and z-axes 

respectively.

Given that ABCO is a square with area 4 square units 

and the pyramid has a volume of  6 cubic units, fi nd

a the coordinates of  the vertices of  the pyramid

b a vector equation of  the plane ABV

c a Cartesian equation of  the plane BCV

d a vector equation of  the line BV

e Cartesian equations of  the line AV.

. Angles, distances and intersections

Vector algebra also provides effi cient methods for solving 

practical problems involving angles, distances and intersections 

of  lines and planes. Here are the most usual examples.

Angle between two lines

The angle θ between a line parallel to u and a line parallel to v is 

given by 

q =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟arccos

u v

u v

Although the angle between the vectors u and v can take 

any value in the interval [0°, 180°], the angle between 

two lines can simply take values in the interval [0°, 90°]. 

When θ = 0° there are two parallel lines and when θ = 90°

there are two orthogonal lines. In the plane, orthogonal lines 

always meet at a point and therefore they are perpendicular. 

A B

x

y

z

C

O

V

i

u

v

The difference 

between the formula 

for the angle between 

lines and for the 

angle between their 

direction vectors is 

just the inclusion of 

the absolute value. 

Why do we need to 

include it?
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In 3-D space, orthogonal lines may not necessarily meet – when 

they meet, they are perpendicular. For example, in the diagram, the 

line [AB] is perpendicular to the line [BC] and orthogonal to the line 

[FG]. As [AB] and [FG] do not meet, they are not perpendicular.

Example 

Find the angle between the lines 
2

1
3

x
y z    and x = 2y = z – 3 

Answer

x

x y z

y z

− − −

= = −

⇒ = =

2

3

2

3

0

1

1

1

1 Rearrange the equations of  the 

lines and write them in the form 

1 1 1

1 2 3

x x y y z z

u u u

  
 

x y z

x y z

= = −

⇒ = =
− − −

2 3

0

2

0

1

3

2

u = 

  3

  1

1

 
 
 
 
 

 and v = 

2

1

2

 
 
 
 
 

 are 

direction vectors of the given lines.

So,
6 1 2

arccos
9 1 1 4 1 4

59.8

  
  

    

 



(or 1.04 rad) to 3 sf.

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 gives you a direction vector of  

the line, i.e., vector parallel to the line.

Use the formula   


 

  
 
 

arccos
u v

u v

 to determine

the angle between the two lines.

➔ In the plane, given two lines with gradients m
1
 and m

2
, we can 

calculate the angle θ between them using the formula 

θ = |β – α| where α = arctan m
1
 and β = arctan m

2

A B

C

F

G

D

E

H

In coordinate geometry, 

angles are generally 

measured in degrees 

but, unless the 

question explicitly 

requires the use of a 

certain unit, answers 

can be given in either 

degrees or radians.

You can also use a 

GDC to calculate the 

angle or check your 

answer.

[ α and β are the 

angles between the 

lines and the positive 

part of the x-axis. 

Note: α and β may 

take negative values.

x

y

a

b

i = b – a
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Example 

Find the angle between the lines r = 
1 2

2 3

   
    

   
 and y = 2x – 1.

Answers

Method 1

2

3

 
 
 

and 
1

2

 
 
 

 are vectors parallel to the 

lines given.

So,
2 6

4 9 1 4
arccos 7.13

 
 

  
 

(or 0.124 rad) to 3 sf.

u

u

1

2

⎛

⎝
⎜

⎞

⎠
⎟  gives you a vector parallel to the line. 

For y = 2x – 1, 

m = 
u

u

2

1

=
2

1
; hence, 

u

u

1

2

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟

1

2

Use the formula = arccos
u v

u v
 to determine the 

required angle.

Method 2

The line r = 
1 2

2 3

   
    

   
 has gradient 1

3

2
m 

The line y = 2x – 1 has gradient m
2
 = 2.

So, a = arctan
3

2
 and β = arctan 2. 

Therefore, 
3

arctan 2 arctan 7.13
2

   

(or 0.124 rad) to 3 sf.

Use m
u

u
=

2

1

 to calculate the gradient of  the line.

For equations of  the form y = mx + c, m gives the 

gradient of  the line.

Then use θ = |β – α| where α = arctan m
1 
and

β = arctan m
2

Exercise 11N

1 Consider the lines with equations r = 
   
   
   

 
0   1

3 1
 and 

y x= −3 3. Find the angle between these lines using two 

different methods.

EXAM-STYLE QUESTIONS

2 Find the angle between the lines 
x y

z= =

1

2 3
 and 2x = y = 3z. 

3 Find the angle between the lines with equations 

r = (2 – α)i + (– 1 + 2α)j + (1 – α)k and r = (2 + β)j + (3 + β)k
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4 Consider two lines in the plane with equations 

y = m
1
x + c

1
 and y = m

2
x + c

2
 where m

1
 > m

2

a Show that, if  θ is the angle between the lines, 



 
 1 2

2 2

1 2

1

1 1
cos

m m

m m

b Let α = arctan m
1
 and β = arctan m

2

Find tan(α – β) in terms of  m
1
 and m

2

c Hence, calculate cos(α – β) 

d Compare your answers to parts a and c and state your 

conclusion.

Given a plane π there are many non-collinear vectors parallel to π.

However all the vectors normal to π are collinear. For this reason, 

you can defi ne the angle between a line and a plane and the angle 

between two planes using normal vectors.

Angle between a line and a plane

L

P

n

i

a
u

➔ The angle θ between a line parallel to u and a plane with 

normal vector n is given by 

q =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟arcsin

u n

u n
, 0 ≤ θ ≤ 90°

Example 

Calculate the angle between the line with vector equation r = (3 – λ)i + j + (–1 + 2λ)k

and the plane with Cartesian equation x – 3y + z = 1 

Answer

u = 

1

  0

  2

 
 
 
 
 

 has the direction of  the line and 

n = 

  1

3

  1

 
 
 
 
 

 is normal to the plane.

 = =− +
+ + +

°arcsin .
1 2

1 4 1 9 1
7 75

(or 0.135 rad) to 3 sf.

The coefficients of  λ in the equation of  the line are 

the components of  u

The coeffi cients of  the variables in the equation of  

the plane are the components 

of  n

Use the formula q =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟arcsin

u n

u n

An equivalent formula is 

q = ° −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟90 arccos

u n

u n

0 ≤ θ ≤ 90°.
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Angle between two planes

n

n

m

m

i

➔ The angle θ between a plane with normal vector m and a 

plane with normal vector n is equal to the angle between the 

lines in the direction of  the vectors m and n. It is given by


 
 
 
 

 arccos
m n

m n
, 0 ≤ θ ≤ 90°

Example 

Find the angle between these planes.

π
1
:2x – y + z = 4

π
1
: r = (1 – α + β)i + (2 – 3α)j + (2β)k

Answer

m = 1

  2

1

  1

 
 
  

 
 



n = 

1 1 6

3 0   2

  0 2   3

      
     
       

     
     

q = =− − +

+ + + +
°arccos

12 2 3

4 1 1 36 4 9
50 1.

(or 0.874 rad) to 3 sf.

The coeffi cients of  the variables in the equation of  the 

plane π
1
 are the components of  a vector normal to π

2

The coeffi cients of  α and β are the components of  

vectors parallel to the plane and their cross product is 

a vector normal to the plane.

Use the formula q =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟arccos

 . m n

m n

Exercise 11O

1 Calculate the angle between the line with vector equation 

r = (1 – 2λ)i + (1 – λ)j + (–2 + λ)k and the plane with Cartesian 

equation 2x – y + z = 5.

2 Calculate the angle between the line with equation 
x

y z= = −1

3
2 3 2  and the plane with vector equation 

r = (2 – 2α – 3β)i + (1 – α + β)j + (– 2α + β)k

3 Find the angle between the planes defi ned by these equations.

x – y + 3z = 1, r = (4 – 2α + 2β)i + (1 – 3β)j + (2 – α – β)k

When calculating 

angles the magnitude 

of the vectors is 

irrelevant. Sometimes 

you can make a 

calculation easier by 

replacing a vector by a 

collinear one.

Chapter 11 603



4 Consider the points A(1, 0, 1), B(−1, 1, 0), C(2, 3, −1) and 

D(−1, −1, −1).

a Find a Cartesian equation of  the plane ABC.

b Find Cartesian equations of  the line AD.

c Find the angle between the line AD and the plane ABC.

EXAM-STYLE QUESTION

5 Determine the values of  k for which the line 
x

ky k z
2
= = −  and 

the plane (2k – 1)x – ky + z = 5 + k are parallel.

Intersection of a line and a plane

In 3-D space, given a line l in the 

direction of  a vector u and a 

plane π normal to a vector n,

● if  u n⊥ , either the line l lies in the 

plane π or l is parallel to π ;

● otherwise, the line and the plane 

meet at a point.

To determine the intersection between a line and a plane, you need 

to solve simultaneous equations. This example shows you how to 

fi nd the intersection between a line defi ned by a vector equation 

and a plane defi ned by a Cartesian equation.

Example 

The line l with vector equation r = 2i – j + 3k + λ(i – j + 2k) and the plane π with 

Cartesian equation 2x – y + z + 2 = 0 intersect at a point. Find the coordinates of  

the point of  intersection.

Answer

P ∈ l ⇒ P(2 + λ, –1 – λ, 3 + 2λ)

P ∈ π ⇒  2(2 + λ) – (–1 – λ) + (3 + 2λ) + 2 = 0

λ = –2 ⇒ P(2 – 2, –1 + 2, 3 –4)

Therefore, the point of  intersection 

is P(0, 1, –1)

The coeffi cients of  the base vectors i, j and k are the 

coordinates of  a general point, P, on l.

Substitute the coordinates of  P into the equation of  

π and solve for λ

Finally, substitute your value of  l into the expression 

for the coordinates of  P to obtain the coordinates of  

the point of  intersection.

Are there any values 

of k for which the 

line and the plane 

in question 5 are 

perpendicular?

l2

l1

r

n

u

The line l
2
 is parallel 

to the plane 

The line l
1
 meets the 

plane at a point.
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When solving this type of  problem, you may be given other types of  

equations for the line or for the plane. Express the coordinates of  a 

general point on the line in terms of  a single parameter and then use 

the equation of  the plane to determine its value.

Distance from a point to a plane

➔ The distance from a point to a plane is measured 

along the perpendicular to the plane that contains the point.

In vector geometry, there are a wide variety of  problems that can be 

solved using the techniques studied so far. This example is a typical 

multi-step problem where you need to combine and apply several 

techniques to fi nd the distance from a point to a plane.

Example 

Consider the point A and the plane π as shown in the diagram.

a Find a vector equation of  the line, L, through point A and 

perpendicular to the plane.

b Find the point of  intersection, P, of  the line L and 

the plane π

c Calculate the distance from point A to the plane.

Answers

a r = (–1 + λ)i + (1 + λ)j + (–1 + λ)k

b P ∈ L ⇒ P(–1 + λ, 1 + λ, –1 + λ)

− +( ) + +( ) + − +( ) =1 1 1 2  

x y z

    

⇒ λ = 1 

⇒ P(–1 + 1, 1 + 1, –1 +1)

 Therefore, L intersects π at P(0, 2, 0).

c The distance from A to π is given by AP

AP = − −( ) + −( ) + − −( ) =1 0 1 2 1 0 3
2 2 2

Use r = a + λu where a is the position vector of  A

and u is normal to the plane. The components of  u

are the coeffi cients of  the variables in the equation of  

the plane.

The coeffi cients of  the base vectors i, j and k are the 

coordinates of  a general point, P, on L

Substitute the coordinates of  P into the equation of  

the plane, π, to fi nd the value of  λ

Finally, substitute your value of  λ into the expression 

for the coordinates of  P to obtain the coordinates of  

the point of  intersection.

Use the formula for the distance between two points

x x y y z z1 2

2

1 2

2

1 2

2

( ) + -( ) + -( )

n

P

A

P is called the foot of 

the perpendicular to 

the plane, dropped 

from A. The distance 

from A to the plane 

is AP.

r

n

P

A(–1, 1, –1)

x + y + z = 2
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Exercise 11P

EXAM-STYLE QUESTIONS

1 The line r with vector equation r = i + k + λ(i –2j + k) and the 

plane π with Cartesian equation x + y + 2z = 4 intersect at the 

point P. Find the coordinates of  point P.

2 Find the coordinates of  the point of  intersection of  the 

line x y z
= =

1

5 2 3
 and the plane –x – y + 3z = 5. 

3 Consider the line L with parametric equations 

x = 3k, y = 2 – 2k, z = 1 – k

and the plane π with vector equation 

r = (4 – 2α + β)i + (1 – β)j + (2 – α – 2β)k. 

a Write down parametric equations for the plane π

b Hence, determine the coordinates of  the point where the line 

L intersects the plane π

4 Show that the line L with vector equation 

r = (1 – λ)i + (1 +2λ)j + (1 + λ)k

is parallel to the plane π with equation 3x + y + z = 2. 

Hence, write down a vector equation of  a line L′ parallel to L

that lies in the plane π

5 Find the distance from the point P(1, 2, 3) to the plane 

2x + y – 5z = 1.

Intersection of two lines

Two lines in a plane are either 

parallel or intersect at a point. 

In 3-D space, there may be 

non-parallel lines that do not 

have any point in common, as the 

diagram shows.

Lines with different directions that do not intersect 

are called skew lines. Skew lines do not defi ne a 

plane – there is no plane that contains both 

of  them. In fact, they lie in parallel planes as it is 

always possible to fi nd a pair of  parallel planes 

that each contains one of  the lines.

B

A

A complicated intersection of roads 

can be modeled by skew lines – 

although some roads have a different 

direction, they are at different levels 

and do not meet.
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Example 

Find, if  possible, the coordinates of  the point of  intersection of  these pairs of  lines.

a x = 2y – 1 = z + 3 and x – 1
4

3

y 
  = z + 2

b r =(–1 + λ)i + (1 + λ)j + (–1 + λ) k and x = y = z + 1

Answers

a x y

x
y

y y y x

y
y

= −

− =
⇒ − − =

⇒ − = + ⇒ = =

+

⎫

⎬
⎪

⎭⎪

+
2 1

1
2 1 1

6 6 4 2 3

4

3

4

3

 and 

3 = 2 × 2 – 1 = z + 3 ⇒ z = 0 and 

2 4

3
3 1 2 0z z


     

Therefore, (3, 2, 0) is the point of intersection.

Solve simultaneously the equations in x and y for 

each line.

Then substitute the values of  x and y into the 

original equations to obtain the value of  z.

You must obtain the same value for z – otherwise the 

lines are skew.

b A point P on the line 

r = (–1 + λ)i + (1 + λ)j + (–1 + λ)k

 has  coordinates 

(–1 + λ, 1 + λ, –1 + λ).

–1 + λ = 1 + λ = –1 + λ

⇒ 1 = –1 (a contradiction!)

 So, the lines do not intersect.

The coeffi cients of  the base vectors in the vector 

equation of  a line give the coordinates of  a general 

point on the line.

Substitute these coordinates into the equation of  the 

second line and solve. 

As the fi rst two equations are inconsistent, you have 

skew lines.

Intersection of two planes

The intersection of  two non-parallel planes is a straight line.

P

Q

B

A

In the diagram, the line AB represents the intersection of  the planes 

P and Q.

The next example shows you how to obtain the equations of  the 

line of  intersection of  two planes in the form x x

u

y y

u

z z

u
= =1

1

1

2

1

3
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Example 

Determine, in the form 1 1 1

1 2 3

x x y y z z

u u u

  
  , the equations of  the line 

of  intersection of  the planes 2x – y + z = 1 and x + 2y – z = 0.

Hence, state the coordinates of  a point on this line and the components 

of  a vector parallel to the line of  intersection.

Answer

2 1

2 0

1

3

3 1
x y z

x y z

y

x y

x

   


   
  

 

Eliminate z from the two equations 

and solve for x.

2 1

2 0

2

5

5 2
x y z

x y z

z

x z

x

   


   
  

 

Eliminate y from the two equations 

and solve for x.

Therefore, 0 1 2

1 3 5

x y z  

 
 

So, (0, 1, 2) is a point on the line 

  1

3

5

 
 
 
 
 

a vector parallel to the line.

Write down the equations obtained 

in the form 
x x

u

y y

u

z z

u

− − −= =1

1

1

2

1

3

(x
1
, y

1
, z

1 
) is a point on the line and 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 a vector parallel to the line.

You could also use a 

GDC to help solve this 

problem.

If you select different pairs of equations you may get a solution that looks 

different but that is equivalent to this one. For example, the GDC solution 

shown here gives you the point 
2

5

1

5

0
⎛
⎝
⎜

⎞
⎠
⎟  and the vector 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

1

5

3

5

1

As 

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= −
⎛

⎝

⎜
⎜⎜

1

5

3

5

1

1

5

1

3

5

 and 

2

5

1

5

0

0

1

2

2

5

1

3

5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
 both solutions are 

equivalent in the sense that each pair point and vector dene 

the same line.
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Exercise 11Q

1 Find, if  possible, the coordinates of  the point of  intersection of  

the following pairs of  lines.

a 
x

y z
2

1= − =  and x
y

z=
+

= −
4

3
3

b r = (5 + 2λ)i + (4 + λ)j + (5 – 3λ)k and x = y = z + 1

2 Determine, in the form 
x x

u

y y

u

z z

u
= =

1

1

1

2

1

3

, equations of  

the line of  intersection of  the planes x –3y + z = 2 and 

x + y – 2z = 1.

EXAM-STYLE QUESTION

3 Consider the plane with equation 3x – y+ z = 3 and the line 

given by the parametric equations

   3 2 2 1 1x k y k z k          

 Given that the line is perpendicular to the plane, fi nd

a the value of  k

b the coordinates of  the point of  intersection of  the line 

and the plane.

4 Consider the lines 

L
1
: y = 2x + 2 and z = 3 – x and L

x y z
2

1

3

1

6

1

3
: = =

a Show that the lines L
1
 and L

2
 are parallel.

b Find the Cartesian equation of  the plane defi ned by the lines 

L
1
 and L

2

5 Show that the plane with Cartesian equation x + y + 3z = 1 

contains the line defi ned by the equations x = 4 – y and z = –1.

6 Let π be the plane with equation 2x + 7y + 13z =19. 

Consider the family of  lines L
a
 defi ned by the equations 

x
y

a

z
= =

+( ) ( )3 2

2
, a ≠ 0

a Find, if  possible, the coordinates of  the point of  intersection, 

in terms of  a, of  the line L
a
 with the plane.

b Write down the value of  a for which the line is parallel to π

c For the value of  a found in part b, calculate the distance 

between L
a
 and π
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Intersection of three planes

Investigation – intersection of three planes

Use a graph plotting program to investigate the intersection of three 

planes, π
i
, with equation ax

i
+ by

i
 + cz

i
 + d = 0, i = 1, 2 and 3.

x

y

z

0

–4 –4
–2

0
2

4

–4 –2 0 2 4

–2

0

2

4

Explore different values for the coef cients and investigate:

 Under which conditions is the intersection of three planes a point, a 

line, a plane or the empty set? 

 How many different cases can you identify? 

 How can you use the coef cients of the Cartesian equations 

of the planes to identify each case?

In the investigation, you should have discovered that 

the intersection of  three planes can be an empty set, 

a point, a line or a plane. To determine the intersection, 

solve a 3 × 3 system of  equations and/or look at the 

directions of  the normal vectors to the planes.

Example 

Consider the planes defi ned by the equations 

x + y + 3z = 5, 

x + 2y + 2z = 3 and 

4x + y –3z = 2.

Show that the three planes intersect at a point and fi nd its 

coordinates.

Answer

x y z

x y z

x z

x y z

y z

z

+ + =

− + + =

+ − =

⎧

⎨
⎪

⎪
⇒

+ + =

+ =

− − = −

3 5

2 2 3

4 3 2

3 5

3 5 8

3 15 188

⎧

⎨
⎪

⎪

Use the 1st equation to 

eliminate x from the 2nd and 

3rd equations.

Solving linear 

equations in three 

variables is covered in 

Chapter 3.

{ Continued on next page

The line of intersection

is the solution

[ One possible arrangement of three 

planes.
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x y z

y z

z

x y z

y z

z

+ + =

+ =

− = −

⎧

⎨
⎪

⎩
⎪

⇒

+ + =

+ =

=

⎧

⎨
⎪

⎩
⎪

3 5

3 5 8

10 10

3 5

3 5 8

1

x y z

y

z

x y z

y

z

+ + =

+ =

=

⎧

⎨
⎪

⎩
⎪

⇒

+ + =

=

=

⎧

⎨
⎪

⎩
⎪

3 5

3 5 8

1

3 5

1

1

x

y

z

x

y

z

+ + =

=

=

⎧

⎨
⎪

⎩
⎪

⇒

=

=

=

⎧

⎨
⎪

⎩
⎪

1 3 5

1

1

1

1

1

Therefore, the system has just one 

solution.

The intersection point is (1, 1, 1).

Use the 2nd equation to 

eliminate y from the 3rd 

equation and then solve for z.

Substitute the value of  z into 

the 2nd equation and solve 

for y.

Finally, substitute the values 

of  y and z into the 1st 

equation and solve for x.

The solution of  the system 

gives the coordinates of  the 

point of  intersection of  the 

three planes.

Example 

Show that the intersection of  these planes is a straight line.

π
1 
: 3x + 2y + z = 1

π
2 
: 7x + 4y + 5z = 3

π
3 
: 5x + 3y + 3z = 2

Find a vector equation of  the line of  intersection.

Answer

3 2 1

7 4 5 3

5 3 3 2

3 2 1

3 1

3 1

x y z

x y z

x y z

x y z

x z

x z

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

⇒

+ + =

+ =

+ =

⎧

⎨
⎪⎪

⎩
⎪

⇒
+ + =

+ =

⎧
⎨
⎩

3 2 1

3 1

x y z

x z

Let z = λ

Then x = 1 – 3λ and y = 4λ – 1

Therefore, 

1 3

1 4

0 1



   
   

     
   
   

r

Consider the system formed by the 

three equations of  the planes.

Use the 1st equation to eliminate y 

from the 2nd and 3rd equations. The 

2nd and 3rd equation are the same, 

so the intersection is defi ned by the 

fi rst two equations.

Make one of  the variables equal to a 

parameter, e.g. λ. Express the other 

two variables in terms of  λ

Write the equation of  the line in the 

form r = a + λu

You can use a GDC to 

solve this problem or 

con rm your answer.

You can use a GDC to 

solve this problem or 

con rm your answer.
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Example 

Show that the intersection of  these planes is the empty set.

π
1 
: 3x + 2y + z = 1 

π
2 
: x + y – z = 3

π
3 
: 5x + 3y + 3z = 2

Does this mean that the three planes are parallel? Explain.

Answer

3 2 1

3

5 3 3 2

3

4 3 4

4 3 1

x y z

x y z

x y z

x y z

x y

x y

+ + =

+ − =

+ + =

⎧

⎨
⎪

⎩
⎪

⇒

+ − =

+ =

− − = −

⎧⎧

⎨
⎪

⎩
⎪

⇒

+ − =

+ =

=

⎧

⎨
⎪

⎩
⎪

x y z

x y

3

4 3 4

30

Therefore, the planes do not all intersect.

The planes are not all parallel as their 

normal vectors are not parallel.

Consider the system formed by the 

three equations of  the planes.

Use the 1st equation to eliminate z 

from the 2nd and 3rd equations.

If  you add the 2nd and 3rd 

equations, you can see that they 

are inconsistent.

Exercise 11R

1 Find the coordinates of  the point of  intersection of  the planes 

defi ned by the equations 5x + y + 2z = 3, x + y + z = 3 and 

4x + 2y + 2z = 5.

2 Show that these planes intersect in a straight line.

 2x + y + z = 1, 3x + y + 2z = 3, 4x + y + 3z = 5

 Hence, fi nd a vector equation of  the line of  intersection.

3 Show that the planes defi ned by these equations have no common 

point.

 x + y + z = 1, x – y + z = 3, 3x + y + 3z =1 

4 Consider this system of  linear equations in x, y and z

x y z

ax y z

x by cz

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

0

0

0

, where a, b and c are real parameters.

a Each of  the equations in the system defi nes a plane. Show that 

the planes always have at least one point in common.

b Under which condition is the intersection of  the planes a 

straight line?

5 Identify the relative position of  the three planes defi ned by the 

equations

π
1
: x + 2y  – 2z = 5, π

2
: 3x – 6y +3z = 2 and π

3
: x – 2y + z = 7.

Here, you can simply 

use a GDC to con rm 

your answer. To 

answer the second 

part of the question, 

you could use a 

GDC and show that 

each pair of planes 

intersects in a line.

Why are symbolic 

representations of 

three-dimensional 

objects easier to 

deal with than visual 

representations? what 

does this tell us about 

our knowledge of 

mathematics in other 

dimensions?
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EXAM-STYLE QUESTION

6 Consider the planes defi ned by the equations x + y + z = 2, 

2x – y + z = –1 and 3x – y + kz = 4, where k is a real number.

a If  k = −3, fi nd the coordinates of  the point of  intersection of  

the three planes.

b Find the value of  k for which the three planes do not have any 

common point.

7 Prove these properties:

a Two planes are either parallel or they intersect in a line.

b A line is either parallel to a plane, intersects it at a single 

point, or is 

contained in the plane.

c Two lines perpendicular to the same plane are parallel to each 

other.

d Two planes perpendicular to the same line are parallel to each 

other.

Investigation – coe  cient patterns

Consider the system 

a a a a

a a

1 2 3 4

5 6 7 8

9 10 11 12

x y z

x y a z a

a x a y a z a

+ + =

+ + =

+ + =

⎧

⎨
⎪

⎩
⎪

Use a GDC to study the solutions of the system when

a a
1
, a

2
,..., a

12
are consecutive numbers

b a
1
, a

2
,..., a

12
 are consecutive even numbers.

In each case, explore the geometric meaning of the pattern found.

. Modeling and problem solving

Vector geometry can be used to model situations that involve the 

position and movement of  particles. Before exploring a range of  

applications, you need to distinguish the scalar and vector quantities 

related to movement.

●  Distance is a scalar quantity. Displacement is a vector quantity.

● Speed is a scalar quantity that considers only the magnitude. 

Velocity is a vector quantity that must consider both magnitude 

and direction.

● Acceleration is a ‘change in velocity’. This change can be in the 

magnitude (speed) of  the velocity or in the direction of  the 

velocity.

Vector equations of  lines provide a method for determining the 

position of  an object when the parameter chosen is time, as shown 

in the next example.
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Example 

The diagram shows a boat in danger 

at the point O(0, 0) and the paths of  

two rescue boats, Bluespeed and 

Slowmotion, as they depart from the 

positions A(10, 5) and B(−5, −2) 

respectively.

Bluespeed moves at a speed of  

15 km h−1 and Slowmotion moves at a 

speed of  8 km h−1

a Find an equation for the position 

of  each boat t hours after departing 

from A and B respectively.

b Hence, determine how long it takes for 

each boat to reach the boat in danger.

Answers

a Bluespeed moves in the direction of  AO at a speed of  

15 km h−1. So, its velocity vector is

v1 =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

6 5

3 5
 and a vector equation for its movement 

is r
10 6 5

,  0
5 3 5

t t
  

         

Slowmotion moves in the direction of  BO at a speed of  

8 km h−1. So, its velocity vector is

Bluespeed:

Find the vector with magnitude 15 in the 

direction of  AO = 
10

5

 
 
 

 and 

use r = a + t   v
1  
, where a = AO

v2 =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

40 29

29

16 29

29

 and a vector equation for its 

movement is r = 
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ ≥
5

2

40 29

29

16 29

29

0t t

Slowmotion:

Find the vector with magnitude 8 in the 

direction of BO = 
5

2

⎛

⎝
⎜

⎞

⎠
⎟  and use 

r = b + t   v
2 
, where b = BO

In both equations, parameter t represents 

the time, in hours, after departure to the 

rescue site.

b
0 10 6 5 5

0 5 33 5
t t
    

              

Bluespeed takes approximately 44 minutes and 43 

seconds to reach the rescue site.

40 29

0 5 2929

0 2 816 29

29

t t

 
 

                
 
 

Slowmotion takes approximately 40 minutes and 23 

seconds to reach the rescue site.

Using the vector equations obtained in 

part a, substitute the position of  the boat 

in danger for r and solve for t.

Convert the time in hours into minutes 

and seconds to obtain appropriate 

answers.

N

E

S

W

5–5

4

2

–4

–2

0

6

10

B

A

Slowmotion

Bluespeed

x(km)

y(km)

You can use your GDC to do this 

conversion.
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Example 

The diagram shows the model of  a building with dimensions 

19 m by 10 m by 12 m. All the fl oors are 2 m high.

Anne departs from a position A(4, 3, 4) and moves toward 

the elevator whose path has equation x = 10 and y = 5. 

The elevator moves along the intersection of  these 

two planes.

a How many seconds does it take Anne to reach the 

elevator if  she walks at a speed of  1.5 metres/second?

 Anne takes the elevator down to the ground fl oor and 

then walks in the direction of  the vector 

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1

0

 towards a door.

b Given that Anne walks at a speed of  1.6 metres/second, determine the coordinates of  the 

location of  the door and the time it takes her to get there. State any assumptions.

Answers

a Anne’s location: A(4, 3, 4)

Elevator’s location: E(10, 5, 4)

 AE = 6 2 0 2 102 2 2+ + =  metres

t = =2 10

1 5
4 22 seconds (to 3 sf)

So, Anne takes 4.22 seconds to get to the 

elevator.

To determine the coordinates of  the location of  the 

elevator, use the equation of  the path of  the elevator 

and the z-coordinate of  point A (i.e. assume that the 

movement takes place in the plane z = 4).

Use AE  = |AE| 

= x x y y z z2 1

2

2 1

2

2 1

2

( ) ( ) ( )+ − + −

Use t = distance

speed

b In the plane x o y, an equation of  Anne’s 

movement is: 

r = +⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

10

5

0 8 2

0 8 2
t

0 5 0 8 2

4 42
5

0 8 2

= −

⇒ = = . ( )

t

t to 3 sf

⇒ = ⎛

⎝
⎜

⎞

⎠
⎟r

5

0

So, the door is located at (5, 0, 0) and Anne 

takes 4.42 seconds to get there.

You assumed that the locations of  objects 

and people were represented by points and 

the fl oors were represented by planes.

Assume that the ground fl oor lies in the plane z = 0 

and reduce the problem to a 2-D situation. Hence, the 

location of  the elevator is (10, 5) and Anne’s velocity 

has a direction of  
⎛

⎝
⎜

⎞

⎠
⎟

1

1
 and magnitude 1.6.

Anne reaches the door when either x = 0 or y = 0. 

By inspection, x = 0 gives a negative y-value. So, use 

y = 0 to obtain the value of  t and substitute it in the 

equation to obtain the coordinates of  the door.

0

12

x

z

y

11

4
4

7
7 10

10
13

1619

Chapter 11 615



Exercise 11S

1 Boat A’s position is given by the parametric equations x = 3 − t, 

y = 2t − 4 where position is in km and time in hours. Boat B’s 

position is given by x = 4 − 3t, y = 3 − 2t

a Find the initial position of  each boat.

b Find the velocity vector of  each boat.

c What is the angle between the paths of  the boats?

d At what time are the boats closest to each other?

EXAM-STYLE QUESTION

2 The position vector at time t of  a particle P moving in 3-D space 

is given by

OP  = 5 10 20 20 30 10 0+ + − + − ≥( ) ( ) ( )t t t ti j k, .

a Find the coordinates of  P when t = 0.

b Show that P moves along the line L with Cartesian equations
x y z

= =
+5

1

20

2

10

3

 c i  Find the value of  t when P lies on the plane with equation 

x + y + z = 55.

  ii State the coordinates of  P at this time.

  iii  Hence, fi nd the total distance travelled by P before it meets 

the plane.

The position vector at time t of  another particle, Q, is 

given by OQ = 

2

1 2

1

0

2

2

t

t

t

t−
+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

≥ .

 d i  Find the value of  t for which the distance between the 

particles P and Q is a minimum.

  ii Find the coordinates of  P and Q at this time.

 e  Let a, b and c be the position vectors of  Q at times t = 0, t = 1 

and t = 2 respectively.

  i Show that a – b and b – c are non-collinear.

  ii What is the geometric meaning of  part i?

Why might it be argued 

that vector equations 

of lines are superior to 

Cartesian ones?
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3 The diagram shows the unit cube OABCDEFG.

Let O be the origin, OA the x-axis, OC the y-axis and OD the z-axis.

a Find the position vectors OP , OQ  and OR in component form.

b Find the Cartesian equation of  the plane PQR.

 Let S, T and U be the midpoints of  ED, AE and AB 

respectively.  

c Show that PQRSTU is a regular hexagon and fi nd its area.

d Show that the line OF is perpendicular to the plane PQR.

e Determine the coordinates of  the point I where the line OF 

meets the plane PQR.

f Hence, fi nd the distance from F to the hexagon PQRSTU.

Explore further vectors

In this chapter, we have looked at two approaches to the study of vectors – 

geometric and analytic. An alternative is the axiomatic approach, where 

no attempt is made to describe the nature of vectors or the algebraic 

operations on them. Instead, vectors and operations are seen as unde ned 

concepts of which we know nothing except that they satisfy a set of axioms. 

Such a system, with appropriate axioms, is called a linear space. The 

axiomatic point of view is mathematically the most satisfactory as it is 

independent of particular geometric representations, systems of coordinates 

and dimensions. Examples of linear spaces occur in many different branches 

of mathematics.

1 Examine linear spaces and the axioms that de ne them.

2 Explore the inner product and its relationship to the distance between 

points and the way angles are measured.

3 Explore alternative de nitions of distance in the plane and the 

consequences on the geometry of shapes.

Review exercise

1 Given u = 
3

4

⎛

⎝
⎜

⎞

⎠
⎟ and v = 

−⎛

⎝
⎜

⎞

⎠
⎟

1

5
, fi nd

a 3u – 2v b |u|, |v|, and |u + v|

2 Express u = 3i – j + k as a linear combination of  a = i + j, 

b = i + k and c = 2i – j – k

3 Let a = 

5

4

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a Find the unit vector in the direction of  a

b Find the vectors with magnitude 5 collinear with a

4 Consider the vector u = cos α cosβi + sinα cosβj + sin βk

 Show that u is a unit vector.

The edges of the unit 

cube have length 1 unit.

x y

z

B

C

F

G

O

E

A

D

✗

What is a distance? 

can we de ne distance 

between two points in 

different ways?

An axiom is a 

statement which is 

assumed to be true 

without need for 

proof, used as a basis 

for developing an 

argument.
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EXAM-STYLE QUESTIONS

5 Let u = i + tanα j and v = tan βi + j, where 0
4

< <a b,
p

 Let γ  be the angle between the vectors u and v

 Show that 


   
2

6 Let θ be the angle between the unit vectors a and b, 

where 0 ≤ θ ≤ π

a Express |a – b|2 and |a + b|2 in terms of  θ

b Hence, determine the exact value of  sin θ for which 

|a + b| = 2|a – b|

7 Write down, in vector and parametric form, equations of  the 

plane passing through the point A and parallel to the vectors 

p and q when:

a A(2, 3, 4), p = 2i − 3j + 2k and q = j − 2k

b A(1, 0, −2), p = −2i + k and q = −j

EXAM-STYLE QUESTION

8 The vector equations of  the lines L
1
 and L

2
 are given by:

1 1

2 2

5 3
:

1 2

2 4
:

2 1

L

L





  
  

   

   
   
   

 

 

r

r

 The lines intersect at the point P. Find the coordinates of  P.

Review exercise

EXAM-STYLE QUESTIONS

1 Find the size of  the angle between the vectors u = 

1

1

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 and v = 

2

0

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Give your answer to the nearest degree.

2 Write down vector, parametric and Cartesian equations of  

the planes containing the points A, B and C.

a A(1, 1, 0), B(−1, 1, 2) and C(0, 1, −1)

b A(−1, 1, 1), B(−2, −1, 2) and C(0, 1, −1)

3 Write down, in scalar product form, the equation of  the plane 

passing through the point with position vector a and with 

normal vector n when:

a a = 2i − 3j + 4k and n = i + j − 2k

b a = i + 2k and n = i – j
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4 Find a Cartesian equation of  the plane that:

a contains the point A(2, −3, 4) and is perpendicular to the 

position vector of  A

b contains the points A(6, 0, 0), B(0, 0, −3) and C(3, 6, 0)

c contains the points A(3, 2, −1) and B(4, 4, 0) and is 

perpendicular to the plane 2x + 4y – 4z =3

d contains the points A(2, −1, −3) and B(4, −3, 2) and is parallel 

to the x-axis

e passes through the point (3, 4, 2) and is perpendicular to the 

x-axis

f passes through the point (3, 2, 1) and is perpendicular to each 

of  the planes 2x + 3y – z = 5 and 3x + 3z = 2 

g passes through the point (3, 1, 1) and contains the line 

of  intersection of  the planes x + y + 5z = 0 and 

2x + 3y + 12z = 0

EXAM-STYLE QUESTION

5 Calculate the acute angle between the lines with equations

 r = i + j + α (2i − j − k) 

and r = k + β (i + j + 2k).

6 The vector equations of  the lines L
1
 and L

2
 are given by:

L
1
: r = i + j + k + λ (i + 2j + 3k)

L
2
: r = i + 4j + 5k + μ (2i + j + 2k)

Show that the lines are concurrent. 

Hence, determine a vector equation of  the plane that contains 

these lines.

7 Solve the system 

x y z

x y z

x y z

+ + =

+ − =

− + =

⎧

⎨
⎪

⎩
⎪

3

2 2 0

3 2 5 23

and explain the geometric meaning of  your answer.

EXAM-STYLE QUESTION

8 Consider the following system of  equations where a and b are 

constants.

3x + y + z = 1, 

x + y − z = 4 

and 2x + y + bz = a

a Solve the system in terms of  a and b

b Hence, write down the values of  a and b for which this system 

of  equations has a non-unique solution and state its geometric 

meaning.

Concurrent lines 

are lines that all pass 

through a certain 

point.
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CHAPTER  SUMMARY

Geometric vectors and basic operations

● A vector is defi ned by direction and magnitude.

● In mathematics, AB usually represents either the position 

vector of  B relative to A or the displacement from A to B.

A is called the initial point and B the terminal point

● When we work with vectors you need to distinguish the vector 

from its magnitude, which is a non-negative scalar.

The magnitude of  AB is simply the length AB and is denoted 

by |AB|. If  AB = a then you can represent its magnitude by 

|a| or simply by a

● Special case

The vector AA has no defi ned direction and is represented by 

a single point A. This vector is called a null vector or zero vector

and it is the only vector that has a magnitude of  zero.

● The sum of  two vectors is determined by the parallelogram law: 

BA + BC = BD where ABCD is a parallelogram.

● This defi nition is called the triangle law and has the advantage 

that it can easily be applied to the addition of  several vectors.

● Properties of vector addition

Commutative property: u + v = v + u

Associative property: (u + v) + w = u + (v + w)

Additive identity property (the zero vector): u + 0 = 0 + u = u

Additive inverse property (the opposite vector):

u + (–u) = (–u) + u = 0

● The difference of  two vectors u and v is the vector obtained 

when you add u to the opposite of  v

● The product of  a vector u and a positive scalar k is another 

vector v with the same direction as u and magnitude 

|v| = k|u|

● In general, the product of  a vector u and a negative scalar k is 

another vector v with the opposite direction to u and magnitude 

 |v| = |k||u| = −|k u|.

● Properties of scalar multiplication

Commutative property: v = v 

Associative property:  (v) = () v

Distributive property (1):  (u + v) = u + v

Distributive property (2): ( +) v = v + v

Multiplicative identity property: 1v = v

Property of  zero: 0v = 0 and α 0 = 0

Continued on next page
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Vector algebra

● In 2-D space, i = 
1

0

⎛

⎝
⎜

⎞

⎠
⎟ , j = 

0

1

⎛

⎝
⎜

⎞

⎠
⎟  and O(0, 0).

● In 3-D space, i =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

0

0

, j =
⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

0

1

0

 and k =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0

0

1

The origin O has coordinates (0, 0, 0)

● Given two vectors in the plane, u = 
u

u

1

2

⎛
⎜

⎞
⎟  and v = 

v

v

1

2

⎛
⎜

⎞
⎟ , and a 

real number : 

■ The sum of  the two vectors u and v is defi ned by 

u + v = 
u

u

v

v

u v

u v

1

2

1

2

1 1

2 2

+ =
+

+

⎛
⎜

⎞
⎟

⎛
⎜

⎞
⎟

⎛
⎜

⎞
⎟

■ The product of  a scalar λ and a vector u is defi ned 

by λu = 1

2

u

u




 
 
 

■ The zero vector or null vector is 0 = 
 
 
 

0

0

■ The opposite vector of  u =  
 
 

1

2

u

u
 is – u =  

 
 

1

2

u

u

● If  v =
 
 
 

1

2

v

v
then the magnitude of v is given by 

v = |v| = v v1

2

2

2+

● If  v
 
 
 

 1

2

v

v
, the unit vector in the direction of  a non-zero 

vector v is 
1

u
v

v =
+

+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

v

v v

v

v v

1

1

2

2

2

2

1

2

2

2

● Two vectors 
 

  
 

1

2

u

u
u  and v = 

 
 
 

1

2

v

v
 are collinear if  u = kv or 

v = ku for some scalar k

If k > 0, u and v have the same direction; 

if k < 0, u and v have opposite directions.

Continued on next page
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Vectors, points and equations of lines

● Three points A, B and C in the plane are collinear when AB

and AC are collinear vectors, that is when AC = kAB  for 

some scalar k

● Two points A(x
1
, y

1
, z

1
) and B(x

2
, y

2
, z

2
), have displacement vector

AB  = 

 
 
 
 
 

x

y

z

 where x = x 
2
 – x 

1
, y = y 

2
 – y 

1
 and z = z 

2
 – z 

1

You can also assign a position vector to each point 

OA = 

 
 
 
 
 

1

1

1

x

y

z

 and OB = 

 
 
 
 
 

2

2

2

x

y

z

● The magnitude of  a vector v = 

 
 
 
 
 

v

v

v

1

2

3

 is given by v = |v| = v v v1

2

2

2

3

2+ +

● Given two points A(x
1
, y

1
, z

1
) and B(x

2
, y

2
, z

2
), the distance 

between A and B is given by the magnitude of  the vector AB

AB = |AB | = x x y y z z2 1

2

2 1

2

2 1

2( ) + −( ) + −( )
● The unit vector in the direction of  a non-zero vector v is 

u = 
1

v

v = 

1

2 2 2

1 2 3

2

2 2 2

1 2 3

3

2 2 2

1 2 3

v

v v v

v

v v v

v

v v v

 
 
  
 
 
 

  
 
 
   

● Two vectors u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and v = 

v

v

v

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 are collinear if  u = kv

or v = ku for some scalar k. If  k > 0, u and v have the same 

direction; if  k < 0, u and v have opposite directions.

● In general, the coordinates of  the midpoint M of  a line 

segment [AB], with A(x
1
, y

1
, z

1
) and B(x

2
, y

2
, z

2
), are given by 

x x y y z z1 2 1 2 1 2

2 2 2

+ + +⎛
⎝
⎜

⎞
⎠
⎟, ,

Continued on next page
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● A point R is on the line (AB) when AR = λAB  for some real

 value of  λ. This is called a vector equation of the line AB.

r, the point A has position 

vector a AB  = u, the direction vector, then the vector 

equation AR = λAB  can be re-written as r = a + λu

● If  the line (AB) lies in the plane x ⋅ y, then you can represent 

the vector in component form r = 
x

y

⎛

⎝
⎜

⎞

⎠
⎟ , a = 

x

y

1

1

⎛

⎝
⎜

⎞

⎠
⎟  and 

u = 
u

u

1

2

⎛

⎝
⎜

⎞

⎠
⎟  This gives a pair of  parametric equations

 x = x
1
 + λu

1
 and y = y

1
 + λu

2

 or 1 1

1 2

x x y y

u u


 


 If both components of  the vector are non-zero, eliminate 

the parameter λ to obtain a Cartesian equation of  the 

line (AB):

y y x x
u

u
− = −( )1

2

1

1

This can be reduced to the form y = mx + c where m = 
u

u

2

1

is the gradient of  the line and 2
1 1

1

u

u
c y x  is the 

y-intercept.

● If  the line (AB) lies in 3-D space, r = 

x

y

z

⎛
⎜
⎜
⎜

⎞
⎟
⎟
⎟

, a = 

x

y

z

1

1

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 and 

u = 

u

u

u

1

2

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, the vector equation r = a + λu can be transformed 

into three parametric equations

x = x
1
 + λu

1
, y = y

1
 + λu

2
 and z = z

1
 + λu

3 

where
  

 
1 1 1

1 2 3

x x y y z z

u u u


If all the components of  the vector are non-zero, eliminate 

the parameter λ to obtain Cartesian equations of  the 

line (AB)

x x

u

y y

u

z z

u
= =1

1

1

2

1

3

Continued on next page
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Scalar product

● Given two non-zero vectors u and v, u v = |u||v| cos θ, 

where θ is the angle betweenu and v. 

● Here are some important consequences of  the geometric 

defi nition of  the scalar product.

 ■ The scalar product of  two vectors is always a number.

 ■  The defi nition of  scalar product does not depend on the 

dimensions of  the space.

 ■ u v = 0 if  and only if  u = , v =  or u and v are orthogonal

 ■ u v = ±|u||v| if  u and v are parallel.

 ■ u u = |u|2

 ■ u v > 0 when q is acute and u v < 0 when θ is obtuse.

 ■ u v = v u

 ■ u (v + w) = u v + u w

 ■ (λ u) v = λ (u v )

● Given two vectors in the plane, u = u
1
i + u

2
j and v = v

1
i + v

2
j,

u v = u
1
v

1
+ u

2
v

2

In 3-D space, given two vectors, u = u
1
i + u

2
j + u

3
k and 

v = v
1
i + v

2
j + v

3
k,

u v = u
1
v

1 
+ u

2
v

2
+ u

3
v

3 

● cosθ = 
u v

u v
, where θ is the angle between the vectorsu and v

Vector product

● Given u = u
1
i + u

2
j + u

3
k and v = v

1
i + v

2
j + v

3
k, 

the vector (cross) product of  u and v is the vector given by

u × v = ( u
2
v

3
 – u

3
v

2
 )i + ( u

3
v

1
 – u

1
v

3
 ) j + ( u

1
v

2
 – u

2
v

1
 )k

● u × v = (|u||v| sin θ ) n̂where n̂ is a unit vector orthogonal 

(normal) to both u and v whose direction is given by the 

right-hand rule illustrated in the diagram.

● Given a parallelogram ABCD, if  u = AB  = DC and 

v = AD = BC , the area of  ABCD is numerically 

equal to |u × v|

 The area of  triangle ABD equals 
2
|u × v|

● Summary of  the algebraic properties of  the vector 

(cross) product

■ u × v = –v × u

■ u × (v + w) = u × v + u × w

■ (u × v) · u =  (u × v is orthogonal to u)

i v

u × v

u

Continued on next page
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■ (u × v) · v =  (u × v is orthogonal to v)

■ u × v =  if  and only if  u and v are collinear.

■ u × u = 

■ (λ u) × v = λ (u × v)

■ |u × v| = |u||v| sin θ, where θ is the angle between u and v

Vectors and equations of planes

● In this case, any point on the plane with position vector r

satisfi es the vector equation of a plane

  r = a + α u + β v
● If  the parameters α and β are eliminated, an equation of  the 

form ax + by + cz = d is obtained. 

 This equation is called a Cartesian equation of the plane

● a (x – x
1
) + b (y – y

1
) + c (z – z

1
) = 0 

or ax + by + cz = d where d = ax
1
 + by

1
 + cz

1

 Equation of  the plane (using the normal vector)

x x

y y

z z

a

b

c

−
−
−

⋅ =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1

1

0 this can also be written as 

x

y

z

a

b

c

x

y

z

a

b

c

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⋅ = ⋅
1

1

1

or r n = a n

● In the plane, given two lines with gradients m
1
 and m

2
, 

we can calculate the angle θ between them using the formula 

θ = |β – α| where α = arctan m
1
 and β = arctan m

2

● The angle θ between a line parallel to u and a plane with 

normal vector n is given by 

q =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟arcsin

u n

u n

, 0 ≤ θ ≤ 90°

● The angle θ between a plane with normal vector m and a 

plane with normal vector n is equal to the angle between the 

lines in the direction of  the vectors m and n. It is given by


 
 
 
 

 arccos
m n

m n

, 0 ≤ θ ≤ 90°

● The distance from a point to a plane is measured 

along the perpendicular to the plane that contains the point.
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626 Theory of knowledge: From inspired ideas to formal proof 

Theory of knowledge

 “Nothing is more impressive than the fact that Mathematics 

withdrew increasingly into upper regions of  ever greater extremes of  

abstract thought, it returned to earth with a corresponding growth of  

importance for analysis of  concrete fact…” 

Alfred Whitehead, English mathematician (181–1947)

Communicating mathematics
Until the mid-16th century, mathematics 

was created and developed by individuals 

or small groups with a prominent leader. 

They shared their work in handwritten 

manuscripts, or orally. 

As printing presses became more 

widespread, in the 17th century 

mathematicians began to publish their work 

in printed form. However, printing was 

expensive and there was no copyright law 

and little respect for authors’ rights. Most 

mathematicians still preferred to 

communicate and share their ideas with 

each other through letters.

Scienti c societies and academies began 

to  ourish, promoting the exchange of ideas 

Abstract nature 
and applications of 
mathematics
Any mathematical object (such as a vector) 

is abstract by nature and the relations 

between them are built on these 

abstractions, even if sometimes inspired by 

physical situations. For example, you have 

seen in this chapter that the abstract 

algebraic qualities of vectors are equivalent 

to physical geometric properties.

Mathematicians are professional 

‘reasoners’ who add new methods and 

extend results that pass from generation to 

generation. Each adds a ‘story’ to the 

mathematical structure. Results are 

accepted when a formal proof is given and 

all theories must be constructed on a solid 

foundation of proof.

To a non-mathematician, it may seem 

paradoxical that such an abstract body of 

knowledge and thought can have so many 

applications to completely distinct areas of 

the physical world and that mathematics 

has such an in uence on our cultures. 

 Where does this power of mathematics 

come from? Does it come from its 

language? From its methods of proof? 

Or simply from its abstract nature? 

 How can an abstract area of knowledge 

have so many applications?

 Are we discovering the mathematics in 

the world? Or are we creating 

mathematics to explain the world?

{ Mathematics in the 

natural world – the 

cuboid structure of 

salt (NaCl) crystals
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Applying mathematics

The 17th century has been called the 

century of genius, and the 18th century the 

century of the ingenious. In the 18th 

century mathematics was seen much more 

as a tool to solve and understand physical 

problems than it had been before, and 

mechanics was the major interest. 

Although mathematicians of this period 

knew they needed to prove their results, 

their thinking was often loose and intuitive 

and most of them did not worry about limits  

of validity. As a result they made huge 

mathematical progress, but it was left to 

19th and 20th century mathematicians to 

strengthen the foundations and develop 

rigorous proofs.

 Investigate some of the major 

mathematical developments in the 

18th century.

 Were any of these proved rigorously by 

later mathematicians?

 How does the development of new 

mathematics sometimes make it easier 

to prove old mathematical 

theories?

and making it possible for mathematicians 

with similar areas of interest to contact 

each other directly. 

Until the 18th century universities only 

played a small role in mathematical 

research, as most of them were 

conservative and dogmatic and very slow 

to incorporate new knowledge.

 Investigate more about communication 

in mathematics in the 16th and 17th 

centuries.

 Which scienti c societies played a 

leading role? 

 Which main areas of mathematics were 

developed in this period?

similar interests. 





Swiss mathematician 

Leonhard Euler (1707–83) 

investigated the Königsberg 

bridge problem, using 

counting methods. Research 

this classic problem, and how 

Euler solved it.

c

als,

bal 

 a

h has

’.

n?

re published 

 quality?

[ The mathematical theories 

of Isaac Newton (1642–

1727) about ‘ attening’ at 

the Earth’s poles were 

later proved to be true by 

experiments with 

pendulums at different 

latitudes.

“ The French mathematician 

D’Alambert (1717–83) 

investigated the behavior of 

waves in vibrating strings, 

using differential 



Multiple 
 perspectives in 
mathematics

CHAPTER OBJECTIVES:

1.5 Modulus and argument of a complex number

1.6  Modulus–argument (polar) form; Euler form; the complex plane

1.7  Power of complex numbers; De Moivre’s theorem; nth roots of a complex number

12

Before you start
You should know how to:

1 Represent complex numbers in the 

Argand diagram. 

1 2 3 4–1–2–4 –3 IR

i IR

–1 + 2i

–2 – 2i

2 – i

3 + i

2

3

–1

–2

–3

1

0

2 Determine conjugate, opposite and 

reciprocal of  a complex number.

e.g., if  z = 1 − 2i then the conjugate of  z is 

z ∗ = 1 + 2i, the opposite of z is − z = − 1 + 2i 

and the reciprocal of  z is 
5 5z

= + i

3 Identify Re(z), Im(z) and |z| of  a 

given complex number z. e.g., 

If  z = 3 − 4i then Re(z) = 3, Im(z) = −4 

and z = + −( ) =3 4 52 2

4 Operations with complex numbers in 

algebraic form. e.g., if  z
1
 = 2 − i 

and z
2
 = 1 + 5i, z

1
 + 2z

2
 = 4 + 9i and 

z

z

1

2

2 2

2

1 5

2 1 5

1 5 1 5

2 1 5

1 5

3

26

=
+

=
( )( )

+( )( )

=
( )( )

+
= −

i

i

i i

i i

i i 11

26
i

Skills check

1 Represent the complex numbers in the 

Argand diagram: 

a 1 + 2i 

b −2i

c 1 − 3i

2 Given z = 5 − 4i, 

a write down z∗ and −z

b fi nd 
1

z
 in the form a + bi, a, b ∈ 

3 Given z = −3 + 4i, write down the 

values of

a Re(z) b Im(z) c |z|

4 Given that z
1
 = 1 − 2i and z

2
 = 3 + i, 

calculate:

a z
1
 + 2z

2

b 3z
1
z

2
 + z1

2

c 
z

z

1

2

This is covered in 

Chapter 3.
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Exploring the power of 
complex numbers 

Benoit B. Mandelbrot (1924–2010) was a French American 

mathematician. He employed an imaginative, independent 

approach in his work, applying mathematics to physics, fi nance 

and many other fi elds. He is best known for developing the fi eld 

of  fractal geometry, having coined the term in 1975 to refer to a 

class of  shapes whose uneven contours could mimic the 

irregularities found in nature. Other mathematicians had explored 

fractals before Mandelbrot, and had dismissed them as curious 

but unnatural. Mandelbrot sought to counteract this notion by 

showing that fractal geometry offers a systematic way of  

approaching phenomena found in nature – such as blood vessels, 

coastlines and galaxy clusters – that look more elaborate the more 

they are magnifi ed. Mandelbrot’s work was widely publicized 

through his writing and lectures, which were aimed at the general 

public as well as the academic community. 

Did you know that images can be compressed using fractal codes so that they 

 t any screen size without the loss of sharpness that occurs with conventional 

compression methods, such as jpeg and gif? The image of the Mandelbrot 

set above needs only 7 bytes using fractal data compression. It is 99.8% 

compression of a gif image that needs 35 kilobytes! Computer graphics owes 

its astronomical development in large part to fractal geometry.

[ The Mandelbrot set is made 

up of points plotted on a 

plane to form a fractal: an 

incredible shape in which 

each part is actually a 

miniature copy of the whole. 

The Mandelbrot set has 

become popular for both 

its aesthetic appeal and as 

an interesting case study of 

a complex structure arising 

from the application of 

simple iteration rules.

[ Benoit B. Mandelbrot 
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In this chapter you will investigate the complex plane 

from a geometrical perspective and discover advanced 

and powerful techniques that make complex numbers 

an important part of  modern mathematics with multiple 

applications in areas such as fl uid and aerodynamics.

. Complex numbers as vectors 

Until the end of  the 18th century complex numbers were

not fully understood, but the square root of  minus 

one was being used more and more. Numbers of  the 

form x+yi were in fairly common use by 

mathematicians, and it became common to 

represent them as points in the plane. In 1799, when 

Gauss published his fi rst proof  The Fundamental 

Theorem of Algebra, it became known that complex 

numbers (as solutions to algebraic equations) 

were numbers. In one sense all the historical 

discussion before Gauss was the prehistory of  

complex numbers. 

Since the Gauss proof, it is known that all complex 

numbers are of  the form x+yi, where x and y are real 

numbers. Therefore, you can use the xy-plane to display 

complex numbers and to explore further the 

algebra of  complex numbers, introduce a new system 

of  coordinates and interpret the meaning of  operations.

Look at this representation of  the complex plane, 

an Argand diagram:

Each complex number z = x + yi on the Argand diagram is uniquely 

represented by a point P(x, y) where x = Re(z) and y = Im(z) are real 

associate a position vector OP , you can think of  complex numbers 

as 2-D vectors!

Geometrical meaning of addition 
of complex numbers 

Caspar Wessel (1745–1818) 

worked on surveying, and as part 

of his work he was led to explore 

the geometrical signi cance of 

complex numbers. In 1799 he 

published a theory where he 

gave a geometrical concept of 

complex number, with length and 

direction – in another words, 

complex numbers were described 

as vectors!

Was the complex 

plane already 

there before it was 

used to represent 

complex numbers 

geometrically?

x

y

z = x + yi

P (x, y)

O

Investigation – the complex plane

Consider the complex numbers z
1
 = 2 + i and z

2
 = 3 + 2i. Represent them on the complex 

plane as the vectors u and v, respectively. Find z
1
 + z

2
. Draw the vector w that represents 

the complex number z
1
 + z

2
. What is the relation between w and u and v? 

Choose other pairs of complex numbers z
1 
and z

2
,  nd their sum and represent the three 

complex numbers by their position vectors. What do you observe? Prove your conjecture.
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From the investigation above you should have concluded that the 

product of  a complex number and a real number corresponds to 

scalar multiplication studied in Chapters 3 and 11. Therefore these 

properties hold

➔ ● k (gz) = (kg)z

● k (z
1
 + z

2
) = kz

1
 + kz

2

● (k + g)z = kz + gz

where k, g ∈  and z, z
1
, z

2
∈ 

From the investigation on the previous page you should have 

of  two vectors. In fact, it can be interpreted in two ways:

●  Consider the vectors that represent each of  the complex 

numbers z
1
 and z

2
 as position vectors, then use the 

parallelogram law to obtain the position vector of  their sum.

●  Consider the addition of  z
2
 as a transformation acting 

over z
1
, then z

1
 + z

2
 is just the image of  z

1
 under the translation 

defi ned by the vector associated to z
2
. In this case, the vector 

u associated to z
1
 acts as a position vector and the vector v

associated to z
2
 acts as a displacement vector. The triangle law 

then gives you the position vector w associated with z
1
 + z

2

In either case, the addition of  complex numbers is an addition 

of  vectors and these properties hold

➔ ● z
1
 + z

2 
= z

2
 + z

1 
(commutative property)

● (z
1
 + z

2
) + z

3
 = z

1 
+ (z

2
 + z

3
) (associative property)

● The null vector represents the complex number 0 = 0 + 0i. 

● If  z = a + bi the opposite of  z is −z = −a − bi; z and –z are 

represented by vectors with same magnitude and opposite 

directions.

● The magnitude of  the vector u associated with z = a + bi is 

called modulus of  z : z a b= +
2 2 . 

● The subtraction of  two complex numbers z
1
 and z

2
 is 

defi ned as the sum of  z
1
 with the opposite of  z

2
. 

x

y

v

u

w u + v

c + di

a + bi

(a + c)+(b + d)i

O

x

y

O

v

u

w = u + v

c + di

a + bi

(a + c)+(b + d)i

Investigation – multiplication by real numbers

Consider the complex number z = 1 + 2i. Represent z on the complex 

number plane as the vector u. Calculate in algebraic form 2z, 2.5z, 3z, −2z

and −4z. Draw the vectors that represent each of these complex numbers.

Choose other complex numbers z and multiply them by different real numbers. 

What do you observe? Prove your conjecture.
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Geometrically, the scalar multiplication corresponds to 

an enlargement with center at the origin and enlargement 

factor given by the real number. 

2z

z

w

w

1 2 3 4–1–2–3–4 x

y

2

3

–1

–2

–3

–4

4

1

O

Other transformations of complex numbers

Given a complex number z = x + iy, if  you plot it on the complex 

plane and then refl ect this point in the x-axis, you obtain another 

point that represents the conjugate of  z, z ∗ = x − iy. So, the 

conjugate corresponds to the image of  a transformation a ‘refl ection 

in the x-axis’ and as a result, the following properties hold

➔ ● (z ∗)∗ = z

● z ∈  ⇒ z∗ = z

● |z| = |z∗|

Some dynamic 

geometry software 

uses polar grids 

to visualise 

enlargements or 

rotations with center 

at the origin. You can 

also  nd them in a 

printable version on 

the internet.

Re(z)

z = x + iyz

y
|z|

Im(z)

O

z = x – iy

In Chapter 3, these 

properties were 

proven algebraically.

Investigation –  transformations of complex 
numbers

Consider the complex number z = a + bi. Choose different pairs of 

values for a and b and represent z geometrically by a point P.

1 Re ect each point P in the y-axis to obtain a point P′ and write 

down the corresponding complex number z ′. 

What do you observe? Prove your conjecture.

2 If you re ect P′ in the x-axis to obtain another point P′′, which 

complex number do you obtain? 

3 What if you re ect P  rst in the x-axis to obtain Q and then 

re ect Q in the y-axis to obtain Q′? Which complex number do 

you obtain? Prove your result.

4 How can you obtain P′′ from P using a single geometrical 

transformation? Describe it.

Look at properties of 

transformations in 

Chapter 14.

Re ections in circles: 

Investigate the 

role of inversion in 

solving challenging 

geometrical problems.
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From the investigation on the previous page, you should have 

concluded that the composition of  the refl ections on the two axes is 

simply a 180° rotation around the origin that maps the complex 

number z onto its opposite –z

As –z can be seen as the product of  −1 and z, this suggests that 

multiplication of  complex numbers may be related to rotations 

around the origin. 

Investigation – multiplication of complex numbers

Consider the complex number z = a + bi. Choose different pairs of 

values for a and b and represent z geometrically by a point P .

1 For each pair of values a and b, multiply the complex number z

by i to obtain z ′ and plot the corresponding point P′. 

What do you observe?

2 What if you multiply z by i? 

3 Investigate the effect on the position of P′ of the multiplication 

of z by 2i, 3i, −3i… and other purely imaginary numbers. Is there 

any relation between the geometrical representation of these 

numbers and their effect on the position of P′? State your conjecture.

From this investigation, you should have conjectured that 

multiplication of  complex numbers corresponds to a rotation and an 

enlargement whose scale factor depends on the modulus of  the 

complex number it is multipled by. To prove this conjecture you can 

look at complex numbers from a different perspective and introduce 

a new system of  coordinates that lets you deal with rotations easily. 

That’s the focus of  the next section.

. Complex plane and polar form

Any complex number z = x + iy occupies a position P in the plane 

specifi ed by its Cartesian coordinates (x, y). Another way of  

specifying the location of  P is to give its distance r from the origin 

and the angle θ its position vector makes with the positive direction 

of  the x-axis. 

The pair (r, θ) gives the location of  any point on the plane. r and θ

are called polar coordinates of  P. In relation to the complex number 

z, r is the modulus of  z, r = |z| and it is always a non-negative real 

number. θ is called the argument of  z, θ = arg(z) and, when you use 

polar coordinates to defi ne z, the complex number is said to be in 

polar form. θ can be expressed either in radians or in degrees using 

the usual convention that, if  you are not told otherwise, the angle is 

measured in radians.

Re

z = x + iy

r

x

i

Im

O

y

When you add 

multiples of 360° to 

arg(z) you obtain an 

equivalent expression 

for arg(z).
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Example  

Represent these complex numbers in the plane:

a |z
1
| = 2 and arg(z

1
) = 60° b |z

2
| = 3 and arg(z

2
) = 


4

c |z
3
| = 1 and   

3

7

4
arg z

Answer

1

z1

z3

z2

60°

w

w

2 3 4–1–2–3–4
x

y

2

3

–1

–2

–3

–4

4

1

O

7r

4

r

4

For each complex number draw a 

circle with centre at the origin with 

radius equal to its modulus.

Use a protractor to obtain a ray 

from the origin that makes an angle 

with the positive x-axis equal to the 

argument of  the complex number. 

The intersection of  the ray with the 

circle gives you the location of  the 

complex number.

Alternatively, use a polar grid where 

the circles and rays are already 

given!

Equality of complex numbers in polar form

As you may have noticed from the previous example, the argument 

of  a complex number can take different values that always differ by 

a multiple of  2π (or 360°) but its modulus is uniquely defi ned. 

Therefore, 

z
1
 = z

2
⇒ |z

1
| = |z

2
| and arg(z

1
) − arg(z

2
) = 2kπ, k ∈ 

Example 

Find all possible values of  r and θ such that z
1
 = z

2
 if  |z

1
| = r2, 

arg(z
1
) = 3θ, |z

2
| = 5r  6 and arg(z

2 
) = θ + π where r ≥ 0. 

Answer

r2 = 5r  6 ⇒ r2  5r + 6 = 0

(r  2)(r  3) = 0 ⇒ r = 2 or r = 3

(3θ)  (θ + π) = 2kπ, k ∈ 

2θ = π + 2kπ ⇒ θ = 
2

 + kπ, 

k ∈ 

3 5 7
, ± , ± , ± , ...

2 2 2 2
= ±

    
 
 

Use z
1
 = z

2
⇒ |z

1
| = |z

2
| 

Factorize and solve for r.

z
1
 = z

2
⇒ arg(z

1 
)  arg(z

2 
) = 2kπ, 

k ∈ 

Solve for θ

Florence 

Nightingale

(1820–1910), 

although mainly 

remembered for her 

pioneering work in 

the nursing  eld, 

developed the 

polar-area diagram 

to dramatize the 

needless number of 

deaths caused by 

insanitary conditions 

for soldiers at war, 

and hence the need 

for reform. The polar 

area diagram is 

similar to a usual pie 

chart, except sectors 

are equal angles 

and differ in how far 

each sector extends 

from the center of 

the circle. The polar 

area diagram is 

used to plot cyclic 

phenomena (e.g. 

count of deaths by 

month).
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Exercise 12A 

1 Represent these complex numbers 

in the complex plane: 

a |z
1
| = 4 and arg(z

1
) = 120°

b |z
2
| = 5 and  2

5

4
arg z




c |z
3
| = 2 and  3

7

6
arg z




d |z
4
| = 3 and  4

3

2
arg z




e |z
5
| = 1 and arg(z

5
) = π

2 Given the complex numbers z
1
 and z

2
 such that |z

1
| = r3, 

arg (z
1
) = 4θ, |z

2
| = r2 + 2r and  2

2
arg z


   where r ≥ 0, fi nd 

all possible values of  r and θ for which z
1
 = z

2
. Hence write down 

the complex numbers that satisfy the conditions given.

3 Find all real values of  a and θ such that |a + ai| = 2 and 

arg(a + ai) = θ. How many distinct complex numbers 

a + ai verify the conditions given?

4 Give examples to show that, in general, 

a arg(z
1

± z
2
) ≠ arg(z

1
) ± arg(z

2
) b |z

1
± z

2
| ≠ |z

1
| ± |z

2
|

Relation between Cartesian and polar coordinates 

As complex numbers can be represented in Cartesian or modulus-

argument form, it is important to be able to change from one form 

to the other. Drawing an Argand diagram helps you with this 

conversion.

Conversion from Cartesian to polar form

Consider a complex number z = x + iy and its representation on the 

complex plane. To fi nd the polar coordinates of  z,  fi nd its modulus 

using Pythagoras’ theorem: r z x y= = +2 2. From the 

diagram you can also obtain a relation between the argument 

θ and the rectangular coordinates x and y: tan
y

x
  . If  z is 

located in the fi rst or fourth quadrants, arctan
x

y
 ; 

otherwise, arctan
x

y
   as you measure the angle 

θ from the real axis.

➔ z = x + yi 

⇒ r z x y= = +2 2 and tan
y

x
 

Although formal 

treatment of polar 

coordinates is not a 

part of the course, you 

may  nd polar grids 

useful to plot complex 

numbers given in polar 

form.

x

y

O

Re

z = x + iy

r

r cosi

r sini

x

i

Im

y

O

Some texts adopt the convention that 

the argument of a complex number 

is always represented by an angle in 

the interval π < θ ≤ π called principal 

argument; other texts adopt the 

interval 0 ≤ θ < 2π. On exam papers, 

unless you are told otherwise, you 

may give your answer in any interval.
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Conversion from polar to Cartesian form

If  a complex z has modulus r and argument θ then, using the 

diagram again and your knowledge of  right-angled trigonometry, 

you can obtain the relations

cos cos
x

r
x r     and sin sin

y

r
y r   

➔ z = r cos θ + (r sin θ)i.

This expression can be simplifi ed and rewritten in the form 

z = r (cos θ + i sin θ) called the  modulus-argument form. 

Sometimes a short form of  the modulus-argument form is 

used: z = r cis θ. 

Example  

Express these complex numbers in Cartesian form, giving your answers 

exactly.

a |z
1
| = 4 and arg(z

1
) = 60° b z

2
 = 2cis

5

6



Answers

a x = 4 cos 60° ⇒ x = 2

y = 4 sin 60° ⇒ y = 2 3

∴ z
1
 = 2 + 2 3 i

b x x= ⇒ = −2 3
5

6
cos

p

5

6
= 2sin = 1y y

∴ −z2 = 3 + i

Use x = r cos θ, y = r sin θ

Example 

Express these complex numbers in modulus-argument form.

a z = 1 – i  b z = – 3 + i

Answers

a r = 1 + 1 = 22 2

( )

tan = 1 =
4

q q
p

− ⇒

 
 
 


4

= 2 cisz

b r = 3 +1 = 4 = 2
2

2( )

tan = = + =
1

3 6

5

6
q q

p
p

p
− ⇒ −

 
 
 


5

6
= 2 cisz

Use r z x y= = +2 2 ,

arg(z) = θ = arctan 
x

y
 for 

θ  4th quadrant

and θ = π + arctan 
x

y
 for 

  2nd quadrant.

Write z in the form z = r cis θ

In some texts, 

Cartesian form is also 

called ‘rectangular 

form’ and polar form 

is called ‘trigonometric 

form’. 

Revise trigonometry 

and learn exact values 

of trigonometric 

functions for special 

angles.

30° 

or 



6

45° 

or 



4

60° 

or 



3

sin
1

2

2

2

3

2

cos
3

2

2

2

1

2
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Polar form of opposite, conjugate and opposite 
of conjugate of a complex number

Given a complex number z = r cis θ, you can obtain expressions for 

its opposite, conjugate and opposite of  the conjugate from their 

representation in an Argand diagram:

− z = r cis (π + θ),

z 
∗ = r cis (−θ) = r cis (2π − θ) and 

− z 
∗ = r cis (π − θ)

Polar form of the product of a real number by a 
complex number

In Section 12.1 you discovered that the multiplication of  a real 

number α by a complex number z = r cis θ corresponds to an 

enlargement with centre at the origin and enlargement factor |α|. 

➔ ● α > 0 ⇒ αz = (αr) cis θ

● α < 0 ⇒ αz = (|α|r) cis (π +θ)

● α = 0 ⇒ αz = 0 

Exercise 12B 

1 Express these complex numbers in Cartesian form giving your 

answers exactly.

a |z
1
| = 6 and arg(z

1
) = 45° b |z

2
| = 10 and arg(z

2
) = 135°

c 
3

5

3
4cisz



 d
4

7

6
5cisz





2 Express these complex numbers in modulus-argument form.

a z
1
 = −1 − i b z2 2 3 2= + i

c z
3
 = 4 − 4i d z

4
 = −5 + 5i

3 Represent these complex numbers in an Argand diagram and 

write them down in modulus-argument form:

a z
1
 = −3i  b z

2
 = 4i

c z
3
 = 2  d z

4
 = −4

4 Given z = 4cis 40°, write down in modulus-argument form

a z 
∗ b −z c −z 

∗

d 3z 
∗ e −4z 

∗

Draw a sketch to help 

you to locate each 

complex number in 

an Argand diagram 

before determining its 

argument.

What is the 

geometrical meaning 

of a negative 

enlargement factor?

–1–2–3–4
x

z*

z–z*

–z

y

2

3

–1

–2

–3

–4

4

1

O
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5 Consider the complex numbers z1 2 2 3= − − i and z2 3 3 3= + i

a Find in Cartesian form z
3 
= z

1
z

2

b Express z
1
, z

2 
and z

3
 in modulus-argument form.

c Compare the moduli and arguments of  the complex numbers 

in b. What do you notice?

Your GDC allows you to convert complex numbers from 

rectangular to polar form and vice-versa, but polar form may 

appear displayed using an alternative notation called Euler form.

➔ If  r = |z| and θ = arg(z), then z representation in Euler’s 

form is z = r e 
θ i

This form is the one preferred by many mathematicians because it 

allows them to relate fi ve important constants in mathematics using 

the three main arithmetic operations.

➔ e 
π i + 1 = 0

.  Operations with complex numbers in 
modulus-argument form 

You are now ready to deduce rules that allow you to multiply 

complex numbers in polar form.

Consider two complex numbers z
1
 = r

1
(cos θ

1
 + i sin θ

1
) and 

z
2
 = r

2
(cos θ

2
 + i sin θ

2
). Using the multiplication rule for complex 

numbers studied in Chapter 3 

z
1
z

2
 = (r

1
 (cos θ

1
 + i sin θ

1
))(r

2
(cos θ

2
 + i sin θ

2
))

= (r
1
r

2
)(cos θ

1
 + i sin θ

1
) (cos θ

2
 + i sin θ

2
) 

 
   1 2 1 2

1 2 1 2 1 2 1 2 1 2

cos sin

cos cos sin sin i sin cos cos sinr r

   

       
 

   
      
   
   
 

Phasor diagrams 

Electronics and 

aircraft engineers 

use phasor diagrams 

to visualize complex 

constants and 

(variables (phasors). 

Like vectors, arrows 

drawn on graph paper 

or computer displays 

represent phasors. 

Cartesian and polar 

representations each 

have advantages.

O

0

Why do 

mathematicians refer 

to this equation as 

beautiful?

Look at chapter 

8 (Trigonometric 

formulae).
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➔ Therefore, |z
1
z

2
| = |z

1
||z

2
| and arg(z

1
z

2
) = arg(z

1
) + arg(z

2
)

You have just proved this theorem 

➔ If  z
1
 = r

1
 cis θ

1
 and z

2
 = r

2
 cis θ

2
 then z

1
z

2
 = r

1 
r

2
 cis (θ

1
 + θ

2
).

You also proved that the multiplication of  complex 

numbers corresponds to a rotation with an 

enlargement both with center at the origin. 

This means when you multiply z
1
 = r

1
 cis θ

1 
by 

z
2
 = r

2
 cis θ

2 
the point P that represents z

1

in the complex plane is rotated by an angle θ
2

around the origin and its distance to the 

origin changes by a factor r
2
. When r

2
 = 1, 

the multiplication of  z
1
 by z

2
 corresponds to 

just a rotation around the origin with angle θ
2

➔ Euler form provides a familiar form for this theorem

     1 21 2

1 2 1 2

ii ir e r e r r e
   

 

This example shows you how to use this theorem to multiply 

complex numbers in polar form.

Example  

Multiply these pairs of  complex numbers.

a z
1
 = 4 cis (60°) and z

2
 = 2 cis(50°)

b z
1
 = 3 cis 

5

6

p

 and z
2
 = 4 cis 

p

5

Answers

a z
1
z

2
 = 8 cis (110°)

b z
1
z

2
 = 12 cis 

31

30

p⎛
⎝
⎜

⎞
⎠
⎟ Use z

1 
z

2
 = r

1
r

2
 cis (θ

1
 + 

2 
)

If  you are given complex numbers in different forms you need to 

convert at least one of  them before multiplying. You need to decide 

if  you prefer to convert the complex numbers into Cartesian form 

and operate them this way or convert them to polar form to operate 

them using the theorem above. In some cases, you are asked to 

operate them in both forms and use your result to determine exact 

values of  trigonometric functions.

This example shows you how to deduce exact values of  

trigonometric ratios of  
5

12



z1

z2

z1 z2

r1 r2

x

i1 + i2

y

O
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Example  

Consider the complex numbers z
1
 = 3 cis 

π
6

 and z
2
 = 5 + 5i.

a Express z
1
 in Cartesian form.

b Express z
2
 in polar form.

c  Calculate z
1
z

2
 both in Cartesian and polar forms. 

Hence fi nd the exact values of  sin 
5

12

p
, cos 

5

12

p
 and tan 

5

12

p

Answers

a
 

    
 
  
 

1 1

3 3 3
= 3 cos + isin = + i

6 6 2 2

13
22

z z Use r cis  = r(cos  + i sin ).

b z r2

2 2= 5+5i = 5 +5 = 5 2⇒

and q
p

=
4

2
4

= 5 2 cisz




Use r = +2 2x y ,

θ = arctan 
x

y
 for θ ∈ 1st quadrant.

Write it in the form r cisθ

c z z1 2 =
3 3

2
+

3

2
i 5+5i

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

=
15 3 15

2
+

15 3 +15

2
i

 1 2

5
+

6 4 12
= 3 5 2 cis =15 2cisz z

     
 

  5 3 1 6 2

12 42 2
cos = =

sin
5

12
=

3 +1

2 2
=

6 + 2

4

p

5 3 +1 2 3 + 4
= =

12 23 1
tan = 3 +2



Use (a + bi)(c + di) = (ac – bd) + (ad + bc)i.

Use z
1 
z

2
 = r

1
r

2
 cis (

1
 + 

2  
).

Use cos θ = 
x

r
,

sin θ = 
y

r
,

tan θ = 
y

x
 and rationalize the 

denominators.

Exercise 12C

1 Multiply these pairs of  complex numbers.

a z
1
 = cis 10° and z

2
 = 5 cis 125°

b 
1

1 7

2 6
cisz


  and 

2

4

7 8
cisz




2 Consider the complex numbers 1

5

6
cisz


  and z

2
 = 1 − i 

a Express z
1
 in Cartesian form.

b Express z
2 
in polar form.

c Calculate z
1
z

2
 both in Cartesian and polar forms. Hence fi nd 

the exact values of  sin 
7

12
, cos 

7

12
 and tan 

7

12
.
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3 Let 
1

6
2cisz


  and z

2 
= r cis θ, where r > 0 and 0 ≤ θ < 2π

 Find the range of  values of  r and θ for which z
1
z

2
 is

a a real number greater than 5

b a purely imaginary number with modulus less than 1.

4 Represent in modulus-argument form the opposite, the conjugate 

and the opposite of  the conjugate of  z = − +3 3i

5 Let z = sin α + cos α i and w = sin 2α − cos 2α i. 

a Write z and w in modulus argument form.

b Find zw in polar form.

Polar form of the reciprocal of a complex number

Given a complex number z = r cis θ, if  z ≠ 0 its reciprocal is the 

complex number 
1

z
 and it is characterized by the property 

1
1

z
z 

Suppose that  cis 
z

   is the polar form of  the reciprocal of  z. 

Then   1
1 cis cis 1cis0

z
z r     

After multiplying z and its reciprocal, you obtain rρ cis(θ + α) = 1 cis 0 

Using the equality condition of  complex numbers 

rρ = 1 ⇒ ρ = 
1

r
 and θ + α = 2kπ ⇒ α = − θ + 2kπ, k  . 

➔ So, a polar representation of  the reciprocal of  z = r cis θ is 

   
1 1

cis , 0
z r

r

Division of complex numbers in polar form

Given z
1
 = r

1
 cis θ

1
 and z

2
 = r

2
 cis θ

2
 with r

2
 ≠ 0, you can fi nd 

z

z

1

2

 by 

simply multiplying z
1
 by the reciprocal of  z

2

➔        
 

  1 1
1 1 2 1 2

2 2 2

1
ciscis cis

z r

z r r
r , r

2
 ≠ 0

➔ The Euler form also provides a familiar form for these 

theorems.

i

i1 1

e
e

rr




 




1

1 2

2

i

1 1

i

22

ie

e
e

r r

rr
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Example  

Find in polar form 
z

z

1

2

 in each of  these cases. 

a |z
1
| = 6, arg(z

1
) = 75°, |z

2
| = 2 and arg(z

2
) = 20°

b
1

5

7
= 8 cisz


 and 2

3
= 4 cisz



Answers

a
z

z

1

2

= 3cis55°

b
8

21
= 2cis

z

z


1

2

Use   1 1

1 2

2 2

z r

z r
cis=

Exercise 12D

1 Find in polar form 
z

z

1

2

 in each of  these cases.

a |z
1
| = 10, arg(z

1
) = 170° and z

2
 = 5cis125°

b 1

1 7

2 6
cisz


  and 2

4

7 8
cisz




2 Let 1

11

6
2cisz


  and z

2
 = 2 − 2i. 

Find, in modulus-argument form, the complex 

numbers:

a z
2

b z
2
∗ c z

1
z

2 

d 
z

z

1

2

e −
1

1 2z z

3 Express in modulus-argument form:

a 
4

3 + i
b 2 2

6 2+

i

i

c

  

1

21 7i

EXAM-STYLE QUESTION

4 Let z = −2 3 2i and w =
1

2

i

a Write z and w in the form r (cos θ + i sin θ), 

where r > 0 and −π ≤ θ ≤ π

b Find 
z

w
 in modulus-argument form.

c Find the value of  
z

w
 in Cartesian form, giving 

your answer exactly.

d Hence fi nd the exact values of  cos 


, sin 


12
 and tan 



12

✗
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.  Powers and roots of complex numbers: 
De Moivre’s theorem and applications

As in the previous section, the product of  complex numbers can be 

easily obtained in polar form and corresponds to an enlargement 

with a rotation. This section looks at the result of  iterating this 

process, i.e., powers of  a complex number z = r (cos θ + i sin θ). 

Intuitively, you can predict that the result is an enlargement spiral, 

as whenever you increase the power of  z by one you rotate its image 

on the complex plane by θ and its distance to the origin changes by 

a factor r. The diagram illustrates this process for r > 1. 

If  r < 1, the spiral moves inwards and converges to the origin. 

For r = 1, the transformation is just an iterated rotation around the 

origin. 

Formally, you can prove a theorem that allows you to fi nd integral 

powers of  any complex number.

De Moivre’s theorem: 

➔  [r (cos θ + i sin θ )]n = r n (cos nθ + i sin nθ ) where r ∈ +, θ ∈ 

and n ∈ . 

Proof

Case : Let n ∈ +. In this case, use induction to prove the 

proposition

P (n): [r (cos θ + i sin θ )]n = r n (cos nθ + i sin nθ ) is true for any 

r ∈ +, θ ∈  and n ∈  +:

Start by verifying that P(1) is a true statement: 

[r (cos θ + i sin θ )]1 = r1 (cos (1 ·θ )+ i sin (1 ·θ )) (verifi ed true)

Next, assume the truth of  the proposition for a particular value of  n, 

let’s say k:

P (k): [r (cos θ + i sin θ)]k = r k (cos kθ + i sin kθ ) (assumed true)

and consider the proposition for the next value of  n, 

i.e., n = k + 1:

        1 11 : cos i sin cos 1 i sin 1
k

k

RHSLHS

P k r r k k   
        



(under consideration)

z

z2
z3z4

z5

z6

x

y

O

θ ∈ This means 

that θ is expressed 

in radians but the 

formula can also 

be applied with the 

argument expressed in 

degrees.
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As           


             


1

cos i sin cos i sin cos i sin
k k

LHS

r r r

 =  [rk (cos kθ + i sin kθ )] [r (cos θ + i sin θ )] 

(using the induction hypothesis)

 =  [rkr (cos (kθ + θ ) + i sin (kθ + θ ))]

(using the multiplication theorem)

 = 
        



1 cos 1 i sin 1k

RHS

r k k
 (QED)

You have shown that P (k) true  P (k + 1) true and, as you had 

established that P (1) is true, by the principle of  mathematical 

induction, you can conclude that P (n): 

[r (cosθ + i sinθ )]n = r n (cos nθ + i sin nθ ) is true for any r ∈ +, θ ∈ 

and n ∈ +

Case : If  n = 0, you have that P (0):     
   

    
 

  


0 0

1 1 0
1

cos i sin cos0 i sin 0r r

is true as long as we use the convention that z0 = 1.

Case : If  n ∈  , than n = −1 · m where m ∈  +

Consider z = (cos θ + i sin θ ). Then     1 1
cos i sin

z r
    

Now apply the result proved in case 1:

1 1

z r

m m

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟=  (cos m(−θ) + i sin m (−θ )) as r ∈ +, θ ∈  and m ∈ +

➔ If  you use the convention that z m

m
z

= 1
, then

z m = r m(cos(−mθ ) + i sin (−mθ ).

Euler Form: z m = (re iθ ) m = r m e imθ

De Moivre’s theorem provides a very effi cient method to fi nd 

powers of  complex numbers, as shown in this example.

Example  

Use De Moivre’s theorem to calculate 
 
  
 

1 3

2 2

n

 in polar form for 

n = 1, 2, 3,...,12 and represent the complex numbers obtained in an 

Argand diagram.

We have given the 

proof for m ∈ + here, 

but the result does 

hold for all m ∈ 

You may have noticed 

that, in this proof, we 

have excluded the 

case z = 0. Obviously 

0
n
 = 0 for n ∈ +

What do you think is 

the meaning of 00? 

{ continued on next page
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Answer

1

2

3

2
= cis

6
= cis

6
− − −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

n n
np p

Z1

Z3

0.5 1–0.5–1 x

y

–0.5

–1

1

0.5

Z2Z4

Z5

Z6

Z7

Z8

Z9
Z10

Z11

Z12

0

Convert the complex number into 

modulus-argument form and 

apply De Moivre’s theorem.

Substitute n by 1,2,3... and 

12 and represent the complex 

numbers z
n
 in the Argand 

diagram.

As all complex numbers z
n
 have 

modulus 1. They lie on the unit 

circle with center at the origin, 

equally spaced as 

arg (z
n 
)  arg(z

n 1
) = 

p

6

Very often you will need to apply De Moivre’s theorem more than 

once and combine it with other results from this chapter.

Example 

Let z
1
 = 4cis 

5

3

p

 and z
2
 = 2 3 2i . 

Find (z
1

∗)4 (z
2
) 3

a in polar form 

b in Cartesian form, giving your answer exactly.

Answers

a
 1 1

5

3 3
= 4cis = 4cisz z

 4
* 4

1

4

3
= 4 cisz



z z2 2= 2 3 2i = 4 cis
6

− −⇒
p⎛

⎝
⎜

⎞
⎠
⎟

z2

3 3= 4 cis
2

( ) p

   
4

*

1 2

11

6
= 4 cisz z



b       
 
 

4 3*

1 2

11 11

6 6
= 4 cos + i sinz z

= 4 = 2 3 +2i
3

2
+

1

2
i

⎛

⎝
⎜

⎞

⎠
⎟

Use z ∗ = r cis (2π − θ).

Apply De Moivre’s 

theorem.

Convert z
2
 into modulus-

argument form.

Apply De Moivre’s 

theorem again.

Use z
1
z

2
 = r

1
r

2

cis(θ
1
 + θ

2 
).

Convert the complex 

number into Cartesian 

form.

Abraham De Moivre 

(1667–1754) was a 

French mathematician 

who had to leave his 

country due to religious 

persecution. After 

being imprisoned for 

more than two years, 

he moved to England 

where he worked as 

a private tutor, as his 

status as a foreigner 

prevented him from 

getting a teaching 

position. He mastered 

Newton’s theory of 

 uxions and began 

his own original work 

on this  eld that was 

accepted by the Royal 

Society of which he was 

elected a member in 

1697.
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Exercise 12E

1 Let 


1

3

4
= 2cisz  and 2 = 3 + i. 

Find:

a     2 3

1 2z z b
z

z

1

2

4

⎛

⎝
⎜

⎞

⎠
⎟ c

 
 
 

3

1

2

*
z

z

2 Let 1

i
44z e



  and 
i

3
2

1

2
z e





Find:

a z
1
z

2 
b z z1

3

2

2( ) ( ) c
z

z

1

2

d

 
 
 

3

1

2

z

z

EXAM-STYLE QUESTIONS

3 Determine in Cartesian form 
5

cos i sin

sin i cos

 
 

 
  

4 Show that       
 
 

    1

3
1 i 3 1 i 3 2 cos

n n
n n

, for any n ∈ 

5 Find the smallest positive integer for which (1 − i)n is

a a negative real number b purely imaginary.

6 Solve the equation |z|z3 = 16, giving your answer both in polar 

and Cartesian forms.

Roots of complex numbers

An important application of De Moivre’s theorem is the method it 

provides to calculate the nth roots of a complex number r cis θ. It allows 

us to fi nd all complex numbers z that are solutions of the equation zn = r

cis θ. To solve this equation, make z = ρ cisα and use De Moivre’s 

theorem to deduce an expression for ρ and α in terms of r, θ and n

zn = r cis θ and z = ρ cisα ⇒ (ρ cisα)n = r cis θ

After applying De Moivre’s theorem, ρn cis nα = r cis θ

Using the equality of  complex numbers in polar form

ρn = r ⇒ ρ = r
n

 and 
2

,  2
k

n
n k k

     
    

➔ So, 
2

,   cis  cisn n
k

k
n

z r z r
  

   

Euler form: 
2

i
i e  e ,  n n

k

nz r z r k
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Represent the nth roots of the complex number r cis θ in an Argand 

diagram to see that they all lie in a circle with radius rn centered at the 

origin and that they divide this circle into n equal arcs corresponding to 

central angles with size 2

n

 , as illustrated in the diagram.

This means that, in fact, there are exactly n distinct nth roots of  the 

complex number r cis θ that you can obtain explicitly by giving k the 

values 0,1,...(n − 1).

Example  

Find the fourth roots of  16
4

3
 cis

p
 and represent them in the complex 

plane.

Answer

Let z be a fourth root of  

16
4

3
 cis

p

z

k

k

=

=

+

16

0 1 2

4

4

3
2

4
 cis

and 3.

p
p

,

, ,

z0 2
3

=  cis
p

, z1 2
5

6
=  cis

p
, 

z2 2
4

3
=  cis

p
 and z3 2

11

6
=  cis

p

–1–3–4 x

y

3

–3

–4

4

1
Z1

Z3

Z0

Z2

Use z r

k n

n k

n
=

= −

+
cis

q 2 p
,

, ,...,0 1 1

with n = 4 to fi nd the four fourth 

roots. Alternatively, k could equal 0, 

± 1, 2

Substitute k by 0, 1, 2 and 3.

Represent the complex numbers z
k
 in 

the complex planes.

The next example shows you a very special case: the determination 

of  the complex nth roots of the unity i.e., the nth roots of  the 

number 1.

Imaginary

axis

roots

Real

axis

0

= i
2r

n

n

All these roots have 

the same modulus 2 

and lie on the same 

circle with center at 

the origin and radius 

2 units.

It is usual to represent 

the nth roots of the 

unity by ω
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Example 

a Solve the equation z5 = 1 in 

b Let  1 be a solution of  z5 = 1. Show that 

1 + ω + ω2 + ω3 + ω4 = 0.

Answers

a z z

k

k5 2

5

0 4

= ⇒ =

=

cis 0 cis
p

,

,...,

Use z r

k n

n k

n
=

= −

+
cis  

q p2
,

, ,...,0 1 1

with n = 5 to fi nd the fi ve fi fth roots. 

b 1 + ω + ω2 + ω3 + ω4 = 
w

w

5 1

1

ω  1 

 solution of  z5 = 1 ⇒ ω
5 
 1 

1 + ω + ω2 + ω3 + ω4

= =
1 1

1
0

w

Note that this is the sum of  5 

consecutive terms of  a geometric 

progression with common ratio ω

Note that ω  1

Exercise 12F

1 Find: 

a the cube roots of  
3

8cis


 in modulus-argument form

b the fourth roots of  (−4i)2 in Cartesian form

c the fi fth roots of  32 e −π i in Euler form.

2 Solve these equations in 

a z2 = 1 − i b z 4 3= − + i

c 
i3 427z e



 d z z3 2 2 0− −( ) =i

3  a Find the sixth roots of  unity and represent them on an 

Argand diagram. 

b Label the complex numbers found in a) z
1
, z

2
, ..., z

6
. 

Show that z
1
3 = z

3
3 = z

5
3 and z

2
3 = z

4
3 = z

6
3. 

What is the signifi cance of  these results?

EXAM-STYLE QUESTIONS

4 
− +1 3

4

i
 is a fi fth root of  a complex number z. Without 

calculating z, fi nd the remaining fi fth roots of  z.

5 Find the fourth roots of  −81 in Cartesian form. Hence, write 

down all the solutions of  the equation (z − 3)4 + 81 = 0.

6 Find the sum of  the series   
   

2i 4i 6i1 1 1
1

3 9 27
...e e e

Recall the sum of 

consecutive terms of a 

geometric progression.

Discuss the 

geometrical meaning 

of part b. If you think 

of complex numbers 

as vectors, what is the 

meaning of this sum?

Which regular 

polygons can be 

constructed using 

only straight edges 

and compasses? How 

do complex numbers 

help us to answer this 

question? 
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Investigation – properties of roots of unity

1 The equation z 3 = 1 has three complex roots called cube roots 

of unity

 a  Solve the equation z 3 = 1 in , giving your answers in 

Cartesian form. One of the roots is a real number. 

Denote one of the other roots by ω. 

 b i How can you express the other root in terms of ω?

  ii  Square each of the complex roots. 

What do you observe? 

Give a geometrical explanation for your observation.

  iii  Find the reciprocal of each complex root. 

What do you observe? 

Give a geometrical explanation for your observation.

 c  Show that 1 + ω + ω2 = 0 and deduce that 1 + ω* + (ω*)2 = 0 

Give a geometrical explanation for your results.

 d  Hence, evaluate the following expressions, stating clearly the 

results you use:

  i ω
4 + ω5 + ω6 ii

2

1

 

iii
*

1 





iv (1 + ω)*

 e  Use the binomial expansions of (ω + 1)3 and (ω* + 1)3 to show 

that (ω + 1)3 = (ω* + 1)3. Hence, deduce that both ω + 1 and 

ω
* + 1 are cube roots of −1. Represent the cube roots of 1 

and −1 on the complex plane and explain the relation between

 the numbers 1 and −1 and their corresponding cube roots.

2 Extend your results. Consider the nth roots of unity 

for any n = 3, 4, . . . .

 a  Show that these roots can be written as 1, ω, ω 
2,...ω 

n 1

where  = cis
2π

n

 b Show that 1 + ω + ω 
2 + ... + ω 

n 1 = 0.

 c Use de Moivre’s theorem to show that:

  i (ω 
k)* = ω 

n k for k = 1,2, ..., n 1.

  ii 1 · ω · ω2 …· ω 
n 1 = ( 1)n 1

What is the geometrical meaning of these results?

You may  nd it useful 

to  nd the nth roots of 

unity for some values 

of n and represent 

them on an Argand 

diagram.

Before you go on to 

the next section use 

the worked solution on 

the CD to check 

your results to this 

investigation.
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. Mathematical connections

In examinations it is usual that complex numbers questions involve 

the knowledge of  other topics of  the course. This example shows 

you how to use De Moivre’s and binomial theorems to fi nd the 

expression of  a trigonometric integral.

Example  

Let z = cis α

a Use De Moivre’s theorem to show that z nn

n

z
+ =⎛

⎝
⎜

⎞
⎠
⎟ ( )1

2cos a . 

b Use the binomial theorem to expand z
z

+⎛
⎝
⎜

⎞
⎠
⎟

1
4

. 

Hence show that cos cos cos4 1

8
4 4 2 3a a a= + +( ) and fi nd cos d

4
a a

Answers

a zn = cis (nα) = cos (nα) + i sin(nα) 

1

z

n

⎛
⎝
⎜

⎞
⎠
⎟  =  (cis (–α))n = cis(–nα) = cos (–nα) 

+ i sin(–nα) 

z n

n

z
+ ⎛

⎝
⎜

⎞
⎠
⎟

1
 =  (cis (nα) + cos (–nα)) + i (sin (nα) + sin (–nα)) 

= (cos (nα) + cos (nα)) + i (sin (nα) – sin (nα)) 

 = 2 cos (nα) QED

b z z z
z z z

+ = + + + +⎛
⎝
⎜

⎞
⎠
⎟

1 4 1
4

4 2

2 4
4 6

z z z
z z z

+ = + + + +⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

1 1 1
4

4

4

2

2
4 6

   
4 42cos 2cos4 4 2cos2 6cos     

    
1

8
cos4 4cos2 3

 Then  cos4
a a d =

1

8
    cos4 4cos2 3  d

= +

= +

+ +⎛
⎝
⎜

⎞
⎠
⎟

+ +

1

8

4

4
4

2

2
3

4

32

2

4

3

8

sin sin

sin sin

a a

a a a

a c

c

Use De Moivre’s Theorem twice.

Cosine is an even function and sine 

an odd function.

Apply binomial theorem.

Rearrange the expression. 

Apply the result deduced in part a

and simplify the expression.

Integrate each term and simplify.
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In this next example, use the tangent addition formula and De 

Moivre’s theorem to deduce the exact value of  the trigonometric 

expression.

Example 

Consider the complex number z = cis 20°. 

Let z = x + iy be the Cartesian form of  z

a Expand and simplify (x + iy)3. 

 Hence show that 
3

3

2 3

3 2
3

x y y

x xy
=

b Show that tan 40° tan 80° = 
3 20

1 3 20

2

2

− °
− °

tan

tan

c Use parts a and b to show that tan 20° tan 40° tan 80° = 3

Answers

a (x + iy)3 = x3 + 3x2y i − 3xy2 y3 i 

 (x + iy)3 = x3  3xy2 + i (3x2y y3) 

 (x + iy)3 = cis 60°

 Then 
3

3

3

3

2 3

3 2

2 3

3 2
3

x y y

x xy

x y y

x xy

=

⇒ =

tan 60°

b tan 40° tan 80°

= tan (60° − 20°) tan (60° + 20°)

tan 60 tan 20 tan 60 tan 20
×

1 tan60 tan20 1 tan 60 tan20

     

     


= − °
+ °

+ °
− °

3 20

1 3 20

3 20

1 3 20

tan

tan

tan

tan
×

= − °
− °

3 20

1 3 20

2

2

tan

tan
 QED

c
3

3

3

1 3

2 3

3 2

2

2

3

3

x y y

x xy

y

x

y

x

x

y

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=

⇒ =

tan
tan

tan
20 3

3 20

1 3 20

2

2
° =− °

− °

tan 20° tan 40° tan 80° = 3 QED

Apply binomial theorem.

Rearrange the expression. 

Apply De Moivre’s theorem and use tan 60 = 3

Apply addition formulae.

Simplify using difference of  squares.

Rearrange the LHS of  the expression.

Substitute 
y

x
 by tan 20 °.

Use part b to obtain the result.
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Exercise 12G

EXAM-STYLE QUESTIONS

1 Let z = cis α

a Use De Moivre’s theorem to show that  1
2i sin

n

n

z
z n 

 
 

  . 

b Use the binomial theorem to expand z
z

⎛
⎝
⎜

⎞
⎠
⎟

1
5

Hence show that 16 sin5 α = sin 5α −5 sin 

3α + 10 sin α and fi nd 5sin  d

2 Use the results  1
2cos

n

n

z
z n 

 
 

   and 

 1
2i sin

n

n

z
z n 

 
 

   to show that

3 5

2 4

5 tan 10 tan tan

1 10 tan 5tan
tan5

  
 

  

 


Hence show that the exact value of  
5

tan


 is 5 2 5−

3 Use De Moivre’s theorem to show that 

cos7θ = 64 cos7θ − 112 cos5 θ +56 cos3 θ − 7 cos θ

Hence solve the equation 

64 cos 7θ − 112 cos5θ + 56 cos3 θ − 7 cos θ = 1 

for 0 ≤ θ < 2π

4 Let 
2 sin 2

i
2

cosz


   where 
2 2

  

a Show that|z| = cos θ and arg z = θ

b Find z 2 in polar form.

c Hence fi nd the exact values of  θ for which |2z2| = |z|

5 Consider the complex number 





i

2

z

z
w , where z = x + iy

and i = −1

a Prove that     

 


2 2

2 2

2

( 2)
Re

x x y y

x y
w  and Im

( )
w

x y

x y
( ) + +

+ +
= 2 2

2 2 2

b Hence show that 

 i  when Re (w) = 1 the points (x, y) lie on a straight line l
1

and state its gradient.

 ii  when Im (w) = 0 the points (x, y) lie on a straight line l
2

perpendicular to l
1

c Given     
 

4
rg Argz w , fi nd |z|.

Henri Poincaré(1854–1912) was 

French mathematician, theoretical 

physicist, engineer, and a philosopher 

of science. He made many 

contributions to different  elds of pure 

and applied mathematics, such as 

celestial mechanics,  uid mechanics, 

optics, electricity, telegraphy, 

capillarity, elasticity, thermodynamics, 

potential theory, quantum theory, 

theory of relativity and physical 

cosmology.

In his research on the three-body 

problem, Poincaré became the 

 rst person to discorver a chaotic 

deterministic system, laying the 

foundations for modern chaos theory.

He is best known for the Poincaré 

Conjecture, the only one of the seven 

Millennium Prize Problems to have 

been solved (so far). It was proved 

in 2003 by the Russian Grigori 

Perelman.

Research more 

about the Poincaré 

Conjecture, the 

Millennium Prize 

Problems and the 

 elds Medal.
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EXAM-STYLE QUESTION

6 Consider a complex number z = r cis θ, where r ∈ + and θ ∈ 

a Use mathematical induction to show that (zn )∗ = (z ∗)n for 

n ∈ +

b Use De Moivre’s theorem to deduce the result in part a. 

For which values of  n is your proof  valid? Give reasons.

7 Let 1, ω and ω∗ be the cube roots of  unity.

a Show that 
1

1 



   and 

1

1+
= −

w

w
*

∗

b Determine the real numbers a, b and c such that 1, 
1

1 
 and 

1

1+w
∗  are zeros of  the polynomial p (z) = z3 + az2 + bz +c

c Hence fi nd p (ω) and p (ω).

EXAM-STYLE QUESTIONS

8 Let ω and ω′ be consecutive sixth roots of  the unity.

 a  Show that 
1


 and 

1


 are also consecutive sixth 

roots of  unity.

b Show that ω, ω′ and their opposites defi ne a 

rectangle in the complex plane and fi nd its area.

9 Find the values of  n such that 3 −( )i
n

 is a positive 

real number.

10 Let f (z) = ln (|z|) + i arg (z) where z is a 

non-zero complex number with modulus 

|z| and argument arg (z), with −π < arg (z) ≤ π

a Evaluate f (i), f (−i), f (1 + i) and f (1 − i).

b Show that (f (z)) = f (z) 

c Hence show that if  f (z) = f (z) then z is a real 

number.

d Find the values of  z for which: 

 i f (z) is purely imaginary

 ii f (z) is a negative real number

 iii f (z) = 0

✗

✗

✗

Extended Essay

1 When we study functions of a real variable it usual to graph them 

to better understand their behavior. How can we visualize a function 

of a complex variable? Explore Riemann’s ideas of dealing with this 

problem and the concept of the Riemann surface

2 Learn about Moebius transformations and explore 

the Joukowski aerofoil and its applications to  uid 

and aerodynamics.

T1

G O

[ The Joukowski aerofoil and 

its applications to  uid and 

aerodynamics

Georg Riemann (1826–66) was a 

German mathematician and a student 

of Gauss. He wrote his PhD dissertation 

on foundations of a generalized function 

of one complex variable.

The theory of complex functions 

is considered to be the main 

achievement of the 19th century, 

often called the mathematical joy of 

the 19th century.
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Chaos theory studies the behaviour of dynamical systems that are highly 

sensitive to initial conditions. It states that small differences in initial 

conditions (sometimes due to rounding errors) yield widely diverging results 

making long-term prediction of their outcomes impossible.

Chaotic behaviour can be observed in many natural systems, the most well 

known being the weather! This is sometimes called the butter y effect, i.e., 

the  ap of a butter y′s wings (a small initial change) can cause a hurricane 

to form weeks later.

Explore applications of chaos theory and their mathematical models in an 

area that interests you (e.g. patterns in epilepsy seizures, population growth, 

dynamics of  uids). 

Investigation – paths of chaos

1 Consider the recurrence relation z
n+1

 = z2

n
. 

Find the  rst ten complex numbers obtained when

 a 0 2
4

= cis
p

b
0

1

2 3
= cis

p

c z0
6

= cis
p

d z
0
= 0

A recurrence relation where z
n+1

is de ned in terms of z
n
 generates a 

dynamical system. The sequence generated by each value of z
0
 is 

called the orbit of z
0
. 

If the orbit of z
0
 consists of a single point, z

0
 is called a  xed point. 

If an orbit converges towards a  xed point, we say that this point is an attractor. 

If the orbit leads away from a  xed point, we say that this point is a repeller. 

A periodic point of order n is a point which is returned to after n terms of the sequence.

2 Using the terminology above, describe the orbits of z
0
 obtained in part 1.

3 Use technology to explore the orbit of z
0
 when z

0
= cis(1.5). Is z

0
 periodic? Why?

Investigate other values of z
0
 for which the behavior of the orbits are similar.

If you modify the recurrence relation and add a complex constant to it you obtain

z
n + 1

= z2

n
+ c

You are now dealing with a famous relation studied by two famous 

mathematicians: Gaston Julia and Benoit Mandelbrot. This is part of 

a branch of modern mathematics called chaos theory. 

Each of these mathematicians is associated with a particular 

set of points in the complex plane:

 The Julia set is the set of points whose orbits do not tend to in nity, i.e., 

it is the set of values of z
0
 for which the orbit is bounded. The importance 

of the Julia set lies in the amazing changes in behavior of the orbits for 

different choices of c

 The Mandelbrot set is the set of all the values of c

for which the orbit of z
0 
is bounded.

4 Show that the Julia set of z
n+1

= z2

n
 (i.e. c = 0) is 

the unit circle and its interior.

Challenge: 

Use technology to explore graphically the Mandelbrot 

set for different values of c

You may even write your own program!

Gaston Julia

(1893–1978) was 

born in the Algerian 

town of Bel Abbes, 

at the time governed 

by the French. During 

his youth he studied 

mathematics and 

music. In the First 

World War he suffered 

a severe injury, losing 

his nose.
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Review exercise

1 Write in Cartesian form:

a 
4

3
2cis


b 2cis135° c

2

5
3cis

6



2 Write in modulus-argument form:

a 5 5− i b
2

1 3+ i
c

1

3

i

i

3 Let 
2

3
2cisz


  and 

5

4
4cisw




a Determine in modulus-argument form zw z w
z

w
, and 2 3

b Find in Cartesian form z w z w
z

w
+ −,   and

2

4 Let z = a + i where a ∈ +. Find the exact value of  a for which 

a  
3

arg z


 b z2 is a real number c |z − 1| = |z − 2i|

5 Solve the equation z5 = z, giving your answers in Cartesian form.

6 Let 
1

1 i tan
z


  where 

2
0


  . Find z in modulus-argument form.

EXAM-STYLE QUESTIONS

7 
1

4

i
 and a + ai are consecutive nth roots of  a complex number z. 

 a Without calculating z, fi nd all possible values of  a and n

 b Hence fi nd the remaining nth roots of  z

8  Let ω be a complex cube root of  unity (ω ≠ 1). 

Show that (x + y)( x + ωy) (a + ω2y) = x3 + y3, for any x, y ∈ . 

9 The complex number z = − 3 − i
a Find the modulus and argument of  z, giving the argument in degrees.

b Find that cube root of  z which lies in the fi rst quadrant of  the Argand diagram.

c Find the smallest positive integer n for which z n is a positive real number.

10 Use De Moivre’s theorem and the expansion of  (cos α + i sin α )4 to deduce that: 
3

2 4

4 tan 4 tan

1 6 tan tan
tan 4

 

 


 


11 Given      n n-1

n n-1 0p z a z a z ... a  where a
n
, a

n–1
,…, a

0 
∈ 

 Show that if  z = r cis is a zero of  p (z) then z ∗ is also a zero of  p (z).

EXAM-STYLE QUESTION

12 Given that z
z

+ = −1
1, 

a Expand z
z

+⎛
⎝
⎜

⎞
⎠
⎟

1
2

 and fi nd the value of  z
z

2

2

1+

b Find the value of  z
z

3

3

1+ . c Hence fi nd the value of  z
z

5

5

1+

✗
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EXAM-STYLE QUESTION

13 Let z and z ∗ be conjugate complex numbers.

a Show that ( x − z)( x − z ∗) = x2
− 2Re (z) + |z|2 for any real number x.

b Find the eighth roots of  unity in Cartesian form.

c Write x 8 
− 1 as a product of  two linear and three quadratic factors.

14 Let ω = cis α where 
2

0
 

a Show that 
2

1 2cos
   and  

2
arg 1

 

b Hence use the binomial expansion of   1
n  to show that 

 
0

2cos
2 2

cos cos
nn

k

n n

k
k

 


     
     

    


Review exercise
  Let p z z az bz cz d( ) = + + + +

4 3 2
 be a polynomial with real 

coeffi cients.

Given that 
4

2cisz
   

 
 and z = 3 − i are two complex zeros 

of  p(z), fi nd the values of  the real numbers a, b, c and d

Most exam questions 

on complex numbers 

will be on the non-GDC 

paper.

CHAPTER 12 SUMMARY

Complex numbers as vectors
● z

1 
+ z

2
 = z

2 
+ z

1

● (z
1 
+ z

2
) + z

3 
= z

1 
+ (z

2
 + z

3
)

● The null vector represents the complex number 0 = 0 + 0i.

● If  z = a + bi the opposite of  z is −z = −a − bi; z and –z are represented 

by vectors with  the same magnitude and opposite directions.

● The magnitude of  the vector u associated with z = a + bi is called 

modulus of  z: z a b= +
2 2. 

● The subtraction of  two complex numbers z
1
 and z

2
 is defi ned 

as the sum of  z
1
 with the opposite of  z

2
. 

● k (g z) = (k g)z

● k (z
1 
+ z

2 
) = k z

1 
+ k z

2

● (k + g )z = k z + g z

where k, g ∈  and z, z
1
, z

2 
∈ 

Other transformations of complex numbers
● ( z ∗)∗ = z

● z ∈ ⇒ z ∗= z

● |z| = |z ∗|

Continued on next page
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Representations of complex numbers in polar form

Modulus-argument form: z = r (cosθ +i sinθ ) or z = r cis θ

Euler’s form: z = reθ i, where r = |z| is the modulus of  z and θ = arg (z) 

is the argument of  z

Product of a real number by complex number

● α > 0 ⇒ α z = (αr) cis θ

● α < 0 ⇒ α z = (|α|r) cis(π + θ) 

● α = 0 ⇒ α z = 0

Equality of complex numbers in polar form

z z z z1 2 1 2= ⇒ =  and    1 2 1 2arg arg 2 ,z z z z k k    

Conversion from Cartesian to polar form:

z = x + yi ⇒ r = |z| = x y2 2
+  and tan

y

x
 

Conversion from polar to Cartesian form:

cos cos
x

r
x r     and sin sin

y

r
y r   

Conjugate, opposite, opposite of conjugate and 
reciprocal of z in polar form:

z ∗ = r cis (−θ ) = r cis ( 2π − θ )

−z = r cis ( π + θ )

−z ∗ = r cis ( π + θ )

 
1 1

cis , 0
z r

r  

Multiplication and division of complex numbers in 
modulus-argument form 

If  z
1
 = r

1
 cis θ

1
and z

2
 = r

2
 cis θ

2
then 

z
1
z

2 
= r

1
r

2 
cis (θ

1
 + θ

2 
) and  1 1

1 2

2 2

cis
z r

z r
   , r2 0≠

De Moivre’s theorem: 

[r (cos θ + i sin θ)]n = r n ( cos nθ + i sin nθ) where r ∈ +, θ ∈  and n ∈ . 

Roots of complex numbers

zn = r cos θ ⇒ z = 
2

, cisn k

n
r

 
k = 0, 1, 2,... , n −1.

Re

z = x + iy

r

r cosi

r sini

x

i

Im

y

0
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Beautiful mathematics

In 1988 the scienti c magazine The Mathematical Intelligencer ran a survey on 

beauty in mathematics. Its readers selected ei + 1 = 0 as the most beautiful 

theorem in mathematics. 

Theory of knowledge: The changing structure of mathematics658

The changing structure of 
mathematics

Mathematics is one of  humankind’s greatest intellectual achievements, not just 

for the mathematical knowledge accumulated through centuries, but mainly for 

the power and organization that its language, methods and theories offer. 

Mathematical methods have dictated technological progress, inspired social 

and economic thought and fashioned styles in painting, music and architecture.

Theory of knowledge

 Why do mathematicians consider this equation beautiful? 

 Do the survey results prove that this theorem is the most 

beautiful result in mathematics? Should the beauty of theorems

be established in this way? 

 How can we assess the beauty of a mathematical result?

 Investigate mathematical 

in uences in architecture and the 

arts.
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“There is an amazingly high consensus in mathematics as to what 

is correct or accepted. But alongside this, equally important, is the issue of  what is interesting or important 

or deep or elegant. These esthetic criteria vary widely from person to person and decade to decade.” 

Reuben Hersh, Professor Emeritus at the University of New Mexico 

Moving into higher dimensions
In the last 200 years, the nature of mathematical concepts has 

changed greatly. Generations of mathematicians have realized that 

old concepts like number and geometrical shapes can be extended 

intellectual activity where the value of a theory transcends its 

 What is hyperbolic space?

 Mathematics allows us to work in higher dimensions. 

intuitittitittititititttitit on.

Intuition to formalism

While exploring the possible extension 

of complex numbers to dimension 3, the 

Irish mathematician William Rowan 

Hamilton (1805–65) realized that he 

could defi ne ‘new’ numbers in 

dimension four. Like complex numbers, 

they could be described by vectors, but 

their multiplication was not 

commutative. 

This was a remarkable development. 

Until then all ‘new’ numbers were 

manipulated assuming that the ‘usual’ 

properties of operations such as 

multiplication hold. This discovery was 

of extreme importance for 

mathematicians, as it left them free to 

‘invent’ new structures and develop new 

algebras. Also, the need to establish 

which properties are valid when dealing 

with new numbers brought more rigor 

to mathematics. 

 Look at the mathematical structures 

you have studied. Which properties 

do the operations with numbers, 

vectors or functions have? 

 Which operations are not 

commutative? 

 Do you know any operation that is 

not associative? 

 Is it possible to ‘invent’ a non-

associative operation?

” Inscription on Broome Bridge, Dublin, 

commemorating Hamilton’s discovery of 

multiplication in four dimensions

You can  nd out more about Hamilton’s discovery 

at http://plus.maths.org/content/os/issue33/

features/baez/index



Exploration13

. About the exploration

The exploration is an opportunity for you to show that you can 

apply mathematics to an area that interests you.

You should aim to spend: 

10 hours of class time 10 hours of your own time

● Discussing the 

assessment criteria

● Discussing suitable 

topics/titles

● Discussing your 

progress with your 

teacher

● Planning your exploration, doing research to help select an 

appropriate topic

● Researching, collecting and organising your data and/or 

information

● Applying mathematical processes:

■ Ensuring that all of your results are derived using logical 

deductive reasoning

■ Ensuring that your proofs (when necessary) are coherent 

and correct

● Demonstrating mathematical communication and presentation:

■ Checking that your notation and terminology are 

consistently correct

■ Adding diagrams, graphs or charts where necessary 

■ Making sure your exploration is clearly structured and reads 

well

As part of your Mathematics HL course, you need to write an 

exploration, which will be assessed internally and counts as 20% of your 

 nal grade.

This chapter gives you advice on planning your exploration, hints 

and tips to help you get a good grade by making sure your 

exploration satis es the assessment criteria, as well as suggestions on

choosing a topic and getting started on your exploration.
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Your school will set you deadlines for submitting a draft and the 

fi nal piece of  work. 

If  you do not submit an exploration then you receive a grade of  “N” 

for Mathematics HL, which means you will not receive your IB 

diploma. 

. Internal assessment criteria

Your exploration will be assessed by your teacher, against given 

criteria. 

It will then be externally moderated by the IB using the same 

assessment criteria. 

The fi nal mark for each exploration is the sum of  the scores for each 

criterion. 

The maximum possible fi nal mark is 20. 

This is 20% of  your fi nal grade for Mathematics HL.

A good exploration should be clear and easily understood by one of  

your peers, and self-explanatory all the way through. 

The criteria are split into fi ve areas, A to E:

Criterion A Communication

Criterion B Mathematical presentation

Criterion C Personal engagement

Criterion D Re ection

Criterion E Use of mathematics

Criterion A: Communication

This criterion assesses the organization, coherence, conciseness and 

completeness of  the exploration. 

Achievement 

level

Descriptor

0 The exploration does not reach the standard 

described by the descriptors below.

1 The exploration has some coherence.

2 The exploration has some coherence and shows 

some organisation.

3 The exploration is coherent and well organised. 

4 The exploration is coherent, well organised, concise 

and complete.

Every candidate taking 

Mathematics HL must

submit an exploration.

Ensure that you 

know your school’s 

deadlines and keep to 

them.

These criteria are explained in more 

detail, with tips on how to ensure your 

exploration satis es them. 

Make sure you understand these 

criteria and consult them frequently 

when writing your exploration.
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Criterion B: Mathematical presentation

This criterion assesses to what extent you are able to:

● use appropriate mathematical language (notation, symbols, terminology) 

● defi ne key terms, where required

● use multiple forms of  mathematical representation such as formulae, 

diagrams, tables, charts, graphs and models, where appropriate.

Achievement 

level

Descriptor

0 The exploration does not reach the standard described by the descriptors below.

1 There is some appropriate mathematical presentation.

2 The mathematical presentation is mostly appropriate.

3 The mathematical presentation is appropriate throughout.

Your exploration

To get a good mark for Criterion A:  Communication

 A well organised exploration should have

 An introduction in which you should discuss the context of the exploration

 A rationale which should include an explanation of why you chose this topic 

 A description of the aim of the exploration which should be clearly identi able

 A conclusion

 A coherent exploration is logically developed and easy to follow. 

 Your exploration should “read well”.

 Any graphs, tables and diagrams that you use should accompany the work in the 

appropriate place and not be attached as appendices to the document.

 A concise exploration is one that focuses on the aim and avoids irrelevancies.

 A complete exploration is one in which all steps are clearly explained without detracting 

from its conciseness.

 It is essential that references are cited where appropriate, i.e.,

 Your exploration should contain footnotes as appropriate. For example, if you are using a 

quote from a publication, a formula from a mathematics book, etc, put the source of the 

quote in a footnote.

 Your exploration should contain a bibliography as appropriate. This can be in an 

appendix at the end. List any books you use, any websites you consult, etc.
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Criterion C: Personal engagement

This criterion assesses the extent to which you engage with the 

exploration and make it your own.

Achievement 

level

Descriptor

0
The exploration does not reach the standard described 

by the descriptors below.

1
There is evidence of limited or super cial personal 

engagement. 

2 There is evidence of some personal engagement.

3 There is evidence of signi cant personal engagement.

4
There is abundant evidence of outstanding personal 

engagement.

Your exploration

To get a good mark for Criterion B: Mathematical presentation

 You are expected to use correct mathematical notation and terminology when 

communicating mathematical ideas, reasoning and  ndings.

 You are encouraged to choose and use appropriate ICT tools such as graphic display 

calculators, mathematical software, spreadsheets, databases, drawing and word-processing 

software, as appropriate, to enhance mathematical communication. 

 You should de ne key terms, where required.

 You should express your results to an appropriate degree of accuracy, when 

applicable.

 You should always include scales and labels if you use a graph. Tables should have 

appropriate headings.

 Variables should be explicitly de ned. 

 Do not use calculator or computer notation. For example, use 2x and not 2^x; use × not *; 

use 0.028 and not 2.8E-2.
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Criterion D: Refl ection

This criterion assesseshow you review, analyse and evaluate the 

exploration.

Achievement 

level

Descriptor

0 The exploration does not reach the standard described by the descriptors 

below.

1 There is evidence of limited or super cial re ection.

2 There is evidence of meaningful re ection.

3 There is substantial evidence of critical re ection.

Your exploration

To get a good mark for Criterion C: Personal engagement

 You should choose a topic for your exploration that you are interested in as it 

will be easier to display personal engagement.

 You can demonstrate personal engagement by using some of the following different 

attributes and skills.

 Thinking and working independently

 Thinking creatively

 Addressing your personal interests 

 Presenting mathematical ideas in your own way

 Asking questions, making conjectures and investigating mathematical ideas

 Looking for and creating mathematical models for real-world situations

 Considering historical and global perspectives

 Exploring unfamiliar mathematics.

Your exploration

To get a good mark for Criterion D: Re ection

 Although re ection may be seen in the conclusion to the exploration, it may 

also be found throughout the exploration.

 You can show re ection in your exploration by

 Discussing the implications of your results

 Considering the signi cance of your  ndings and results

 Stating possible limitations and/or extensions to your results

 Making links to different  elds and/or areas of mathematics.
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Criterion E: Use of mathematics 

This criterion assesses to what extent and how well you use mathematics in your exploration.

Achievement 

level

Descriptor

0 The exploration does not reach the standard described by the descriptors below.

1 Some relevant mathematics is used. Limited understanding is demonstrated.

2 Some relevant mathematics is used. The mathematics explored is partially 

correct. Some knowledge and understanding are demonstrated.

3 Relevant mathematics commensurate with the level of the course is used. 

The mathematics explored is correct. Good knowledge and understanding are 

demonstrated.

4 Relevant mathematics commensurate with the level of the course is used. The 

mathematics explored is correct and re ects the sophistication expected. Good 

knowledge and understanding are demonstrated.

5 Relevant mathematics commensurate with the level of the course is used. 

The mathematics explored is correct and re ects the sophistication and rigor 

expected. Thorough knowledge and understanding are demonstrated.

6 Relevant mathematics commensurate with the level of the course is used. 

The mathematics explored is precise and re ects the sophistication and rigor 

expected. Thorough knowledge and understanding are demonstrated.

Your exploration

To get a good mark for Criterion E: Use of mathematics

 You are expected to produce work that is commensurate with the level of the 

course you are studying. The mathematics you explore should either be part of 

the syllabus, or at a similar level (or beyond).

 You should ensure that the mathematics involved is not completely based on mathematics 

listed in the prior learning.

 If the level of mathematics is not commensurate with the level of the course you can 

only get a maximum of two marks for this criterion.

 You need to demonstrate within your exploration that you fully understand the mathematics 

used.

 You can demonstrate sophistication of mathematics in your exploration by

 Showing that you understand and can use challenging mathematical concepts

 Showing that you can extend the applications of mathematics beyond that which you 

learned in the classroom

 Looking at a problem from different mathematical perspectives 

 Identifying underlying structures to link different areas of mathematics. 

 Rigor involves clarity of logic and language when making mathematical arguments and 

calculations.

 Precise mathematics is error-free and uses an appropriate level of accuracy at all times.
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. How the exploration is marked

Once you have submitted the fi nal version of  your exploration, your 

teacher will mark it. The teacher looks at each criterion in turn, 

starting from the lowest grade. As soon as your exploration fails to 

meet one of  the grade descriptors, then the mark for that criterion 

isset.

The teacher submits these marks to the International Baccalaureate, 

via a special website. A sample of  your school’s explorations is 

selected automatically from the marks that are entered and this 

sample is sent to an external moderator to be checked. This person 

moderates the explorations according to the assessment criteria 

and checks that your teacher has marked the explorations 

accurately. 

If  your teacher has applied the criteria to the exploration too 

severely then your school’s exploration marks may be increased. 

If  your teacher has applied the exploration criteria too leniently then 

your school’s exploration marks may be decreased.

. Academic honesty

This is extremely important in all your work. Make sure that 

you have read and are familiar with the IB academic honesty 

document.

Academic honesty means:

● that your work is authentic

● that your work is your own intellectual property 

● that you conduct yourself  properly in written examinations 

● that any work taken from another source is properly cited.

Authentic work:

● is work based on your own original ideas 

● can draw on the work and ideas of  others, but this must be fully 

acknowledged (e.g. in footnotes and a bibliography)

● must use your own language and expression – for both written or 

oral assignments.

● must acknowledge all sources fully and appropriately (e.g. in a 

bibliography).

Your teacher or IB 

Diploma Programme 

coordinator will be 

able to give you this 

document.
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Acknowledging sources

Remember to acknowledge all your sources. Both teachers and 

moderators can usually tell when a project has been plagiarised. 

Many schools use computer software to check for plagiarism. If  you 

are found guilty of  plagiarism then you will not receive your 

diploma. It is not worth taking the risk.

. Record keeping

Throughout the course, it would be a good idea to keep an 

exploration journal, either manually or online. Keeping a journal 

will help you to focus your search for a topic, and also remind you 

of  deadlines.

You will  nd a 

de nition of plagiarism 

in the IB academic 

honesty document.

Keeping a journal 

while you write 

your exploration 

will also help you 

to demonstrate its 

academic honesty. 

Malpractice

The IB defi nes malpractice as ‘behavior that results in, or may 

result in, the candidate or any other candidate gaining an unfair 

advantage in one or more assessment components’. 

Malpractice includes:

● plagiarism – copying from others’ work, published or otherwise

● collusion – working secretly with at least one other person in 

order to gain an undue advantage. This includes having someone 

else write your exploration, and passing it off  as your own

● duplication of  work 

● any other behavior that gains an unfair advantage. 

‘Plagiarism’ is a word 

derived from Latin, 

meaning ‘to kidnap’. 

Advice to schools:

● A school-wide policy must be in place to promote academic 

honesty 

● All candidates must clearly understand this policy 

● All subject areas must promote the policy 

● Candidates must be clearly aware of  the penalties for 

academic dishonesty 

● Schools must enforce penalties, if  incurred.
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If  you use a journal for theory of  knowledge you will probably 

appreciate how much help it is when writing your essays. In the 

same way, keeping a journal for your exploration will be a great 

assistance in focusing your efforts.

● Make notes of  any books or websites you use, as you go along, 

so you can include them in your bibliography.

● There are different ways of  referencing books, websites, etc. 

Make sure that you use the style advised by your school and be 

consistent

● Keep a record of  your actions so that you can show your teacher 

how much time you are spending on your exploration. Include any 

meetings you may have with your teacher about your exploration.

● Remember to follow your teacher’s advice and meet the school’s 

deadlines.

● The teacher is there to help you – so do not be afraid to ask for 

guidance. The more focused your questions are, the better 

guidance your teacher can give you.

. Choosing a topic

You need to choose a topic that interests you, because then you will 

enjoy working on your exploration, you will put more effort into the 

exploration, and you will be able to demonstrate authentic personal 

engagement more effectively. You should discuss the topic with your 

teacher before you put too much time and effort into writing your 

exploration.

Your teacher might 

give your class a set 

of stimuli – general 

areas from which you 

could choose a topic.

Alternatively they 

might encourage 

you to  nd your own 

topic based on your 

interests and level 

of mathematical 

competence.

Mind mapping may 

help you choose a 

topic. See pages 

670–671.

Each chapter of this 

book suggests some 

ideas for explorations, 

which could be 

starting points for you 

to choose a topic.

These questions may help you to  nd a topic for your exploration:

● What areas of the syllabus am I enjoying the most?

● What areas of the syllabus am I performing best in?

● Which mathematical skills are my strengths?

● Do I prefer pure mathematics, or applied problems and modeling?

● Have I discovered, either through reading or the media, mathematical 

areas outside the syllabus that I  nd interesting?

● What career do I eventually want to enter, and what mathematics is 

important in this  eld?

● What are my own special interests or hobbies? Where is the mathematics 

in these areas?
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. Getting started
Once you have chosen your topic, the next step is to do some 

research. The purpose of  the research is to determine the suitability 

of  your topic. 

Once you think you have a workable topic, write a brief  outline 

covering:

● why you chose this topic

● how your topic relates to mathematics

● the mathematical areas in your topic, e.g. algebra, geometry, 

trigonometry, calculus, probability and statistics, etc.

● the key mathematical concepts in your topic, e.g. areas of  

irregular shapes, curve fi tting, modeling data, etc.

● the mathematical skills you will need, e.g. writing formal proofs, 

integration, operations with complex numbers, graphing 

piecewise functions, etc.

● any mathematics outside the syllabus that you will need

● possible technology and software that can help in the design of  

your exploration and in doing the mathematics

● key mathematical terminology and notation required in your topic.

Now you are ready to start writing the topic in detail.

Remember that your fellow students (your peers) should be able to 

read and understand your exploration. You could ask one of  your 

classmates to read your work and comment on any parts which are 

unclear, so you can improve them.

Do not limit your 

research to the 

internet. Your school 

library will have books 

on mathematics that 

are interesting and 

related to a variety of 

different  elds.

If your original 

choice of topic is not 

suitable, has your 

research suggested 

another, better topic? 

Otherwise could you 

either widen out or 

narrow down your 

topic to make it 

more suitable for the 

exploration?

Make sure you 

keep every internal 

deadline that your 

teacher assigns. 

In this way, you will 

receive feedback in 

time for you to be 

able to complete 

your exploration 

successfully.

These questions will help you to decide if your chosen topic is suitable

● What areas of mathematics are contained in my topic?

● Which of these areas are accessible to me or are part of the syllabus?

● Is there mathematics outside the syllabus that I would have to learn in 

order to complete the exploration successfully? Am I capable of doing this?

● Can I show personal engagement in my topic, and how?

● Can I limit my work to the recommended length of 6 to 12 pages if I 

choose this topic?
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One way of  choosing a topic is to start with a general area of  

interest and create a mind map. This can lead to some interesting 

ideas on applications of  mathematics to explore.

The mind map below shows how the broad topic ‘Geography’ 

can lead to suggestions for explorations into such diverse topics 

as the spread of  disease, earthquakes or global warming.
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Prior learning

CHAPTER OBJECTIVES:

This chapter contains a number of short topics 

that you should know before starting the course.  

You do not need to work through the whole of this 

chapter in one go. For example, before you start 

work on an algebra chapter in the book, make sure 

you have covered the algebra prior learning in this chapter.

The IB Higher Level 

examination questions 

will expect you to 

know all the topics 

in this chapter. Make 

sure you have covered 

them all.
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 Number

. Calculation

There are several versions of  the rules for the order 

of  operations. They all amount to the same thing:

● Brackets or parentheses are calculated fi rst.

● Next come exponents, indices or orders.

● Then multiplication and division, in order from 

left to right.

● Finally additions and subtractions.

 A fraction line or the line above a square root

counts as a bracket too.

Your GDC follows the rules, so if  you enter a calculation 

correctly you should get the correct answers. 

The GDC shows divisions as fractions, which makes the order of  

operations clearer.

Example 

a Evaluate 
11 + 1

4 3 5

2

− −

( )

( )

 = 
11 + 1

4 2− −( )

 = 
12

6

 = 2

brackets fi rst

simplify numerator

and denominator

b Evaluate 
− −3 + 9 8

4

 = 
3 + 1

4

 = 
3 + 1

4

 = 
2

4

 = 
1

2

simplify the terms

inside the square root

evaluate the root

simplify the numerator

and denominator

BEDMAS:  Brackets, exponents, 

division, multiplication, 

addition, subtraction.

BIDMAS:  Brackets, indices, division, 

multiplication, addition, 

subtraction.

BEMDAS:  Brackets, exponents, 

multiplication, division, 

addition, subtraction.

BODMAS:  Brackets, orders, division, 

multiplication, addition, 

subtraction.

BOMDAS:  Brackets, orders, 

multiplication, division, 

addition, subtraction.

PEMDAS:  Parentheses, exponents, 

multiplication, division, 

addition, subtraction.

Simple calculators, 

like the ones on 

phones, do not always 

follow the calculation 

rules.

{ Continued on next page
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On your GDC you can either 

use templates for the fractions 

and roots or you can use 

brackets.

Exercise 1A

Do the questions by hand fi rst, then check your answers with your GDC.

1 Calculate

a 12 – 5 + 4 b 6 ÷ 3 × 5 c 4 + 2 × 3 – 2

d 8 – 6 ÷ 3 × 2 e 4 + (3 – 2) f (7 + 2) ÷ 3

g (1 + 4) × (8 – 4) h 1 – 3 + 5 × (2 – 1)

2 Find

a 
6 + 9

4 1
b

2 9

3 4

×

×
c

2 3 + 4

4 2 3× −

( )

( )
d

6 5 4

3 2 1

× ×

× −

3 Determine

a 3 × (–2)2 b 22 × 33 × 5 c 4 × (5 – 3)2 d (– 3)2 – 22

4 Calculate

a 3 4
2 2

+ b 4( )
3

c 43 d 2 2 2+ +

5 Find

 a 
13 3 4

2 18

2 2 2
− +( )

×
b 2

3 5

7

2
+

c 2(32 – 4(–2)) – (2 – 7 3)

. Simplifying expressions involving roots

2, 2 – 3 5, 3

3
, are irrational numbers that involve square roots. 

They are called surds or radicals

In calculations, you can use approximate decimals for these types of  

irrational number, but for more accurate results you can use surds.

Surds are written in their simplest form when:

● there is no surd in the denominator 

● the smallest possible whole number is under the sign.

➔ Rules of surds

2

== × = ×
a a

b b
a a a b a b

If a question asks 

for an exact value, 

it means leave your 

answer in surd form. 

In examinations, surds 

may be left in the 

denominator.
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Example 

Simplify

a 
4

5
b

3

3

Answers

a 
4 4 5

=
5 5 5

×

=
4

5

5
2

( )

=
4 5

5

b 
3 3 5

=
3 3 3

×

=
3

3

3
2

( )

=
3

3

3

= 3

Multiply numerator and 

denominator by 5

Multiply numerator and 

denominator by 3

Cancel the common factor

Example 

Simplify

a 20 b 8 18

Answers

a 20 = 4 5 = 2 5

b 8 18 = 4 2 9 2

= 2 2 3 3

= 2

− × − ×

a b a b× = ×

Look for square numbers that divide 

into 8 and 18. Use these to write 8 

and 18 as products

Use a b a b× = ×

Example 

Expand the brackets and simplify 1+ 2 1 2( )( )

Answer

1+ 2 1 2 =1 2 + 2 2
2

( )( ) ( )− − −

= 1– 2 

= –1

(a +b)(c + d) 

= ac + ad + bc + bd
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Example 

Rewrite the fraction 
1

1+ 3( )
 without surds in the denominator

Answer

1

1+ 3

1

1+ 3

1 3

1 3

1 3

1 3

1 3

2

=

= =

( ) ( )

( )

( )
×

Multiply numerator and 

denominator by 

1 – 3

Exercise 1B

1 Simplify

a 
1

2
b

6

3
c 5

5
d 10 2

5
e

2

5

2 Simplify

a 12 b 75 c 72 d 3 8 e 5 27

3 Simplify

a 3 12× b 3 27× c 24 32×

d 2 3 3 2× e 3 5 5 75×

4 Simplify

a 3 5 +2 5 b 5 2 3 2− c 2 3 + 12

d 2 8− e 12 2 3−

5 Expand and simplify

a 3+ 2
2

( ) b 2 + 3
2

( ) c 3+ 2 1 2( )( )−

d 4 + 3 1 2( )( )− e 2+ 2 2 2( )( )−

6 Simplify

a 
1+ 3

7
b

1

1 2 3
c 5

1+ 5
d

4 + 2

3 2 2

7 Write these without a surd on the denominator. 

Simplify as much as possible.

a 
2

3
+3 3 b

3

2

5

3
+ c 20 +

2

5
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. Primes, factors and multiples

A prime number is an integer, greater than 1, that is not a multiple 

of  any other number apart from 1 and itself.

Example 

List all the factors of  42.

Answer

42 = 1 × 42, 42 = 2 × 21, 

42 = 3 × 14, 42 = 6 × 7

The factors of  42 are 1, 2, 3, 6, 7, 

14, 21 and 42.

Write 42 as a product of  two numbers 

every way you can.

Example 

Write the number 24 as a product of  prime factors.

Answer

2 24   24 = 2 × 2 × 2 × 3

2 12  = 23 × 3

2 6

3 3

1

Begin dividing by the smallest prime 

number. Repeat until you reach an 

answer of  1.

The lowest common multiple of  a pair of  numbers is the smallest 

number that is a multiple of  both of  them.

Example 

Find the lowest common multiple (LCM) of  12 and 15.

Answer

The multiples of  12 are

 12, 24, 36, 48, 60, 72, 84, 96, 108, 

120, 132, 144...

The multiples of  15 are

 15, 30, 45, 60, 75, 90, 105, 120, 

135...

The common multiples are 60, 

120...

The LCM is 60.

List all the multiples until you fi nd 

some in both lists. The LCM is the 

smallest number in each of  the lists.

In 2009, the largest 

known prime was a 

12 978 189 digit 

number. 

Prime numbers have 

become big business 

because they are 

used in cryptography. 
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The highest common factor of  a pair of  numbers is the largest 

number that is a factor of  both of  them.

Example 

Find the highest common factor (HCF) of  36 and 54.

Answer

2 36

2 18

3 9

3 3

1

 36 = 2 × 2 × 3 × 3 2 54

3 27

3 9

3 3

1

 54 = 2 × 3 × 3 × 3

The HCF of  36 and 54 is 2 × 3 × 3 = 18

Exercise 1C

1 List all the factors of

a 18 b 27 c 30 d 28 e 78

2 Write as products of  prime factors.

a 36 b 60 c 54 d 32 e 112

3 Find the LCM of  

a 8 and 20 b 6, 10 and 16

4 Find the HCF of  

a 56 and 48 b 36, 54 and 90

Some GDCs are able to perform these operations, as in these examples.

. Fractions and decimals

There are two types of  fraction:

● common fractions (often just called ‘fractions’) 

like 
4

5

numerator

denominator

● decimal fractions (often just called ‘decimals’) 

like 0.125.

Write each numbers 

as a product of 

prime factors. Find 

the product of all 

the factors that are 

common to both 

numbers.

The HCF is also called 

the ‘greatest common 

divisor’ or ‘gcd’. Most 

GDCs use ‘gcd’.
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Fractions can be: 

proper such as 
2

3
, where the numerator is less than 

the denominator

improper such as 
4

3
 where the numerator is greater 

than the denominator

mixed numbers such as 6
7

8

Fractions where the numerator and denominator 

have no common factor are in their lowest terms

1

3

4

12
 and  are equivalent fractions.

0.675 is a terminating decimal.

0.32... or 0 32 or 0 32   are different ways of  writing the 

recurring decimal 0.3232 323 232...

Non-terminating, non-recurring decimals are 

irrational numbers, like π or 2

Using a GDC, you can either enter a fraction using 

the fraction template 




 or by using the divide key ÷. 

Take care – you will sometimes need to use brackets.

Example 

a Evaluate

1

2
+

3

8

4

9
×

=
1

2
+

1

6
=

4

6

=
2

3

b Evaluate

1

2
+

1

3

1

2

1

3
×

=

5

6

1

6

 = 5

× before +

simplify

evaluate numerator and 

denominator fi rst

π ≈ 3.14159265358979323846264

3383279502884197169399375...

2 ≈ 1.4142135623730950488016

8872420969807856967187537...

They do not terminate and there are 

no repeating patterns in the digits.

The Rhind Papyrus from ancient 

Egypt in around 1600 BCE shows 

calculations using fractions. Egyptians 

used unit fractions so for 
4

5
 they 

would write 
1

2
+
1

4
+

1

20
. This is not 

generally regarded as a very helpful 

way of writing fractions.
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Example 

a Convert 
7

16
 to a decimal. b Write 3

7

8
 as an improper fraction.

Answers

a
7

16
 = 0.4375

b 3
7

8
=

24

8
+

7

8

=
31

8

Exercise 1D 

1 Calculate 

a 
1

2
 + 

3

4
 × 

5

9
b

2

3
 ÷ 

5

6
 × 1

1

3

c 
3

5

4

5

2 2

⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ d

1
2

3

1
2

3

5

⎛
⎝
⎜

⎞
⎠
⎟

2 Write the following fractions in their lowest terms.

a 
16

36
b

35

100
c

34

51
d

125

200

3 Write these mixed numbers as improper fractions.

a 3
3

5
 b 3

1

7
 c 23

1

4
 d 2

23

72

4 Write these improper fractions as mixed numbers.

a 
32

7
 b 

100

3
 c 

17

4
 d 

162

11

5 Convert to decimals.

a 
8

25
 b 

5

7
 c 3

4

5
 d 

45

17

. Percentages

A percentage is a way of  expressing a fraction or a ratio as 

part of  a hundred. 

For example 25% means 25 parts out of  100. 

As a fraction, 25% = 
25

100

1

4
=

As a decimal, 25% = 0.25.

There are some useful 

tools for working with 

fractions. Look in 

menu  2:Number.

To convert a fraction 

to a decimal, divide 

the numerator by the 

denominator. Pressing 

ctrl ≈ will give the 

result as a decimal 

instead of a fraction.

10%

Don’t know:

41%

Not Favorable:

40%

Favorable:

19%
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Example 

Lara’s mark in her maths test was 25 out of  40. What was her mark 

as a percentage?

Answer

25

40
 × 100 = 62.5% Write the mark as a fraction.

Multiply by 100.

Use your GDC.

Example 

There are 80 students taking the IB in a school. 15% take Maths 

Standard level. How many students is this?

Answer

Method 1

15

100
 × 80 = 12

Method 2

15% = 0.15

0.15 × 80 = 12

Write the percentage as a fraction out of  

a hundred and then multiply by 80.

Write the percentage as a decimal.

Multiply by 80.

Exercise 1E

1 Write as percentages

a 13 students from a class of  25 b 14 marks out of  20

2 Find the value of  

a 7% of  32 CHF   b 4
1

2
% of  12.00 GBP

c 25% of  750.28 EUR  d 130% of  8000 JPY

Percentage increase and decrease

Consider an increase of  35%. 

The new value after the increase will be 135% of  the original value. 

So to increase an amount by 35%, fi nd 135% of  the amount. 

Multiply by 
135

100
 or 1.35. 

Now consider a decrease of  15%. 

After a 15% decrease, the new value will be 85% of  the original. So 

to decrease an amount by 15% fi nd 85%. Multiply by 
85

100
 or by 0.85.

7% = 0.07
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Example 

a The manager of  a shop increases the prices of  CDs by 12%. 

 A CD originally cost 11.60 CHF.

 What will it cost after the increase?

b The cost of  a plane ticket is decreased by 8%.

 The original price was 880 GBP. What is the new price?

c The rent for an apartment has increased from 2700 EUR to 

3645 EUR per month. 

 What is the percentage increase?

Answers

a 11.60 × 1.12 = 12.99 CHF 

(to the nearest 0.01 CHF)

b 880 × 0.92 = 809.60 GBP

c Method 1

The increase is 3645 − 2700 

= 945 EUR

The percentage increase 

is 
945

2700
 × 100 = 35%

Method 2

3645

2700
 = 1.35 = 135%

 Percentage increase is 35%.

After a 12% increase, the amount will 

be 112% of  its original value.

After an 8% decrease, the amount will 

be 92% of  its original value.

Find the increase.

Work out the increase as a percentage 

of  the original amount.

Percentage increase = 

actual increase

original amount
 × 100%

 Calculate the new price as a 

percentage of  the old price.

Example 

In a shop, an item’s price is given as 44 AUD, including tax. 

The tax rate is 10%.

What was the price without the tax?

Answer

Call the original price x.

After tax has been added, the price 

will be 1.10x.

Hence 1.10x = 44

x = 44 ÷ 1.10

 = 40

The price without tax is 40 AUD.

110% = 1.10

Solve for x.

Divide both sides by 1.10.

Exercise 1F

1 In the UK, prices of  some goods include a government tax 

called VAT, which is at 20%. 

A TV costs 480 GBP before VAT. How much will it cost 

including VAT?
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2 In a sale in a shop in Tokyo, a dress that was priced at 17 000 

JPY is reduced by 12.5%. What is the sale price?

3 The cost of  a weekly train ticket goes up from 120 GBP to 

128.40 GBP. What is the percentage increase?

4 Between 2004 and 2005, oil production in Australia fell from 

731 000 to 537 500 barrels per day. What was the percentage 

decrease in the production?

5 Between 2005 and 2009 the population of  Venezuela increased 

by 7%. The population was 28 400 000 in 2009. What was it 

in 2005 (to the nearest 100 000)?

6 An item appears in a sale marked as 15% off  with a price tag 

of  27.20 USD. What was the original price before discount?

7 The rate of  GST (goods and service tax) that is charged on items 

sold in shops was increased from 17% to 20%. What would the 

price increase be on an item that costs 20 GBP before tax?

8 A waiter mistakenly adds a 10% service tax onto the cost of  a 

meal which was 50.00 AUD. He then reduces the price by 10%. 

Is the price now the same as it started? If  not, what was the 

percentage change from the original price?

. Ratio and proportion

The ratio of  two numbers r and s is r : s. It is equivalent 

to the fraction 
r

s
. Like the fraction, it can be written in 

its lowest terms. 

For example, 6 : 12 is equivalent to 1: 2 (dividing 

both numbers in the ratio by 6).

In a unitary ratio, one of  the terms is 1.

For example 1: 4.5 or 25 : 1.

If  two quantities a and b are in proportion, then the 

ratio a : b is fi xed. 

We also write a ∝ b (a is proportional to b).

Example 

200 tickets were sold for a school dance. 75 were bought by boys and 

the rest by girls. Write down the ratio of  boys to girls at the dance, in its 

lowest terms.

Answer

The number of  girls is 200 – 75 = 125

The ratio of  boys to girls is 75 : 125 = 3 : 5

When you write a ratio in its lowest 

terms, both numbers in the ratio 

should be positive whole numbers.

When you write a 

unitary ratio, you can 

use decimals.

Always give the ratio in 

its lowest terms.
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Map scales are often written as a ratio. A scale of  1: 50 000 means 

that 1 cm on the map represents 50 000 cm = 0.5 km on the earth.

Example 

An old English map was made to the scale of  1 inch to a mile. 

Write this scale as a ratio.

Answer

1 mile  = 1760 × 3 × 12 

= 63 360 inches

The ratio of  the map is 1: 63 360

Always make sure that the units in 

ratios match each other.

Example 

Three children, aged 8, 12 and 15 win a prize of  140 USD. 

They decide to share the prize money in the ratio of  their ages. 

How much does each receive?

Answer

140 USD is divided in the ratio 

8 : 12 : 15.

This is a total of  8 + 12 + 15 

= 35 parts.

140 ÷ 35 = 4 USD

8 × 4 = 32, 12 × 4 = 48 and 

15 × 4 = 60

The children receive 32 USD, 

48 USD and 60 USD.

Divide the money into 35 parts.

One part is 4 USD.

Exercise 1G

1 Aspect ratio is the ratio of  an image’s width to its height. 

A photograph is 17.5 cm wide by 14 cm high. 

What is its aspect ratio, in its lowest terms?

2 Gender ratio is expressed as the ratio of  men to women in the 

form n : 100. Based on the fi gures for 2008, the gender ratio of  

the world was 102 : 100. In Japan, there were 62 million men and 

65.2 million women in 2008. What was the gender ratio in Japan?

3 Ryoka was absent for a total of  21 days during a school year of  32 

weeks. What is the ratio of  the number of  days that she was absent 

to the number of  possible days she could have spent at the school 

during the year in its simplest terms? (A school week is 5 days.)

12 inches = 1 foot 

3 feet = 1 yard 

1760 yards = 1 mile

Leonardo da Vinci

drew this famous 

drawing of Vitruvian 

Man around 1487. 

The drawing is based 

on ideal human 

proportions described 

by the ancient Roman 

architect Vitruvius.
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4 A model airplane has a wingspan of  15.6 cm. The model is 

built to a scale of  1 : 72. What was the wingspan of  a full-sized 

airplane (in metres)?

5 On a map, a road measures 1.5 cm. The actual road is 3 km long. 

What is the scale of  the map and how long would a footpath that 

is 800 m long be on the map?

6 A joint collection is made for two charities and it is agreed that 

the proceeds should be split in the ratio 5 : 3 between an animal 

charity and one for sick children. 72 USD is collected. 

How much is donated to the two charities?

7 For a bake sale, a group of  students decide to make brownies, 

chocolate chip cookies and fl apjacks in the ratio 5 : 3 : 2. 

They plan to make 150 items all together. How many of  each 

will they need to make?

. The unitary method

In the unitary method, you begin by fi nding the value of  one part or 

item.

Example 

A wheelbarrow full of  concrete is made by mixing together 6 spades of  

gravel, 4 spades of  sand, 2 spades of  cement and water as required. 

When there are only 3 spades of  sand left, what quantities of  the other 

ingredients will be required to make concrete? 

Answer

The ratio gravel : sand : cement 

            is 6 : 4 : 2 

            or 
6

4

4

4

2

4

3

2

1

2

9

2

3

2

: :

= :1: = : 3 :

Hence the mixture requires 4
1

2
 spades of  gravel to 3 spades of  

sand to 1
1

2
 spades of  cement.

Exercise 1H

1 Josh, Jarrod and Se Jung invested 5000 USD, 7000 USD and 

4000 USD to start up a company. In the fi rst year, they make a 

profi t of  24 000 USD which they share in the ratio of  the 

money they invested. How much do they each receive?

Since the value you 

want to change is 

the sand, make sand 

equal to 1 by dividing 

through by 4. Then 

multiply through by 3 

to make the quantity 

of sand equal to 3.
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2 Amy is taking a maths test. She notices that there are three 

questions worth 12, 18 and 20 marks. The test lasts one hour 

and fi fteen minutes. She decides to allocate the time she spends 

on each question in the ratio of  the marks. How long does she 

spend on each question?

. Number systems

Throughout this course, you will be working with real numbers. 

There are two types of  real numbers – rational numbers and 

irrational numbers.

➔ Rational numbers are numbers that can be written in the form 
a

b
, where a and b are both integers, and b ≠ 0.

2

5
, 

17

8
, 0.41, 1 3, and 9 are rational numbers.

2

5
 and 

17

8
 are written in the form 

a

b

0.41 can be written in the form 
a

b
, because 0 41

41

100
=

1.3 can be written in the form 
a

b
, because 1 3

4

3
=

9 can be written in the form 
a

b
, because 9

9

1
=

Within the set of  rational numbers are sets of  numbers 

called natural numbers {0, 1, 2, 3, ...} and integers

{–4, –3, –1, 0, 1, 2, 3, ...}.

 represents the set of  real numbers,  rational numbers,  natural 

numbers, and  integers.  

➔ Irrational numbers are real numbers that can be written as 

decimals that never terminate or repeat.

3, π, e, and 117 are irrational numbers.

3 1 7320508= . ... p = 3 14159265. ...

e = 2.7182818. . . 117 10 8166538= . ...

Repeating or 

terminating decimals 

can be written as 

fractions, so they are 

rational numbers. 
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Example 

Classify each of  these real numbers as rational or irrational.

2
0.75, 2, 37, 25, 0,

3

Answer

0.75 is a rational number

–2 is a rational number

37 is an irrational number

25 is a rational number

0 is a rational number
2

3



 is an irrational number

0.75 can be written in the form 
3

4
, and 

–2 can be written as 
2

1

 ...37 6.08276  This decimal does 

not repeat or terminate.

25  is a rational number, since it is 

equal to 5.

Even though it is written in fractional 

form, 
2

3
 is not a rational number. 

Multiples of  π are irrational.

Example 

Write the rational number 0.83 in the form 
a

b

Answer

Let  0.83x

100 83.3x , and 10 8.3x

  
 100 10 83.3 8.3x x

90 75x =

x = =

75

90

5

6

Multiply by powers of  10 to change 

the position of  the decimal point.

Subtracting these values cancels out 

the repeating 3s.

Exercise 1I

1 Classify each of  these real numbers as rational or irrational.

a 83 b
4

9
c

2

3



d –0.96

e −0 45 f e 5 g −4 81 h 
5

7
i 1 247 j 18

2 Which of  the numbers from question 1 are:

a integers

b natural numbers?

3 Write each rational number from question 1 in the form 
a

b
, 

where a and b are integers, and b ≠ 0.
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Properties of real numbers

Real number arithmetic uses three important properties.

Commutative property

➔ When adding or multiplying two or more numbers, the order 

does not matter.

For example:

● a + b = b + a

● 15 + 7 = 7 + 15

● xy = yx

● 3(8) = 8(3)

Associative property

➔ When adding or multiplying three or more numbers, you can 

group the numbers in different ways for the calculation 

without changing their order.

For example:

● a b c a b c a b c+ + = + + = + +( ) ( )

● 5 9 16 5 9 16 5 9 16+ + = + + = + +( ) ( )

● xyz xy z x yz= =( ) ( )

● 6 4 10 6 4 10 6 4 10× × = × × = × ×( ) ( )

Distributive property

➔ a b c ab ac+ = +  and a b c ab ac− = −

. Rounding and estimation

To round to a given number of  decimal places:

● Look at the fi gure in the next decimal place.

● If  this fi gure is less than 5, round down.

● If  this fi gure is 5 or more, round up.

To round to a given number of  signifi cant fi gures:

● For any number, read from left to right and ignore the decimal 

point.

● The fi rst signifi cant fi gure is the fi rst non-zero digit, the second 

signifi cant fi gure is the next digit (which can be zero or 

otherwise), and so on.

These properties may 

seem like common 

sense, but you should 

think about when you 

can or can’t use them.

Addition and 

multiplication are 

commutative.

Subtraction and 

division are not.

Use BIDMAS – 

calculate the value in 

the brackets  rst.

The commutative and 

associative properties 

do not work for 

subtraction.

● 20 – 7 ≠ 7 – 20

● (18 – 9) – 3 ≠ 

18 − (9 – 3)

We use this when 

expanding brackets in 

algebra or simplifying 

multiplication.

For example 5 × 32 = 

(5 × 30) + (5 × 2)

An exam question 

might tell you to give 

your answer to two 

decimal places, for 

example.
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3 5 · 2 7 1 0 · 5 3 9

1st 2nd 3rd 4th 5th 1st 2nd 3rd

sf sf sf sf sf sf sf sf

Example 

Write the number 8.0426579 to

a 2 decimal places b 1 signifi cant fi gure c 1 decimal place

d 4 decimal places e 6 signifi cant fi gures

Answers

a 8.04

b 8

c 8.0

d 8.0427

e 8.04266

8.042 next digit less than 5 so round down

8.0 next digit less than 5 so round down

8.04 next digit less than 5 so round down

8.04265 next digit 5 so round up

8.042657 next digit greater than 5 so round up

Example 

Round 42536 to 3 signifi cant fi gures.

Answer

42500 42536 next digit (3) less than 5 so round 

down. 

Replace any other digits before the decimal 

place with zeros.

Estimation

To estimate the value of  a calculation, write all the numbers to one 

signifi cant fi gure.

For example, to estimate the value of  197.2 ÷ 3.97, calculate 

200 ÷ 4 = 50

Exercise 1J

1 Write each number to the nearest number given in the bracket.

a 2177 (ten) b 439 (hundred) c 3532 (thousand) 

d 20.73 (unit) e 12.58 (unit)

2 Write down each number correct to the number of  decimal 

places given in the bracket.

a 0.6942 (2) b 28.75 (1) c 0.9999(2)

d 77.984561 (3) e 0.05876 (2)

When a question 

asks for a number of 

decimal places, write 

them down even if 

some of the values 

are zero.

Estimating the answer 

to a calculation  rst 

gives you an idea of 

the answer to expect. 

If your GDC gives 

you a very different 

answer, you can then 

check if you keyed in 

the values correctly.
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3 Write down each number in question 1 correct to 2 signifi cant 

fi gures.

4 Write down each number in question 2 correct to 3 signifi cant 

fi gures.

5 Write each fraction as a decimal to 3 sf.

a 
2

3
b

3

46
c

5

13

6 Write down an estimate for the value of  the following 

calculations

a 54 04 9 89. .÷ b
2.8 3.79

1.84
c

 
2

7.08 0.7556

8.67

7 Use your GDC to evaluate each part of  question 6 to 3 

signifi cant fi gures.

. Standard form

Very large and very small numbers can be written in standard 

form as 

A × 10n where n is an integer and 1 ≤ A < 10

● First write the number with the place values adjusted so that it is 

between 1 and 10. 

● Then work out the value of  the index, n, the number of  columns 

the digits have moved.

Example 

Write a 89 445  b 0.000 000 065 in standard form

Answers

a 89 445 = 8.9445 × 104

b 0.000 000 065 = 6.5 × 10–8

Write 89 445 as 8.9445 × 10 n

The digits have moved 4 places to the 

right so n = 4.

Write 6.5 × 10 n

The digits have moved 8 places to the 

left, so n = – 8

Exercise 1K

1 Write these in standard form

a 1475 b 231000

c 2.8 billion d 0.35 × 106

e 73.5 × 105

Use your GDC to 

convert each fraction 

to a decimal.

For example, 37300 

is 3.73 × 104 in 

standard form.

Here 1 billion = 1 

thousand million. 

The UK and some 

other countries used 

to use 1 billion = 1 

million million, but the 

1 thousand million 

de nition is becoming 

standard.

Prior learning



691

2 Write these as ordinary numbers

a 6.25 × 104 b 4.2 × 108

c 3.554 × 102

3 Write these in standard form

a 0.0001232 b 0.00004515

c 0.617 d 0.75 × 10–5

e 34.9 × 10–5

4 Write these as ordinary numbers

a 3.5 × 10–7 b 8.9 × 10–8

c 1.253 × 10–2

5 Light travels about 3 × 105 metres per second. Find the time it 

takes to travel 1 metre. Give your answer in standard form.

. Sets

A set is a group of  items. We generally use a capital letter to name 

a set, and the brackets { } to enclose the items of  the set.

For example, if  P is the set of  all the prime numbers less than 20, 

then P = {2, 3, 5, 7, 11, 13, 17, 19}.  

Each item in the set is called an element of  the set. 

● The symbol ∈means ‘is an element of ’.  

For example, 3 ∈ P means ‘3 is an element of  the set P’.

● The symbol ∉means ‘is not an element of ’.  

For example, 8 ∉ P means ‘8 is not an element of  the set P’.

We use a lower-case n for the number of  items in a set. 

The set P has 8 elements, so n(P) = 8. 

If  the number of  items in a set is zero, then that set is an empty set, 

or null set. We represent the empty set with empty brackets, { }, or 

with the symbol ∅

A set which contains all relevant items is called the universal set, 

and is represented by the letter U. In some cases, the universal set 

can be assumed. For example, a common universal set is ‘all real 

numbers’.

The curly brackets 

used for sets are 

sometimes called 

‘braces’.

The universal set can 

also be thought of as 

the reference set
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Set builder notation

To fully specify a set, you can use this notation:

 A = {x|x ∈ , 10  < x < 15}

The elements of  this set are A = {11, 12, 13, 14}.  

Example 

Write the elements of  each set, and give the number of  items in each set.

a B, the set of  all multiples of  5 that are less than 30.

b T = {x|x ∈ , x ≥ 7}

Answers

a B = {5, 10, 15, 20, 25}

n(B) = 5

b T = {7, 8, 9, 10, 11, ...} This set is infi nite, which means it 

goes on forever. 

We cannot count the number of  items 

in the set.

Exercise 1L

1 List the elements in each set.

a A, the set of  all the factors of  72.

b B, the set of  all the prime factors of  72.

c C, the set of  all even prime numbers.

d D, the set of  all the even multiples of  7.

e E = {x | x ∈ , |x|< 4}

f F = {x | x ∈ , x ≥ 20}

g G, the set of  all prime numbers that are multiples of  4.

2 State the number of  items in each of  the sets from question 1.

Subsets, intersections, and unions

➔ We say that a set B is a subset of  set A if  all the elements of  

set B are also elements of  set A.

Let A = {1, 2, 3, 4, 5, 6}, and B = {2, 3, 4}.

Since B is a subset of  A, we write B ⊆ A.

There are many other subsets of  A, such as {1, 3, 5, 6}, {2, 5}, {4}, 

and even the empty set {}, as well as the set {1, 2, 3, 4, 5, 6} itself.

You can use ellipses 

(3 dots ...) to show that 

a series continues.

The symbol ⊆ means 

‘is a subset of’.

greater than 10 

and less than 15

such that x is 

an integer

A is the set of 

all values of x
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➔ A set C is called a proper subset of  set A if  C is a subset of  A, 

but has fewer elements than A.

For example, C = {2, 5} is a proper subset of  the set 

A = {1, 2, 3, 4, 5, 6}. We write this as C ⊂ A.

➔ Two sets that share elements in common have an 

intersection. We use the symbol ∩ to represent the 

intersection of  two sets.

For example, let D = {2, 4, 6, 8, 10} and E = {1, 2, 3, 4, 5}.

Both sets contain the elements 2 and 4, so D ∩ E = {2, 4} 

➔ The union of  two sets is the set of  all the elements of  both 

sets. 

 We use the symbol ∪ to represent the union of  two sets.

For example, if  D = {2, 4, 6, 8, 10} and E = {1, 2, 3, 4, 5}, the 

union of  these sets is D ∪ E = {1, 2, 3, 4, 5, 6, 8, 10}.

Example 

Let A = {the odd natural numbers less than 16} and 

B = {x|x is a factor of  15}.

a List the elements of  each set.

b Is B a subset of  A? Explain.

c Give the intersection and the union of  sets A and B.

Answers

a A = {1, 3, 5, 7, 9, 11, 13, 15}

 B = {1, 3, 5, 15}

b Yes, B is a subset of  A.  

All the elements of  B are 

elements of  A.  

 You could write B ⊆ A.

c A ∩ B = {1, 3, 5, 15}

 A ∪ B = {1, 3, 5, 7, 9, 11, 13, 15}

You could write B ⊆ A

B is also a proper subset of  A.

You could write B ⊂  A.

These numbers are elements of  both 

sets.

This set includes all the elements of  

A and all the elements of  B, once 

only.

There are two types of  sets which have no intersections.

➔ Disjoint sets contain no elements in common.

 For example, if  A = {2, 4, 6, 8}, and B = {1, 3, 5, 7}, A and B 

are disjoint sets. We write A ∩ B = {}, or A ∩ B = ∅

 ⊂ , since all 

integers belong to the 

set of real numbers.

The symbol ⊂ means 

‘is a subset of’.

They only have 2 and 

4 in common.

Numbers which 

appear in both sets 

should only be listed 

once.
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➔ Sets are complements if  they have no elements in common, 

and they contain all the elements of  U between them.

For example, let U = {all positive integers}, and 

A = { 2, 4, 6, 8, 10, ...}.

The complement of  A is the set {1, 3, 5, 7, 9, ...}. 

We write A′ = {1, 3, 5, 7, 9, ...}. Together, sets A and A′ contain all 

the positive integers, but they have no elements in common.

Example 

Let U = {multiples of  5} and M = {10, 20, 30, ...}.

What is the complement of  M?

Answer

M′ = { 5, 15, 25, ...} Since M contains all the even multiples 

of  5, M ′ must contain all the odd 

multiples of  5.

Together, M ∪ M ′ = U.

Exercise 1M

1 Let A = {1, 2, 3, 4, 5, 6}, and let B = {4, 5}.

a Is B a subset of  A? Explain.

b Are the sets A and B disjoint? Explain.

c List the intersection of  sets A and B.

d List the union of  sets A and B.

2 Let A = {x|x is a factor of  36} and B = {x|x is a factor of  15}.

a List the elements of  each set.

b Is B a subset of  A? Explain.

c Are the sets A and B disjoint? Explain.

d List the intersection of  sets A and B.

e List the union of  sets A and B.

3 Let A = {x|x ∈ , x > 16} and B = {x|x is a multiple of  20}.

a List the elements of  each set.

b Is B a subset of  A? Explain.

c Are the sets A and B disjoint? Explain.

d List the intersection of  sets A and B.

e List the union of  sets A and B.

4 Let U = {positive integers} and D = { x|x is a multiple of  3}.

 List the elements of  the complement of  D.

5 Let U = {multiples of  10}, and let B = {10, 20, 30}. List the 

elements of  B′

The complement of 

a set A is written A′, 

called ‘A prime’.

Prior learning



695

6 Give two sets A and B such that 

a A ∩ B = {}

b A ∩ B = {4, 7, 10}

c A ∪ B = {1, 2, 3, 4, 5}

d n(A ∩ B) = 2

e n(A ∪ B) = 8

f n(A ∪ B) = 7 and n(A ∩ B) = 3

g  B ⊆ A, and n(A ∩ B) = 3

Sets related to number lines and inequalities

Subsets of  the set of  real numbers can be represented as intervals on 

a real number line. These intervals can also be expressed using set 

notation and inequalities.

Example 

Write each interval using set notation and inequalities.

a
2 3 4 50 1–1–2–3–4–5

x

b
2 3 4 50 1–1–2–3–4–5

x

Answers

a {x|x ∈ , x ≥ –1}

b {x|x ∈ , –3 < x < 1}

The numbers greater than –1 are 

shaded on the number line. The solid 

circle at –1 tells us that –1 is included.

The numbers between –3 and 1 are 

shaded on the number line. The open 

circles at –3 and 1 tell us that –3 and 1 

are not included.

Example 

Shade the number line to indicate the interval of  real numbers given 

by the set.

a {x|x ∈ , x < 2} b {x|x ∈ , 0 < x ≤ 4}

Answers

a {x|x ∈ , x < 2}

2 3 4 50 1–1–2–3–4–5
x

b {x|x ∈ , 0 < x ≤ 4}

2 3 4 50 1–1–2–3–4–5
x

2 is not included, so use 

an open circle at 2.

Draw the line between 0 

and 4. 

0 is not included, so use 

an open circle.

4 is included, so use a 

fi lled circle.
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Exercises 1N

1 Write each interval using set notation and inequalities.

a 
2 3 4 50 1–1–2–3–4–5

x

b 
2 3 4 50 1–1–2–3–4–5

x

c 
2 3 4 50 1–1–2–3–4–5

x

d 
2 3 4 50 1–1–2–3–4–5

x

2 Shade the number line to indicate the interval of  real numbers 

given by the set.

a {x|x ∈ , x ≤ 0} b {x|x ∈ , –3 ≤ x < 2}

c {x|x ∈ , x > –1} d {x|x ∈ , –5 < x < 1}

Mappings 

You can show the mathematical relations between two sets in 

several different ways.

Example 

Each member of  {x|x ∈ , –5 < x < 1} is mapped to its square. Express this relation as:

a a mapping diagram b a table

c a set of  ordered pairs d a graph.

Answers

a Input Output

0

1

2

3

–1

–2

–3

4

1

 9

0

b x –3 –2 –1 0 1 2 3

y   9   4   1 0 1 4 9

Write the integers –3, –2, –1, 0, 1, 2 and 3 in the 

input set. Write the squares of  the input values, 0, 1, 4 

and 9, in the output set. 

Draw arrows to map each input value to an output 

value.

Use the variable x for the input values and the variable 

y for the output values.

c {(–3, 9), (–2, 4), (–1, 1), (0, 0), (1, 1), (2, 4), 

(3, 9),}

Write each input value as the fi rst member of  an 

ordered pair and its corresponding output value as the 

second member.

{ Continued on next page
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d

x

y

4310 5–2 –1–3–4–5

1

2

3

4

5

6

7

8

9

2

Represent each input value on the horizontal axis and 

each output value is represented on the vertical axis.

Exercise 1O

Express each relation as: 

a a mapping diagram 

b a table 

c a set of  ordered pairs

d a graph.

1 Each member of  {x|x ∈ , x ≤ 5} is mapped to 2 more than the 

number.

2 Each member of  {x|x ∈ , –4 < x < 4} is mapped to the absolute 

value of  the number.

 Algebra

. Expanding brackets and factorization

The distributive law is used to expand brackets and factorize 

expressions.

a(b + c) = ab + ac

Example 

Expand 2y (3x + 5y  – z)

Answer

2y (3x+ 5y − z) = 2y  3x + 2y  5y + 2y (−z)

 = 6xy + 10y2 − 2yz

Two other laws used 

in algebra are the 

commutative law

ab = ba

and the associative

law (ab)c = a( bc)

The word algebra comes from the title of a book Hisab al-jabr

w’al-muqabala written by Abu Ja’far Muhammad ibn Musa 

Al-Khwarizmi in Baghdad around 800 CE. It is regarded 

as the  rst book to be written about algebra.
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Example 

Factorise 6x2y − 9xy + 12xz2

Answer

6x2y – 9xy + 12x z 2 = 3x (2xy – 3y + 4z2)

Exercise 2A

1 Expand

a 3x (x – 2) b
x

y
(x2y – y2 + x) c a (b – 2c) + b (2a +b)

2 Factorize

a 3pq – 6p2q3r b 12ac2 + 15bc –3c2 c 2a2bc + 3ab2c – 5abc2

Products resulting in quadratic expressions

The product of  two binomials, such as x + a and x + b, results in a 

quadratic expression

(x + a) (x + b) ≡ (x + a)x + (x + a)b ≡ x2 + ax + bx + ab = x2 + (a + b)x + ab

Here is a shorter method to fi nd the product of  two binomials.

(x + a)(x + b)

Inner terms

Outer terms

First terms
Last terms

= First terms+ Outer terms + Inner terms + Last terms

= x2 + bx + ax+ ab

= x 2 + (a + b)x + ab

Example 

Find each product.

a (x + 2)(x + 5) b (x + 6)(x – 4)

c (2x – 3)(3x + 1)

Answers

a (x + 2)(x + 5) = x2 + 5x + 2x + 10

 = x2 + 7x + 10

b (x + 6)(x – 4) = x2 + 4x + 6x – 24

 = x2 + 2x – 24

(x + 2)(x + 5)

2x

5x

x
2

10

(x + 6)(x – 4)

6x

–4x

x
3

–24

Look for a common 

factor. Write this 

outside the bracket. 

Find the terms inside 

the bracket by dividing 

each term by the 

common factor.

{ Continued on next page
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c (2x – 3)(3x + 1) = 6x2 + 2x – 9x – 3

 = 10x2 – 7x – 3
(2x – 3)(3x + 1)

–9x

2x

6x
2

–3

Exercise 2B

Find each product and simplify your answer.

1 (x + 7)(x – 4) 2 (x – 3)(x – 2) 3 (3x – 4)(x + 2)

4 (2x – 5)(3x + 2) 5 (3x + 2)(3x + 1)

➔ Consider the following special products.

 (x + a)2 = (x + a)(x + a) = x2+ ax + ax + a2 = x2 + 2ax + a2

 (x – a)2 = (x – a)(x – a) = x2 – ax – ax + a2 = x2 – 2ax + a2

 (x + a)(x – a) = x2 – ax + ax + a2 = x2 – a2

Example 

Find each product.

a (x + 4)2 b (3x – 2)2

c (2x + 3)(2x – 3)

Answers

a (x + 4)2 = x2 + 8x + 16

b (3x – 2)2 = 9x2 – 12x + 4

c (2x + 3)(2x – 3) = 4x2 – 9

Square the fi rst term: (x) 2 = x 2

Double the product of  the two terms: 

2(4x) = 8x

Square the last term: (4x) 2 = 16

Square the fi rst term: (3x) 2 = 9x 2

Double the product of  the two terms: 

2(–6x) = –12x

Square the last term: (–2) 2 = 4

Square the fi rst term: (2x) 2 = 4x 2

Square the last term: (–3x) = 9

Write the difference of  the squares: 

4x 2 – 9

Exercise 2C

Find each product and simplify your answer.

1 (x + 5)2 2 (x – 4)2 3 (x + 2)(x – 2)

4 (3x – 4)2 5 (2x + 5)2 6 (2x + 7)(2x – 7)

The  rst two are called 

squares of binomials. 

The last one is called 

the di erence of 

two squares
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Factorizing quadratic expressions

The reverse is also possible – to express a quadratic expression as 

the product of  two linear expressions.

(x + 2)(x + 5) = x2 + 7x + 10

(x + 6)(x – 4) = x2 + 2x – 24

To factorize quadratics of  the form x2 + bx + c, where the coeffi cient 

of  x2 is 1, look for pairs of  factors of  c whose sum is b

Example 

Factorize

a x2 – 15x + 14

b x2 + 5x + 6

c x2 – 5x – 24

Answer

a x2 – 15x + 14 = (x – 1)(x – 14)

b x2 + 5x + 6 = (x + 2)(x + 3)

c x2 + 5x – 24 = (x + 3)(x – 8)

Factors of  14 Sum of  factors

1 and 14 15

–1 and –14 –15 

2 and 7 14

–2 and –7 –14

Factors of  6 Sum of  factors

1 and 6 7

–1 and –6 –7

2 and 3 5 

–2 and–3 –5

Factors of  –24 Sum of  factors

1 and –24 –23

–1 and 24 23

2 and –12 –10

–2 and 12 10

3 and –8 –5 

–3 and 8 5

4 and –6 –2

–4 and 6 2

Factorizing quadratics of the form ax2 + bx + c, where a ≠ 0

Use trial and error to fi nd the correct pair of  factors. Try factors that 

give the correct product for the fi rst and last terms, until you fi nd the 

one that gives the correct product for the middle term.

10 is the product of 

2 and 5 and 7 is the 

sum of 2 and 5

–24 is the product 

of 6 and –4, 2 is the 

sum of 6 and –4
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Example 

Factorize

a 2x2 + 5x + 3

b 6x2 + x – 15

Answers

a 2x2 + 5x + 3 = (2x + 3)(x + 1)

b 6x2 + x – 15 = (2x – 3)(3x + 5)

Factors of  2x2 : 2x, x

Factors of  3 :1, 3; –1, –3

Possible factors Linear term

(2x + 1)(x + 3) 6x + 1x = 7x

(2x – 1)(x – 3) –6x – 1x = –7x

(2x + 3)(x + 1) 2x + 3x = 5x 

(2x – 3)(x – 1) –2x2 – 3x = –5x

Factors of 6x2: 6x, x; 2x, 3x 

Factors of –15 : 1, –15; –1, 15; 3, –5; –3, 5

Possible factors Linear term

(6x + 1)(x – 15) –90x + 1x = –89x

(6x – 1)(x + 15) 90x – 1x = 89x

(6x + 3)(x – 5) –30x + 3x = –27x

(6x – 3)(x + 5) 30x – 3x = 27x

(2x + 1)(3x – 15) –30x + 3x = –27x

(2x – 1)(3x + 15) 30x – 3x = 27x

(2x + 3)(3x – 5) –10x + 9x = –x

(2x – 3)(3x + 5) 10x – 9x = x 

Factorizing the di erence of two squares

Remember that a2 – b2 = (a + b)(a – b).

Example 

Factorize

a x2 – 16

b 9x2 – 25y2

Answers

a x2 – 16 = (x + 4)(x – 4)

b 9x2 – 25y2 = (3x + 5y)(3x – 5y)

a2 = x2, so a = x

b2 = 16 , so b = 4

Substitute values into (a + b)(a – b).

a2 = 9x2, so a = 3x

b2 = 25y2 , so b = 5y

Substitute values into (a + b)(a – b).
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Exercise 2D

1 Factorize these quadratic expressions.

a x2 + 11x + 28 b x2 – 14x + 13 c x2 – x – 20

d x2 + 2x – 8 e x2 + 13x + 36 f x2 – 7x – 18

2 Factorize these quadratic expressions.

a 2x2 – 9x + 9 b 3x2 + 7x + 2 c 5x2 – 17x + 6

d 4x2 – x – 3 e 3x2 – 7x – 6 f 14x2 – 17x + 5

3 Factorize these quadratic expressions.

a x2 – 9 b x2 – 100 c 4x2 – 81

d 25x2 – 1 e m2 – n2 f 16x2 – 49y2

. Completing the square

A quadratic expression has the form ax2 + bx + c, where a, b, and c

are real numbers, and a ≠ 0.

You can express a quadratic equation in an equivalent form to 

make it more convenient, for example when graphing quadratic 

functions and solving quadratic equations.

‘Completing the square’ means  writing a quadratic expression in 

the form y = a (x − h)2 + k, where h and k are real numbers. The 

point (h, k) is the vertex of  the graph of  the quadratic function, 

that is, the maximum or minimum point on the quadratic curve.

Some quadratics factorize as the square of  a binomial.

For example:

x2 + 2x +1 is equivalent to (x + 1)2

x2 − 4x + 4 is equivalent to (x − 2)2

In both examples, the value of  h is half  the value of  b in the original 

quadratic. We will use this observation to change the following 

quadratics into the completed square form.

Example 

Write the quadratic expression x2 + 2x − 5 in the form a (x − h)2 + k.

Hence fi nd the vertex of  the quadratic function.

Answer 

x2 + 2x − 5 = (x2 + 2x + 1) − 5 − 1

x2 + 2x + 5 = (x + 1)2 − 6

The vertex is at (−1, −6)

In the original quadratic, b = 2, 

so 
b

2
 = 1

Add 1 to the original expression, and 

then subtract it.

Simplify the expression, then write it 

as the square of  a binomial.

2x 2 − 12x + 19 = 

2(x − 3)2 + 1 so 

h = 3 and k = 1 and 

the vertex of the graph 

is at (3, 1)

2

y

x0

2

1

3

5

4

6

4 653

(3, 1)

y = 2x
2 – 12x + 19

1

A binomial is an 

expression with two 

terms.
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Example 

Change the quadratic 2x2 − 4x + 3 into the form a (x − h)2 + k.

Hence fi nd the vertex of  the quadratic.

Answer 

2x2 − 4x + 3 = 2(x2 − 2x) + 3

2(x2 − 2x) + 3 =  2(x2 − 2x + 1)

+ 3 − 2

2x2 − 4x + 3 = 2(x − 1)2 + 1

The vertex is at (1, 1)

In the original expression, a = 2, 

Take out a factor of  2 from the fi rst 

two terms.

In the bracket, the coeffi cient of  x is −2. 
2

2
 = −1

Multiplying the 1 in the bracket by 2 

gives 2, so subtract 2 to the end of  the 

expression.

Simplify  and write the expression in 

the required form.

In these examples, the leading coeffi cient of  the quadratic was a 

positive real number. In the following example, the leading 

coeffi cient is a negative real number.

Example 

Change y = −x2 + 3x − 2 into the form y = a (x − h)2 + k, and determine 

its vertex.

Answer 

y = −x2 + 3x − 2 = −(x2 − 3x) − 2

 
   

 

2
3 1

2 4
xy

The vertex is at (1.5, 0.25)

In the original expression, a = −1. 

Take out a factor of  −1 from the fi rst 

two terms.

In the bracket, the coeffi cient of  x is −3. 

⎛
⎝
⎜

⎞
⎠
⎟ =

3

2

2
9

4

Add 
9

4
 to the end of  the expression.

Simplify  and write the expression in 

the required form.
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Exercise 2E

Change the following quadratics into the form y = a(x – h)2 + k, and 

fi nd its vertex.

1 y = x2 + 2x − 3  2 y = x2 − 6x + 1

3 y = x2 + x − 1  4 y = x2 − 3x + 2

5 y = x2 + 5x − 2  6 y = 2x2 + 2x − 3

7 y = 3x2 − 6x + 1  8 y = 2x2 + 3x − 1

9 y = −x2 + 4x − 3  10 y = −2x2 + 4x − 3

. Formulae

Rearranging formulae 

Example 

The formula for the area of  a circle is A = π r2, where A is the area and 

r is the radius

The subject of  the formula is A.  

Rearrange the formula to make r the subject.

Answer

A = πr2

r2 = 
A



r = 
A



Use the same techniques as for solving 

equations. Whatever you do to one side of  the 

formula, you must do to the other.

Divide both sides by π

Take the square root of  both sides.

Example 

a Einstein’s theory of  relativity gives the formula E = mc 2, where m is 

the mass, c is the speed of  light, and E is the energy equivalent of  the 

mass. Rearrange the formula to make m the subject.

b The formula for gross profi t margin is: 

Gross profit margin
Gross profit

Sales revenue
= ×100

Rearrange the formula so that Sales revenue is the subject.

Answers

a E = mc 2

m
E

c
=

2

The subject of a 

formula is the letter 

on its own on one side 

of the = sign.

You can use this 

formula to work out 

the radius of a circle 

when you know its 

area.

{ Continued on next page
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b Gross profit margin
Gross profit

Sales revenue

Gross pro

= × 100

ffit margin Gross profit

Sales revenue

Sales revenue Gros

100
=

× ss profit margin Gross profit

Sales revenue
Gross profi

= ×

=

100

tt

Gross profit margin
× 100

Exercise 2F

Rearrange the following formulae to make the quantity shown 

in brackets the subject.

1 v = u − gt (t) 2 a = 2 2b c  (c) 3 c = 2πr (r)

4 
sin sinA

a

B

b
=  (b) 5 a2 = b2 + c2 − 2bc cos A (cos A)

6 To change temperature from degrees Fahrenheit, F, to degrees 

Celsius, C, you can use the formula C F= −( )
5

9
32

7 The acid test ratio measures the ability of  a company to use its 

current assets to retire its current liabilities immediately. 

 The formula is given by:

Acid ratio test =
Current assets Stock

Current liabilities

Substituting into formulae

You can always use your GDC in Mathematical Studies.

When using formulae, let the calculator do the 

calculation for you.You should still show your working. 

1 Find the formula you are going to use (from the formula booklet, from the 

question or from memory) and write it down.

2 Identify the values that you are going to substitute into the formula.

3 Write out the formula with the values substituted for the letters.

4 Enter the formula into your calculator. Use templates to make the formula 

look the same on your GDC as it is on paper.

5 If you think it is necessary, use brackets. It is better to have too many 

brackets than too few!

6 Write down, with units if necessary, the result from your calculator (to the 

required accuracy).

Rearrange the formula 

to make F the subject.

Rearrange the formula 

to make Stock the 

subject.



706

Example 

x and y are linked by the formula y = 
x

x

2
1

2 1

+

+

. 

Find y when x is 3.1.

Answer

y = 
3 1 1

2 3 1 1

2
+

+

 Write the formula 

with 3.1 instead of  x

y = 2.62

Exercise 2G

1 If  a = 2.3, b = 4.1 and c = 1.7, fi nd d where

d = 
3 22a b

ac b

+

+

2 If  b = 8.2, c = 7.5 and A = 27°, fi nd a where

a = b c bc A2 2 2+ − cos

3 If  u
1
 = 10.2, r = 0.75 and n = 14, fi nd the value of  S, where

S = u
r

r

n

1

1

1

. Solving linear equations

‘Solve an equation’ means ‘fi nd the value of  the unknown variable’ 

(the letter).

Rearrange the equation so that the unknown variable x becomes the 

subject of  the equation. To keep the equation ‘balanced’ always do 

the same to both sides.

Example 

Solve the equation 3x + 5 = 17

Answer

 3x + 5 = 17

3x + 5 − 5 = 17 − 5 

 3x = 12

3

3

x
 = 

12

3

 x = 4

subtract 5

divide by 3

Add, subtract, multiply 

or divide both sides 

of the equation until 

the x is by itself on 

one side. (This can be 

either the left or the 

right hand side.)
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Example 

Solve the equation 4(x − 5) = 8

Answer

4(x − 5) = 8

4 5

4

x( )
 = 

8

4

 x − 5 = 2

 x – 5 + 5 = 2 + 5 

 x = 7

divide by 4

add 5

Example 

Solve the equation 7 − 3x = 1

Answer

7 − 3x = 1

7 − 3x − 7 = 1 − 7

−3x = −6
3

3

x
 = 

6

3

 x = 2

subtract 7

divide by −3

Example 

Solve the equation 3(2 + 3x) = 5(4 − x)

Answer

3(2 + 3x) = 5(4 − x) 

6 + 9x = 20 − 5x

6 + 9x + 5x = 20 − 5x + 5x

6 + 14x = 20

6 + 14x − 6 = 20 − 6

14x = 14
14

14

x
 = 

14

14

 x = 1

add 5x

subtract 6

divide by 14

Exercise 2H

Solve these equations.

1 3x − 10 = 2 2
x

2
 + 5 = 7

3 5x + 4 = −11 4 3(x + 3) = 18

5 4(2x − 5) = 20 6
2

5
(3x − 7) = 8 

7 21 − 6x = 9 8 12 = 2 − 5x

9 2(11 −3x) = 4 10 4(3 + x) = 3(9 − 2x) 

11 2(10 −2x) = 4(3x +1) 12
5 2

3

3 10

4

x x+
=

+

Always take care 

with  signs.

An alternative method 

for this equation would 

be to start by adding

3x. Then the x would 

be positive, but on the 

right-hand side.

Compare this method 

to the one in 

Example 24. 

Sometimes it can be 

quicker to divide  rst 

rather than expanding 

the brackets.
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. Simultaneous linear equations

Simultaneous equations involve two (or more) variables. 

There are two methods which you can use, called substitution and 

elimination.

Example 

Solve the equations 3x + 4y = 17 and 2x + 5y = 16.

Answer

Geometrically you could 

consider these two linear 

equations as the equations 

of  two straight lines. Finding 

the solution to the equation is 

equivalent to fi nding the point 

of  intersection of  the lines. The 

coordinates of  the point will give 

you the values for x and y

2

y

x
0

–2

2

4

6

Substitution method

3x + 4y = 17

2x + 5y = 16

5y = 16 – 2x

 y = 
16

5
 – 

2

5
x

3x + 4
16

5

2

5
x

⎛
⎝
⎜

⎞
⎠
⎟  = 17

 3x + 
64

5
 – 

8

5
x = 17

 15x + 64 – 8x = 85

 15x – 8x = 85 – 64

 7x = 21

x = 3

Rearrange one of  the equations to 

make y the subject.

Substitute for y in the other equation.

Solve the equation for x.

 3(3) + 4y = 17

 9 + 4y =17

            4y = 8

y = 2

The solution is x = 3, y = 2.

Substitute for x in one of  the original 

equations and solve for y.

Elimination method

  3x + 4y = 17   (1)

  2x + 5y = 16   (2)

Multiply equation (1) by 2 and 

equation (2) by 3.

  6x + 8y = 34  (3)

6x + 15y = 48  (4)

Subtract the equations. [(4)–(3)]

7y = 14

y = 2

This is to make the coeffi cients of  x 

equal.

Subtracting now eliminates x from 

the equations.

{ Continued on next page
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3x + 4(2) = 17

     3x + 8 = 17

            3x = 17 – 8

            3x = 9

x = 3

The solution is x = 3, y = 2.

Substitute for y in one of  the original 

equations and solve for x.

Exercise 2I

1 Solve these simultaneous equations using substitution.

a y = 3x – 2 and 2x + 3y = 5 b 4x – 3y = 10 and 2y + 5 = x

c 2x + 5y = 14 and 3x + 4y = 7

2 Solve these simultaneous equations using elimination.

a 2x – 3y = 15 and 2x + 5y = 7 b 3x + y = 5 and 4x – y = 9

c x + 4y = 6 and 3x + 2y = –2 d 3x + 2y = 8 and 2x + 3y = 7

e 4x – 5y = 17 and 3x + 2y = 7

. Exponential expressions

Repeated multiplication can be written as an exponential expression.

For example, squaring a number 3 × 3 = 32 or 5.42 × 5.42 = 5.422

If  we multiply a number by itself  three times then the exponential 

expression is a cube. For example

4.6 × 4.6 × 4.6 = 4.63

You can also use exponential expressions for larger integer values. 

So, for example, 37 = 3 × 3 × 3 × 3 × 3 × 3 × 3.

Where the exponent is not a positive integer, these rules apply:

a0 = 1, a ≠ 0 and a n = 
1

an

Example 

Write down the values of  102, 103, 101, 100, 10–2, 10–3

Answer

102 = 10 × 10 = 100

103 = 10 × 10 × 10 = 1000

101 = 10

100 = 1

10–2 = 
1

10
=

1

100
2

 = 0.01

10–3 = 
1

10
=

1

1000
3

 = 0.001

To evaluate an exponential function 

>  key or 

the template key  and the exponent 

template.

Index and power

are other names for 

exponent

You use squares in 

Pythagoras’ theorem 

a2 = b2 + c 2 or in the 

formula for the area of 

a circle A = π r 2

You use a cube in the 

volume of a sphere 

V = 
4

3
π r 3
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Exercise 2J

Evaluate these expressions.

1 a 23 + 32 b 42 × 32 c 26

2 a 50 b 3–2 c 2–4

3 a 3.55 b 0.495–2 c 2
1 0 02

1 0 02

10
( )

. Solving inequalities

Inequalities behave much like equations and can be solved in the 

same way.

Properties of inequalities

➔ When you add or subtract a real number from both sides of  an 

inequality the direction of  the inequality is unchanged.

For example:

● 4 6 4 2 6 2> ⇒ + > +

● 15 20 15 6 20 6≤ ⇒ − ≤ −

● x x− ≥ ⇒ − + ≥ +7 8 7 7 8 7

● x x+ < ⇒ + − < −5 12 5 5 12 5

➔ When you multiply or divide both sides of  an inequality by a 

positive real number the direction of  the inequality is 

unchanged.

 When you multiply or divide both sides of  an inequality by a 

negative real number the direction of  the inequality is 

reversed. 

For example:

● 4 5 2 4 2 5> ⇒ >( ) ( )

● 6 10 2 6 2 10≤ ⇒ − ≥ −( ) ( )

● 10 30
10

5

30

5
≤ ⇒ ≤

● 18 24
18

3

24

3
> ⇒ <

● − > − ⇒
−

>
−

12 20
12

4

20

4
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Example 

Solve the inequalities a 2x + 5 < 7 b 3(x – 2) ≥ 4

Answers

a 2x + 5 < 7

            2x < 2

x < 1

b 3(x – 2) ≥ 4

x – 2 ≥ 1
1

x ≥ 3
1

3

Take great care with + and – signs.

Example 

Solve the inequalities 7 – 2x ≤ 5

Answer

7 – 2x ≤ 5

    –2x ≤ –2 

x ≥ 1 

Divide by –2

Change ≤ to ≥

Example 

Solve the inequalities 19 – 2x > 3 + 6x

Answer

19 – 2x > 3 + 6x

       19 > 3 + 8x

       16 > 8x

         2 > x

x < 2 Reverse the inequalities

Exercise 2K

1 Solve the inequality for x and represent it on the number line.

a 3x + 4 ≤ 13 b 5(x – 5) > 15 c  2x + 3 < x + 5

2 Solve for x. 

a 2(x – 2) ≥ 3(x – 3) b 4 < 2x + 7 c 7 – 4 x ≤ 11

. Absolute value

The absolute value (or modulus) of  a number, |x|, is the numerical 

part of  the number without its sign. It can be written as

x
x x

x x
=

− ≤

≥

⎧
⎨
⎪

⎩⎪

,

,

 if 

 if 

0

0

If you either multiply 

or divide an inequality 

by a negative value, 

the signs on both 

sides of the inequality 

will change. The 

inequality will also be 

reversed.

Sometimes the x ends 

up on the right hand 

side of the inequality. 

In this case reverse 

the inequality as in 

the example.
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Example 

Write down |a| where a = – 4.5 and a = 2.6

Answer

If  a = – 4.5 then |a| = 4.5

If  a = 2.6 then |a| = 2.6

Example 

Write the value of  |p – q| where p = 3 and q = 6.

Answer

|p – q| = |3 – 6| 

        = |–3| = 3

Exercise 2L

1 Write the value of  |a| when a is

a 3.25 b –6.18 c 0

2 Write the value of  |5 – x| when x = 3 and when x = 8.

3 If  x = 6 and y = 4, write the values of

a |x – y| b |x – 2y| c |y – x|

.  Adding and subtracting algebraic 
fractions

To add or subtract fractions, fi rst write them over a common 

denominator.

Example 

Combine these fractions, simplifying your answer.

a x

x

x

x2 1

5 3

2 1+
+

+

+
b

2 3

4 5

6 2

4 5

x

x

x

x

c
3

3 1

3 1

2 5

x

x

x

x
+

+

+
d

5

3

2 1

2 1

x

x

x

x+

+

Answers

a
x

x

x

x

x x

x

x

x

x

x

2 1

5 3

2 1

5 3

2 1

6 3

2 1

3 2 1

2 1

3

+
+

+

+
=

+ +( )

+

=
+

+

=
+

+

=

( )

Keep the common denominator and add the 

numerators.

Combine like terms.

Factorize and simplify whenever possible.

{ Continued on next page
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b
2 3

4 5

6 2

4 5

2 3 6 2

4 5

2 3 6 2

4 5

4 1

4

x

x

x

x

x x

x

x x

x

x

x

=
( ) − −( )

=
− − +

=
− −

55

Keep the common denominator and subtract 

the numerators.

Be sure to distribute the negative.

Combine like terms.

c
3

3 1

3 1

2 5

3

3 1

2 5

2 5

3 1

2 5

3 1

3 1

3 2 5

x

x

x

x

x

x

x

x

x

x

x

x

x x

+
+

+
=

+

+
+

+

+

=
+( )

33 1 2 5

3 1 3 1

2 5 3 1

6 15

3 1 2 5

2

x x

x x

x x

x x

x x

( ) +( )
+

+( )( )

+( )( )

=
+( )

( ) +(( )
+

( )
( ) +( )

=
+ −

( ) +( )

9 1

3 1 2 5

15 15 1

3 1 2 5

2

2

x

x x

x x

x x

Multiply each fraction by ‘one’ to get a 

common denominator.

Expand the brackets

Combine like terms.

d
5

3

2 1

2 1

5

3

2 1

2 1

2 1

2 1

3

3

5 2 1

3

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

+

+
=

+

+ +

+

=
( )

+( ))( )

+( ) +( )

( ) +( )

=
( ) − + +( )

+( )

2 1

2 1 3

2 1 3

10 5 2 7 3

3 2

2 2

x

x x

x x

x x x x

x xx

x x x x

x x

x x

x x

( )

=
− − − −

+( )( )

=
− −

+( )( )

1

10 5 2 7 3

3 2 1

8 12 3

3 2 1

2 2

2

Multiply each fraction by ‘one’ to get a 

common denominator.

Expand the brackets

Watch out for negative signs.

Combine like terms.

Exercise 2M

Combine these fractions, simplifying your answer. 

1 
2

7

3 1

7x

x

x+
+

+
2

4

2 2

3 1

2 2

x

x

x

x+ +

3 
3 9

3 4

3 1

3 4

x

x

x

x

+

+
+

+
4

2

5

1

2 1

x

x

x

x+
+

+

5 
4 2 1

2x

x

x
+

+

+
6

2 1

2

3

4 3

x

x

x

x +

7 
x

x

x

x

+

+
+

1

5 1

2

2 5
8

x

x

x

x

+

−
−

−

+

5

4

2

2
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Solving equations with rational coe  cients 

To solve equations with rational coeffi cients, multiply both sides of  

the equation by the least common multiple of  all the denominators. 

Example 

Solve these equations.

a
x x

6

5

4 2
= − b

1

15

1 1

6
+ =

x

Answers

a
x x

x x

x x

x

x

6

5

4 2

12
6

12
5

4 2

2 14 6

8 14

14

8

7

4

= −

⎛
⎝
⎜

⎞
⎠
⎟ = −⎛

⎝
⎜

⎞
⎠
⎟

= −
=

=  or 

LCM of  6, 4 and 2 is 12

b
1

15

1 1

6

30
1

15

1
30

1

6

2 30 5

3 30

10

+ =

+⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

+ =
− = −

=

x

x
x

x

x x

x

x

LCM of  15, 6 and x is 30 x

Exercises 2N

Solve the equations.

1 
x x

3

1

6 4

1

4
+ = +

2 
1 1

4

9

4k k
+ =

3 
1

6

5

6

1
= −

x

4 
3

5

2

4

1

2
− =

x x

5 
3

4

2

3

1

8

x x x
+

+
=

−
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.  Solving quadratic equations by 
factorizing

Consider the quadratic equation x2 + 2x − 8 = 0. 

Factor the left side into (x + 4)(x − 2) = 0. 

Since we have a product that is equal to zero, one of  the factors 

must equal 0, hence either x + 4 = 0 and x = −4, or x − 2 = 0 

and x = 2. 

There are two unique solutions, x = −4 or x = 2.

Example 

By factoring, solve the quadratic equation 2x2 + 5x − 3 = 0.

Answer

2x2 + 5x − 3 = (2x − 1)(x + 3) = 0

2x − 1 = 0 or x + 3 = 0

x = 
1

2
 or x = −3

Factorize

Set each factor equal to 0

Solve each linear equation

Example 

By factoring, solve the quadratic equation 4x − x2 = 4.

Answer

4x − x2 = 4 so −x2 + 4x −4 = 0

x2 − 4x + 4 = 0

x2 − 4x + 4 = (x − 2)2 = 0

x − 2 = 0

x = 2

In this case there is only one 

unique solution, or a repeated 

solution.

Set the equation equal to 0

Multiply both sides by −1

Factor the trinomial

Set the linear factor equal to 0

Solve

Exercise 2O

Solve the following quadratics by fi rst factoring.

1 x2 − 8x + 15 = 0 2 x2 + 6x − 16 = 0

3 x2 − 8x + 16 = 0 4 28 + 3x = x2

5 6x2 + 7x − 3 = 0 6 −2x2 = 3x − 2

A B = 0 ⇒ A = 0 or 

B = 0
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.  Solving quadratic equations by 
completing the square

Example 

Solve the quadratic x2 + 4x − 5 = 0 using the method completing the 

square.

Answer

x2 + 4x − 5 = 0 so x2 + 4x = 5

x2 + 4x + 4 = 5 + 4

(x + 2)2 = 9

x + 2 = ±3

x =−2 ± 3

x =−2 + 3 = 1, or x =−2 − 3 = −5

Bring the constant term to the RHS

Complete the square on the LHS, 

and add the constant term to the 

LHS.

Write the trinomial as the square of  

a binomial

Take the square root of  both sides

Solve for x

Separate both solutions

Example 

Solve the quadratic 2x2 − 4x = 3 using the method completing the 

square.

Answer

2x2 − 4x = 2(x2 − 2x) = 3

x2 − 2x = 
3

2

x2 − 2x + 1 = 
3

2
 + 1 = 

5

2

(x − 1)2 = 
5

2

x − 1 = ±
5

2
 = ±

10

2

x = 1 ±
10

2

x = 1 +
10

2
, or x = 1 −

10

2

Take out a factor of  2 from fi rst two 

terms

Divide both sides by 2

Complete the square on LHS, and 

add the constant term to LHS

Change the trinomial to the square 

of  the binomial

Take square root of  both sides

Add one to both sides

Separate solutions

Some quadratic equations have no real solutions.
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Example 

Solve the quadratic x2 + 2x = −4 by completing the square.

Answer

x2 + 2x + 1 = −4 + 1 = −3

(x + 1)2 = −3

No solution.

Complete the square on the LHS, 

and add the c constant term to 

the LHS

You cannot take the square root of  

the RHS.

Exercise 2P

Solve these equations by completing the square.

1 x2 + 4x = 3 2 x2 + 3x = 2

3 2x2 − 2x = 1 4 3x2 + 6x = −2

. Quadratic inequalities

When you solve quadratic inequalities using the method of  

factoring, you obtain at most two linear factors.  

Consider the inequality x2 − 4x < 0. 

Factorise the LHS:  x(x − 4) < 0.

If  the product AB < 0, then the factors must have 

different signs, i.e., either the factor A < 0 and 

factor B > 0, or factor A > 0 and factor B < 0. 

There are two cases to consider:

Case 1: x > 0 and x − 4 < 0, 

i.e. x < 4. 

The set of  values that satisfy both linear 

inequalities x > 0 and x < 4 is 0 < x < 4. 

Case 2: x < 0 and x − 4 > 0, or x > 4. 

There are no real numbers that are less than 0 and greater than 4.

Hence, the solution to the inequality x2 − 4x < 0 is 0 < x < 4.

You can use a GDC 

to solve quadratic 

inequalities, or solve 

them by drawing a 

graph.
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Example 

Solve the quadratic inequality x2 − 3x ≥ 10.

Answer

x2 − 3x ≥ 10

So x2 − 3x − 10 ≥ 0

(x − 5)(x + 2) ≥ 0

Case 1: (x − 5) ≥ 0 and (x + 2) ≥ 0

x − 5 ≥ 0, x ≥ 5 and x + 2 ≥ 0, 

x ≥ −2

x ≥ 5 and x ≥ −2

Case 2: x − 5 ≤ 0 and (x + 2) ≤ 0

x ≤ 5 and x ≤ −2

Either x ≥ −2 or x ≤ 5

Bring all terms to one side

Factor the trinomial

A product is positive if  both factors 

are positive

Find the solution set satisfying both 

linear inequalities

A product is also positive if  both 

factors are negative.

Find the solution set satisfying both 

inequalities.

Solution

Exercise 2Q

Solve the following quadratic inequalities.

1 x2 − x > 6 

2 x2 + 5x < −6

3 x2 + 2x − 8 ≤ 0 

4 3x2 − 5x − 2 ≥ 0
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 Geometry

. Pythagoras’ theorem

➔ In a right-angled triangle’ ABC with sides 

a, b and c, where a is the hypotenuse:

a2 = b2 + c2

a

c

bA

B

C

Example 

Find the length marked a. 

a

6.4m

2.9m

Answer

a2 = 6.42 + 2.92

  a = 6.4 + 2.92 2

 a = 7.03 cm

Sometimes you have to fi nd a shorter side.

Example 

Find the length marked b. 

b

2.08cm

9.65cm

Answer

9.652 = b2 + 2.082

 b2 = 9.652 – 2.082

 b = 
2 29.65 2.08

 b = 9.42 cm

Although the theorem is named after 

the Greek mathematician Pythagoras, 

it was known several hundred years 

earlier to the Indians in their Sulba 

Sutras and thousands of years 

before to the Chinese as the Gougu 

Theorem.

You can use 

Pythagoras’ theorem 

to calculate the length 

of one side of a 

right-angled triangle 

when you know the 

other two.

Check your answer 

by making sure that 

the hypotenuse is the 

longest side of the 

triangle.
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Exercise 3A

In each diagram, fi nd the length of  the side marked x. Give your 

answer to 3 signifi cant fi gures.

1 

x

14.6cm

23.4cm

2

x

1.5m

2.7m

3

x

1.8cm6.1cm

7.7 cm

. Geometric transformations

A transformation can change the position as well as the size of  an object.

A transformation maps an object to its image.

There are four main types of  transformation:

● Refl ection

● Rotation

● Translation

● Enlargement

Refl ection

When an object is refl ected in a mirror line, the object and its 

image are symmetrical about the mirror line. Every point on the 

image is the same distance from the mirror line as the 

corresponding point on the object.

To describe a refl ection, state the equation of  the mirror line.

Rotation

A rotation moves an object around a fi xed point called the 

center of  rotation, in a given direction through a particular 

angle.

To describe a rotation give the coordinates of  the center of  

rotation, and the direction and the angle of  turn.

Translation

A translation moves every point a fi xed distance in the same 

direction. 

To describe a translation write the column vector 
x

y

⎛

⎝
⎜

⎞

⎠
⎟, 

where x is the movement in the x direction and y is the 

movement in the y direction.

x

x = 1

AA'

y

0
43–2 –1–3–4–5

–1

–2

3

4

2

[ Re ection in line x = 1

x

A

C

A'

y

0
43–2 –1–3–4–5

–1

–2

1

2

3

4

[ Rotation of 90° clockwise 
about the point (1,1)

x

A

A'

y

0
431 5–3–4–5

–2

1

2

3

4

2

[ Translation of 




 
 
 

4

2
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Enlargement

Enlargement increases or decreases the size of  an object by a 

given scale factor.

To describe an enlargement give the coordinates of  the centre 

of  enlargement and the scale factor.

The image after an enlargement is mathematically similar to 

the original object.

Example 

The grid contains fi ve shapes A to E.  

x

B

y

AE

D

C

Describe the single transformation 

that takes:

a A to B

b A to C

c A to D

d A to E

e C to D

Answers

A  B: Translation; vector 
2

2

⎛

⎝
⎜

⎞

⎠
⎟

A  C: Refl ection; line y = –1

A  D: Refl ection; line y = –x

A  E: Translation; vector 
⎛

⎝
⎜

⎞

⎠
⎟

7

0

D  C: Rotation; center (1, –1), 90° clockwise

Exercise 3B

1 The grid contains four shapes A to D.

x

y

AB

C D

 Describe the single transformation that takes:

a A to B b A to C c A to D e B to D

x

A

A'

y

43–3–4–5

–4

1

2

3

4

2

C

[ Enlargement scale factor 3 
centre (4, 3)

For more on similarity, 

see page 762 
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2 Copy this diagram on to graph paper.

x

y

A

a Refl ect shape A in the line y= –x. Label the image B.

b Refl ect shape B in the line x-axis. Label the image C.

c Describe fully a single transformation that would take A to C.

3 Draw a set of  axes from –10 to 10 on both x and y axes.

a Draw the triangle with vertices at (2, 1) (4, 1) (4, 4). 

Label it A.

b Refl ect A in the x axis. Label the image B.

c Enlarge B by scale factor 2 centre (0, 0). Label the image C.

d Rotate C by 180° center (0, 0). Label the image D.

e Refl ect D in the x axis. Label the image E.

f Rotate E by 180° center (0, 0). Label the image F.

Describe the single transformation that maps

g C  F

h A  F

i E  A

j C  E

. Congruence

➔ Two fi gures that are exactly the same shape and size are 

congruent.

 In congruent shapes

● Corresponding lengths are equal

● Corresponding angles are equal

Objects and images after rotations, refl ections or translations are 

congruent to each other.

To prove that two triangles are congruent, you need to show that 

they satisfy one of  four sets of  conditions.
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“ Three sides are the same (SSS) “ Two sides and the included angle 
are the same (ASS)

B

A

C

E

D

F

B

A

C

E

D

F

“ Two angles and the included angle 
are the same (SAA)

“ Right-angled triangles with 
hypotenuse and one other side 
the same (RHS)

B C

A

E F

D

C B

A

E F

D

Example 

State whether the shapes in each pair are congruent. 

List the vertices in corresponding order and give reasons for congruence.

a

C
B

A

Z

Y

X b

E

F

D

C

A

B

c A B

P

S

Q

R

This is a special case 

of SSS, as it follows 

from Pythagoras’ 

theorem that the 

remaining sides are 

equal.

{ continued on next page
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Answers

a Yes. ABC = XZY, so SAS

b No. Only angles are equal; corresponding sides may not be the same length.

c No. parallelogram ABCD is not congruent to QRSP. 

 It is not clear whether AD = PQ or BC = RS

Exercise 3C

1 Show that ΔDEF is congruent to ΔABC. Find the length of  each of  

the sides.

E z cm

6cm 4cm

D

F B 9cm

x cm y cm

A

C

2 Give a brief  reason why ΔDEF and ΔABC are congruent. 

 Find the value of  each of  the angles.

P

89°

Zy

Q

R B

x°

33°
58°

A

C

3 Prove that ΔDEF is congruent to ΔABC. Find the values 

of  x and y

D

x

y

F

E B

A

C

40°

50°

. Similarity

➔ Two fi gures are similar if  they are the same shape.

 They are not necessarily the same size, so generally one is an 

enlargement of  the other.

After an enlargement the image is always similar to the object. 

Enlarging a shape leaves the angles the same but changes all the lengths 

by the same scale factor.

➔ The scale factor of  an enlargement is the ratio of

length of a side on one shape

length of corresponding side oon other shape
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Similar triangles

In similar triangles, corresponding angles are equal and 

corresponding sides are in the same ratio.

B

A C

Q

P R

Triangles ABC and PQR are similar because

A P B Q C P

AB

PQ

BC

QR

AC

PR

ˆ
= = =

== =

ˆ, ˆ ˆ, ˆ ˆ

scale factor

To prove that two triangles are similar, show that one of  these three 

statements is true: 

 “ The three angles of one triangle are equal to 

the three angles of the other triangle

 “ The corresponding sides of each triangle are 

in the same ratio

B

A

C

G

E

F

3.5cm

4cm

2cm

7cm
8cm

4cm

8

4

 = 
4

2

 = 
7

3.5

 = 2

 “ There is one pair of equal  angles and the 

sides containing these angles are in the 

same ratio.

3.5cm

2cm 50°

7cm

4cm 50°
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Example 

Find the length of  the side marked x

5cm

3.5cm

36°

42°

x

8cm

36°42°

Answer

Two pairs of  angles are equal, so the third pair 

must be equal. 

Hence the triangles are similar.

The scale factor of  the enlargement is 
8

5
1 6=

So x = 3.5 × 1.6 = 5.6 cm

Prove similarity

Exercise 3D

1 Which pairs of  rectangles are similar?

11

5

8.8

4

5

6.25

5

4

5

8

8

12.8

2 These shapes are similar. Calculate the lengths marked by letters.

a 

13cm

7.2cm

y cm

x cm

10.08cm

9.1cm

b 

1m

2m

3m y

x

4.5m

Note the shapes in 

this exercise are not 

drawn to scale.

Prior learning



727

3 Which triangles are similar?

a 

A

40°

80°

B60°

80°

C

70°
40°

b 

A
100°

20°

B
30° 60°

C

100°

60°

c 

12

A

3

10

12

48

40
B

12

42

46C

d 

5

7

A 12

42

48

12

B

12

4246

C

e 4

3
5

A

6

15

B

0.5

0.3

C

4 Show that triangles ABC and APQ are similar.

 Calculate the length of  AC and BP.

2cm 3cm

6m
B

P

C

Q

A

4cm
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5 In the diagram AB and CD are parallel. AD and BC meet at X.

3cm

C

X

BA

D

5cm

a Prove that triangles ABX and DCX are similar.

b Which side in triangle DCX corresponds to AX in triangle ABX?

c Calculate the length of  AX.

. Points, lines, planes and angles

The most basic ideas of  geometry are 

points, lines and planes. A straight line

is the shortest distance between two points. 

Planes can be fi nite like the surface of  a 

desk or a wall or can be infi nite, continuing 

in every direction.

We say that a point has zero dimensions, a line has one dimension 

and a plane has two dimensions.

Angles are often measured in degrees.

Acute angle

between 0° and 90°

Right angle

90°

Obtuse angle

between 90° and 180°

Refl ex angle

between 180° and 360°

Exercise 3E

1 Draw a sketch of:

a a refl ex angle b an acute angle

c a right angle d an obtuse angle.

2 State whether the following angles are acute, obtuse or refl ex.

a b c

3 State whether the following angles are acute, obtuse or refl ex.

a 173° b 44° c 272°

d 82° e 308° f 196°
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. Two-dimensional shapes

Triangles

Scalene 

triangle

Isosceles 

triangle

Equilateral 

triangle

Right-angled 

triangle

Quadrilaterals

Irregular Rectangle Parallelogram Rhombus

Square Trapezium Kite Arrowhead

Polygons

Pentagon Hexagon Octagon Decagon

Exercise 3F

1 Sketch the quadrilaterals in the table above with their diagonals. 

Copy and complete the following table.

Diagonals Irregular Rectangle Parallelogram Rhombus Square Trapezium Kite

Perpendicular 

Equal 

Bisect 

Bisect angles 

For example, the diagonals of  a square are perpendicular to 

each other, equal in length, bisect each other and bisect the angles of  the square.

The small lines on 

these diagrams show 

equal lines and the 

arrows show parallel 

lines.

Chapter 14



730

2 List the names of  all the shapes that are contained in the 

following fi gures.

a b

. Circle defi nitions and properties

You should be familiar with these defi nitions related to circles.

Diameter

Radius

Circumference

The distance from the center of  the circle to any point of  the circle 

is called the radius, usually denoted by r.

A diameter goes through the centre and is twice as long as the 

radius. The diameter is usually denoted by D

D = 2r

The distance around the circle is called the circumference

The circumference of  a circle, C, is found using the formulae 

C = 2πr or C = πd

Here are some other properties and defi nitions that you should 

know.

●  The area, A, of  a circle can be calculated using the formula 

A = πr 2

● A chord of  a circle is a straight line drawn between two points on 

the circumference of  the circle.

A chord divides a circle into two segments – a minor segment

and a major segment

Minor

segment

Major

segment

Chord

● Any continuous part of the circumference of a circle is called an arc

arc
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● A semicircle has an arc that is half  the length of  the circumference.

semicircle

A

B

● The area lying between two radii is a sector

Sector

● A tangent to a circle is a straight line that touches the 

circumference of  the circle at a single point called the point of 

tangency. The angle between a tangent and the radius at that 

point is 90°.

Tangent

. Perimeter

The perimeter of  a fi gure is defi ned as the length of  its 

boundary. The perimeter of  a polygon is found by 

adding together the sum of  the lengths of  its sides.

The perimeter of  a circle is called its 

circumference

In the circle on the left, r is the radius 

and d is the diameter. If  C is the 

circumference.

C = 2π r

 or

C = π d

d

r

π = 3.141592653589793238462...

Many maths enthusiasts around the 

world celebrate Pi day on 

March 14 3
4

. The use of the symbol 

π was popularised by the Swiss 

mathematician Leonhard Euler

(1707–83).
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Example 

 Perimeter = 4.5 cm + 2.1 cm + 4.5 cm + 2.1 cm

= 13.2 cm

Example 

 Perimeter = 2 × 7.1 cm + 2.8 cm

= 17.0 cm

Exercise 3G

Find the perimeters of  these shapes.

a 

4.3cm

3.2cm

b

2.7cm

5.5cm

c

7.2cm

4.8cm

d  

10cm

e

3.2cm

3.2cm

f

2.6cm

. Area

These are the formulae for the areas of  a number of  plane shapes.

Square Rectangle Parallelogram Triangle

a

a

a

b

b

h

b

h

A = a2 A = ab A = bh A = 
1

2
bh

4.5cm

2.1cm

2.8cm

7.1cm
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Trapezium Kite Circle

b

a

h

b

a

r

A = 
1

2
 (a + b) h A = 

1

2
ab A = πr2

Example 

Find the area of  this shape.

6.5 cm

3.7cm

4.2cm

Answer

Area = 
1

2
(3.7 + 6.5)(4.2) = 21.42 cm2

Example 

Find the area of  this shape giving your answer to 3 signifi gant 

fi gures.

7.6m

Answer

Area = π (3.8)2 = 45.4 cm2 3 sf. Diameter = 7.6 m,

so radius = 3.8 m

Use the r button 

on your calculator to 

enter π
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Exercise 3H

Find the areas of  these shapes. Give your answer to 3 signifi gant fi gures.

1 

4.5cm

2

4.3cm

6.2cm

4.5cm

3 

5.8cm

7.1cm

6.5cm

4

5.7cm

3.6cm

5 

3.7m

3.5m

6

6.3cm

2.9cm

2.7cm

4.1cm

. Volumes and surface areas of -dimensional shapes

Prism

➔ A prism is a solid shape that has the same shape or cross-

section all the way along its length.

A prism takes its name from the shape of  its cross-section

 Triangular prism Hexagonal prism
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➔ To fi nd the volume of  a prism, use the formula

V = Area of  cross-section × height

To fi nd the surface area of  a prism, calculate the area of  each face and add them together.

Cylinder

A cylinder is like a prism, with cross-section a circle.

➔ The volume of  a cylinder where the radius of  

the circular cross section is r and the height is h 

r

h
V = πr2× h

To calculate the surface area of  a cylinder, open out the curved surface into a rectangle:

h h

r

r

2πr

r

To fi nd the curved surface area use the formula CSA = 2πrh

➔ To fi nd the surface area of  a whole cylinder, fi nd the curved 

surface area and add on the areas of  the two circular ends:

 Total surface area = 2πrh + 2πr2

Sphere

➔ The formula for the volume of  a sphere with  

rradius r is

V = 
4

3
πr 3

 The formula for the surface area of  a sphere is

SA = 4πr 2

Pyramid

Any solid that has a fl at base and which comes up to a point 

(the vertex) is a pyramid. 
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A pyramid takes its name from the shape of  its base.

Square based prymid Triangle-based pyramid

➔ To fi nd the surface area of  a pyramid, add together the areas 

of  all the faces.

 The volume of  a pyramid with height h is

 V = 
1

3
 × base area × h

Cone

A cone is a special type of  pyramid with a circular base.

h

r

l

➔ The volume of  a cone with a circular base of  radius r and 

perpendicular height h is given by the formula

 V = 
1

3
 × πr2 × h

 The curved surface area of  a cone uses the length of  the 

slanted height l

CSA = πr × l

 To fi nd the whole surface area of  the cone, add the area of  the 

circular base:

SA = πr × l + πr2

Example 

ABCDEF is a wedge 

Angle ABC = 90˚

AB = 5 cm, BC = 8 cm and CD = 12 cm

Calculate the volume of  ABCDEF.

A triangle-based 

pyramid with all edges 

of equal length is 

called a tetrahedron.

C B
8cm

5cm

12cm
A

E

D
F

A wedge is a prism 

with triangular cross-

section

{ Continued on next page
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Answer

Area of  triangular cross section 

= 
1

2
 × 5 × 8 = 20

Volume of  wedge 

= 20 × 12 = 240 cm2

Calculate the area of  the cross-section

Volume of  prism = area of  cross 

section x length

Exercise 3I

1 Find the surface area of  each shape. 

8cm

7cm

7cm

5.6cm

10cm

2 Calculate the volume of  each shape.

8cm

3cm

5.6cm

12cm

3 Find the height of  a cone that has a radius of  2 cm and a volume 

of  23 cm3

4 A cylinder has a volume of  2120.6 cm3 and a base radius of  

5 cm. What is the volume of  a cone with the same height but a 

base radius of  2.5 cm?

5 Determine the surface area and volume of  each sphere.

a 

3.5mm

b

15cm
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  6 A hemisphere sits on top of  a cylinder. Find the surface area and 

volume.

5cm

6cm

  7 Eight basketballs are put into a holding container. The radius 

of  each basketball is 10 cm. The container is shaped like a 

square based pyramid with each side of  the base measuring 40 

cm and with a height of  70 cm. How much space is left in the 

container?

  8 A cylindrical can has a diameter of  9 cm and is 14 cm high. 

Calculate the volume and surface area of  the can to the nearest 

tenth of  a centimetre.

  9 Calculate the height of  a cylinder that has a volume of  250 cm3

and a radius of  5.5 cm.

10 A cylindrical cardboard tube is 60 cm long andopen at both ends. 

Its surface area is 950 cm2. Calculate its radius to the nearest 

tenth of  a centimetre.

. Coordinate geometry

Coordinates

Coordinates describe the position 

of  points in the plane. Horizontal 

positions are shown on the x-axis 

and vertical positions on the 

y-axis. 

1 2 3 4 5–3 –2 –1–4–5 x

y

(x y)

1

2

3

4

–1

–2

–3

–4

–5

5

0

René Descartes introduced 

the use of coordinates in a 

treatise in 1637. You may 

see axes and coordinates 

described as Cartesian axes 

and Cartesian coordinates.
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Example 

Draw axes for and –10 ≤ x ≤ 10 and – 10 ≤ y ≤ 10. 

Plot the points with coordinates: (4, 7), (3, –6), (–5, –2) and (–8, 4).

Answer

5 10–10 x

y

(–8,4)

(–5, –2)

(3, –6)

(4,7)
5

–5

–10

10

0

Exercise 3J

1 Draw axes for –8 ≤ x ≤ 8 and –5 ≤ y ≤ 10.

Plot the points with coordinates: 

(5, 0), (2, –2), (–7, –4) and (–1, 9).

2 Write down the coordinates of  the points shown 

in this diagram.

5 10–5–10
x

y

B

D

A

5

–5

–10

10

0

C

Midpoints

The midpoint of  the line joining the points with 

coordinates (x
1
, y

1
) and (x

2
, y

2
) is given 

by 
x x y y1 2 1 2

2 2

+ +⎛
⎝
⎜

⎞
⎠
⎟,

x

y

(x1 y1)

(x2 y2)

0
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Example 

Find the midpoint of  the line joining the points with coordinates 

(1, 7) and (–3, 3).

Answer

The midpoint is 
  

 
 

1+ 3 7 +3
= ,

2 2
 = (–1, 5)

Exercise 3K

Calculate the midpoints of  the lines joining the following pairs of  

points.

1 (2, 7) and (8, 3) 2 (–6, 5) and (4, –7) 3 (–2, –1) and (5, 6).

Distance between two points

The distance between points with coordinates 

(x
1
, y

1
) and (x

2
, y

2
) is given by x x y y2 1

2

2 1

2

( ) + −( )

Example 

Find the distance between the points with coordinates 

(2, –3) and (–5, 4).

Answer

Distance = 5 2 + 4 3 = 7 +7
2 2 2 2

− − − − −( ) ( )( ) ( )  = 9.90

Exercise 3L

Calculate the distance between the following pairs of  points. Give 

your answer to 3 signifi gant fi gures where appropriate.

1 (1, 2) and (4, 6)

2 (–2, 5) and (3, –3)

3 (–6, –6) and (1, 7)

x

y

0

(x1, y1)

(x2, y2)
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The gradient of a straight line

The gradient of  a straight line is a measure of  how steep it is.

It is also called the slope.

RISE

RUN

SLOPE = 
RISE

RUN

Positive gradient

x

y

0
41–4

–6

–5

–4

–3

–2

1

2

3

4

2

[ Gradient = 
Rise

Run
=

4

6
=

2

3

Negative gradient

x

[ Gradient = 
Rise

Run
=

7

9

x x

 Positive Slope Negative slope

“ Horizontal lines have a gradient of zero because the rise is zero.

x

 Zero Slope

Another way of  saying this is 

 gradient = 
Change in  values

Change in  values

y

x

To  nd the gradient, 

measure the vertical 

increase (rise) 

between two points 

and divide by the 

horizontal increase 

(run).

The rise is 4 units. The rise is –7 

units. 7 units 

down.

The run is 6 units 

The run is 9 units 
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“ Vertical lines have an unde ned gradient, as the run is zero

x

 Unde ned Slope

Exercise 3M

Find the gradient of  each line.

1 

x

2

x

3

x

4 

x

 5 

x

 6 

x

7 

x

 8 

x

 9 

x

Finding the gradient of a line given two points

➔ The gradient of  a line is 
Rise

Run
 which is 

The change in 

The change in 

y

x

 Given two points (x
1
, y

1
) and (x

2
, y

2
), The change in 

The change in 

y

x
=

−

−

y y

x x

2 1

2 1
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Example 

Find the gradient of  the line joining (–3, –2) and (4, –1)

Answer

Gradient = 
y y

x x

2 1

2 1

=
1 ( 2)

4 ( 3)
=

3

7

 

 

Exercise 3N

Find the gradient of  the line through each pair of  points.

1 (19, –16) and (–7, –15) 2 (1, –19) and (–2, –7)

3 (–4, 7) and (–6, –4) 4 (20, 8) and (9, 16)

5 (17, –13) and (17, 7) 6 (14, 3) and (1, 3)

7 (3, 0) and (–11, –15) 8 (19, –2) and (–11, 10)

9 (6, –10) and (–15, 15) 10 (12, –18) and (18, –18)

Parallel and perpendicular lines

Parallel lines have the same gradient

x

1

m

1

m

Perpendicular lines have slope m and –
1
m

x

y

A

D

B

C

Run(1)

Rise(–4)

Rise(2)

Run(4)

0 4 5 6 731

5

7

6

1

2

3

4

2

Both of these lines 

have slope m

Line CD has slope 
1

2

Line AB has slope –2

Notice that 

the product of 

perpendicular 

gradients is –1.

–2 × 
1

2
 = –1
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Exercise 3O

1 a Which of  these gradients would give parallel lines?

b Which are perpendicular?

3, 3, , 4.5, , , , , 1.5,
1

3

2

3

2

9

9

2

2

9

6

2
− − −

2 State if  the lines in each pair are parallel, perpendicular or 

neither.

a Line A through (2, 5) and (0, 1) and line B though (4, 10) and 

(5, 12). 

b Line C through (3, 14) and (–2, –6) and line D though (12, –3) 

and (20, –5) 

c Line E through (1, 10) and (5, 15) and line F through (2, 2) 

and (4, 2). 

d Line G through (5, 7) and (2, 4) and line H through (8, –5) 

and (4, –1). 

e Line I through (4, 11) and (10, 20) and line J through (2, 1) 

and (6, 7) 

Equations of lines

A straight line is defi ned by a linear equation of  the form

y = m x + c

Example 

Find the equation of  the line with gradient 3 passing through (0, 4) 

Answer

The line is y = 3x + 4

y

This y-intercept is 4.

The gradient is 3.

Using the gradient formula to fi nd the equation 
of a line

Consider a line with a fi xed point (x
1
, y

1
) and a general point (x, y). 

Then m
y y

x x
= 1

1

or y – y
1
 = m(x – x

1
).

This is called the 

gradient-intercept form.

Some people use 

y = ax + bGradient y-intercept
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Example 

Find the equation of  the line with gradient m = 3 passing through 

(x
1

y
1
) = (6,12)

 y – y
1
 = m(x – x

1
).                                               

y – 12 = 3(x – 6)

y – 12 = 3x – 18

         y = 3x – 6

Exercise 3P

Find the equation of  each line in gradient-intercept form

1 Gradient 3, passing through (1, 5)

2 Gradient 4, passing through (5, 11)

3 Gradient 2.5, passing through (4, 12)

4 Gradient 
1

2
, passing through (12, 20)

5 Gradient 5, passing through (–2, –13)

6 Gradient –3, passing through (1, 1)

7 Gradient –2, passing through (–3, –1)

8 Gradient – 
1

2
, passing though (–4, –3)

9 Find the equation of  the line passing through (2, 7) and (5,19).

10 Find the equation of  the line passing through (–1, –3) 

and (–5, –11)

 Statistics

. Statistical graphs

In a statistical investigation we collect information, known as data. 

To represent this data in a clear way we can use graphs. Three types 

of  statistical graph are bar charts, pie charts and pictograms.

Bar charts

A bar chart is a graph made from rectangles, or bars, of  equal width 

whose length is proportional to the quantity they represent, or 

frequency. Sometimes we leave a small gap between the bars.
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Example 

Juliene collected some data about the ways in which her class travel to 

school. 

Type of transport Bus Car Taxi Bike Walk

Frequency 7 6 4 1 2

Represent this information in a bar chart.

Answer

Bus

y

x

Fr
e
q
u
e
n
cy

Type of transport

0 Car

2

4

8

6

Taxi Bike Walk

Example 

Lakshmi collected data from the same class 

about the number of  children in each of  their 

families.

No. of children 1 2 3 4 6

Frequency 3 9 5 2 1

Represent this information in a bar chart.

Answer

1

y

x

2

0

10

2

No. of children

Fr
e
q
u
e
n
cy

4

6

8

3 4 765

Pie charts

A pie chart is a circle divided into sectors, like slices from a pie. 

The sector angles are proportional to the quantities they represent.
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Example 

Use Juliene’s data from Example 78 to construct a pie chart.

Answer

Type of 

transport
Frequency

Sector 

angle

Bus 7
7

20

 × 360° 126°

Car 6
6

20

 × 360° 108°

Taxi 4
4

20

 × 360° 72°

Bike 1
1

20

 × 360° 18°

Walk 2
2

20

 × 360° 36°

The total of  the frequencies is 20. The total angle for 

the whole circle is 360°.

Bike

Walk

Bus

Car

Taxi

Start by drawing a radius and then measure, with 

your protractor, each angle in turn. The total of  the 

sector angles should be 360°.

Pictograms

Pictograms are similar to bar charts, except that pictures are used. 

The number of  pictures is proportional to the quantity they 

represent. The pictures can be relevant to the items they show or just 

a simple character such as an asterisk.

Example 

Use Juliene’s data from Example 78 to construct a pictogram.

Answer

 = 1car  = 1 taxi  = 1 bike 

 = 1 walk

Bus

Car

Taxi

Bike

Walk

In this pictogram, 

different symbols 

are used for each 

category but the 

symbols describe the 

category as well.
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Example 

Use this data on the number of  children in a sample of  families to 

construct a pictogram.

Number of children 1 2 3 4 6

Frequency 4 9 6 2 1

Answer

No. of children

1 △△△△

2 △△△△△△△△△

3 △△△△△△

4 △△

6 △

Key: △ = 1 child

Exercise 4A

1 Adam carried out a survey of  the cars passing by his window on 

the road outside. He noted the colors of  the cars that passed by 

for 10 minutes and collected the following data.

Color Black Red Blue Green Silver White

Frequency 12 6 10 7 14 11

Draw a bar chart, a pie chart and a pictogram to represent the 

data. 

2 Ida asked the members of  her class how many times they had 

visited the cinema in the past month. She collected the following 

data.

Number of times visited 1 2 3 4 8 12

Number of students 4 7 4 3 1 1

Draw a bar chart, a pie chart and a pictogram to represent the 

data. 

Stem and leaf diagrams

Stem and leaf diagrams provide a simple means of  organizing raw 

data without losing any of  the detail.

Here is some data on the weights of  20 people (in kg).

50, 47, 53, 88, 75, 62, 49, 83, 57, 69, 71, 73, 73, 66, 51, 44, 78, 66, 

54 and 80

You can draw a stem and leaf  diagram for this data. 

They are also called 

stem plots.
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The ‘stem’ is the tens, and the ‘leaves’ are the units.

You must give a key for a stem and leaf  diagram.

4 4 7 9 Key

5 0 1 3 4 7 6|2 means 62 kg

6 2 6 6 9

7 1 3 3 5 8

Exercise 4B

1 The test scores out of  50 for a math class are:

21, 23, 25, 26, 28, 30, 30, 30, 33, 36, 37, 39, 39, 40, 41, 42, 42, 

42, 42, 46, 49, 50, 54.

 Show this on a stem and leaf  diagram.

2 The number of  advertisements in different issues of  a magazine 

are:

164, 176, 121, 185, 148, 149, 177, 151, 157, 152, 163, 145, 

123, 176

 Show this on a stem and leaf  diagram.

3 The waiting time, in minutes, at the dentist’s surgery was 

recorder for 24 patients as: 

55, 26, 27, 53, 19, 28, 30, 29, 22, 44, 48, 48, 37, 46, 62, 57, 49, 

42, 25, 34, 58, 43, 52, 36.

 Show this on a stem and leaf  diagram.

4 The number of  tomatoes produced on different plants in a 

garden is given below:

11, 34, 14, 23, 56, 36, 28, 19, 26, 35, 24, 30, 51, 18, 14, 16, 27, 

29, 38, 26.

 Show this on a stem and leaf  diagram.

5 The times, in seconds, for scouts to tie a knot were:

 4.6, 2.2, 3.1, 4.2, 5.2, 4.3, 6.0, 7.3, 7.4, 3.2, 

 3.3, 6.3, 3.2, 2.3, 2.5, 6.4, 5.2, 2.5, 2.9, 5.2, 5.4, 4.3, 4.8, 4.7

 Show this on a stem and leaf  diagram.

. Data analysis

➔ Discrete data can only take specifi c values. Discrete data is 

often counted.

For example:
● the number of  children in your family – the values can only be 

whole numbers.

● UK shoe sizes – 2, 2
1

2
, 3, 3

1

2
, 4, 4

1

2
, 5, 5

1

2
, 6, 6

1

2
, … 

The leaves are the units 

digits written in order

The key explains what the 

stem and leaf  data means

Use this key: 

16 | 4 means 164 

advertisements

Use the whole number 

part as the stem, 

and the tenths as the 

leaves.
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➔ Continuous data can take any value within a certain range. 

 Continuous data is measured, and its accuracy depends on the 

measuring instrument used.

For example: 

● the time taken to run 100 m may be 14.4 sec or 14.43 secs or 

14.428 sec etc. depending on the measuring instrument. 

Exercise 4C

State whether each set of  data is discrete or continuous.

1 The number of  cars in a school car park.

2 The number of  books in a library.

3 The length of  your pencil.

4 The time that it takes you to rum 400 m.

5 The speed of  a car.

6 The number of  friends that you have.

7 The number of  shoes that you own.

8 The mass of  a table.

9 The distance from the Earth to the Sun.

Measures of central tendency

A measure of  central tendency, or average, describes a typical value 

for a set of  data. 

There are three common types of  average:

● The mode – this is the data value that occurs most often.

● The median – this is the middle item when the data is arranged in 

order of  size.

● The mean – this is what most people mean when they use the 

word ‘average’. It is found by adding up all of  the data and 

dividing by the number of  pieces of  data.

Prior learning



751

Example 

Find a the mode  b the median and  c the mean of  this data set:

2, 5, 4, 9, 1, 3, 2, 6, 9, 2, 5, 13, 4

Answers

a The mode is 2 2 occurs the most often

b 1, 2, 2, 2, 3, 4, 4, 5, 5, 6, 9, 9, 13 write them in order and fi nd the 

middle one

 The median is 4

c Mean =
1+ 2 + 2 + 2 +3 + 4 + 4 + 5 + 5 + 6 + 9 + 9 +13

13

=
65

13
= 5

Add them all together. There are 13 

pieces of  data, so divide by 13.

Exercise 4D

1 Find a the mode b the median and c the mean of  

a 1, 4, 1, 5, 6, 7, 3, 1, 8

b 4, 7, 5, 12, 5, –3, –2

c 2, 3, 8, 2, 1, 7, 9, 8, 5

d 25, 28, 29, 21, 25, 20, 27

e 7.4, 10.2, 12.5, 6.8, 10.2

2 Fifteen students were asked how many brothers and sisters they 

had. The results were:

 2, 2, 1, 0, 3, 5, 2, 1,1, 0, 1, 4, 1, 0, 2.

Find a the mode, b the median and c the mean number of  

brothers and sisters.

3 My last nine homework scores, marked out of  10, were:

 8, 7, 9, 10, 8, 9, 6, 8, 7

Find a the mode b the median and c the mean homework score.

4 A sprinter’s times in seconds for the 40 m dash were:

 5.13, 4.82, 5.25, 4.94, 5.06, 4.82, 5.12

Find a the mode, b the median and c the mean of  the times.

5 Seven farmers own different numbers of  chickens. 

These numbers are: 

 253, 78, 497, 166, 710, 497 and 599

Find a the mode, b the median and c the mean number of  

chickens.

Chapter 14



752

Measures of dispersion

A measure of  dispersion is a value that describes the spread of  a set 

of  data. 

The range and interquartile range are two measures of  dispersion.

The range shows how spread out the data is.

➔ Range = highest value – lowest value

The quartiles divide a set of  data into four equal amounts.

➔ The lower quartile Q
1
 is 25% of  the way through the data and 

its position is found using the formula:

 
 
 

1

+1

4
=

th
n

Q where n is the number of  items in the data set.

 The upper quartile Q
3
 is 75% of  the way through the data and 

its position is found using the formula

 
 
 

3

1

4
= 3

th
n

Q

 The interquartile range shows how spread out the middle 

50% of  the data is.

 Inter quartile range = Q
3
 – Q

1

Example 

Here are the shoe sizes of  fi fteen boys:

42, 42, 38, 40, 42, 40, 34, 46, 44, 36, 38, 40, 42, 36, 42

Find a the range and  b the interquartile range.

Answers

a 34, 36, 36, 38, 38, 40, 40, 40, 

42, 42, 42, 42, 42, 44, 46

 range = 46 – 34 = 12

lower quartile = 
16

4
th 

value = 4th value

 = 38

Upper quartile = 3 × 4th 

value = 12th value

 = 42

So interquartile range 

= 42 – 38 = 4

To fi nd the interquartile range, fi rst 

arrange the data in order of  size

n = 15
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Exercise 4E

1 Here are the shoe sizes of  fi fteen girls:

 26, 28, 28, 36, 34, 32, 30, 34, 32, 28, 36, 38, 34, 32, 30

 Find a the range and b the interquartile range of  the shoe sizes.

2 23 students were asked how many pets they had at home. Here 

are the replies:

 1, 4, 3, 5, 3, 2, 8, 0, 2, 1, 3, 2, 4, 2, 1, 0, 1, 2, 6, 7, 2, 8, 2

 Find a the range and b the interquartile range for the number of pets.

3 The average daily temperatures in °C in Chillton during January 

were

 –6, –4, –4, –2, –1, 0, 4, 5, 7, 4, 2, 1, 0, –3, –4, –6,

 –7, –5, –3, –1, 1, 3, 4, 7, 7, 8, 3, –2, 0, –2, –5 

Find a the range and b the interquartile range for the daily 

temperatures.

4 The grocer sells potatoes by the kilogram. 

I bought 1kg of  potatoes every day of  the week and counted the 

number of  potatoes each time. Here are the results:

Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Potatoes 18 15 20 17 14 12 15

Find a the range and b the interquartile range for the number of  

potatoes in 1 kilogram.

5 The time (in seconds) taken for eleven players in a soccer team to 

prepare for a free kick is given.

 12.4, 2.45, 3.75, 10, 3.5, 8.4, 9.6, 23.5, 2.48, 15.6, 5.2

Find a the range and b the interquartile range for the time taken.
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Practice 
paper 115

SECTION A

1 Given that 4 2 3 4 0ln ln ln− + =k , fi nd the value of  k.  [4 marks]

2 a Show that p x x x x= − + +2 3 8 53 2  is divisible by 2 1x + .  [4 marks]

b Hence fi nd all the zeros of  p(x). [4 marks]

3 The sum of  the fi rst two terms of  a geometric sequence is 
8

9
and the sum of  the fi rst three terms is 

26

27
. 

Find possible values of  the fi rst term and the sum of  all its terms. [8 marks]

4 Consider the event A and B such that P A( ) = 0 3 and P B( ) = 0 2. 

 Given that P PA B A B∪( ) = ∩( )3 , fi nd P A B( ) and  P 'A B [6 marks]

5 Show that for any complex number z,  

a z + z ∗ = 2Re(z) b z – z ∗ = 2i Im(z) c Re z z( ) ≤ [6 marks]

6 Find a vector equation of  the line of  intersection of  the planes 

with equations x z+ − =2 5 and − − + =3 1x y z . [6 marks]

7 A curve is defi ned by the equation x x2 24 2 16 13 0+ − + + = .  

Find the coordinates of  the points on the curve where the tangent 

to the curve is parallel to the x-axis.  [6 marks]

Time allowed: 1 hour 30 minutes

● Answer all the questions

● Unless otherwise stated in the question, all numerical 

answers must be given exactly or correct to three 

signi cant  gures.

Full marks are not necessarily awarded for a correct answer 

with no working. Answers must be supported by working 

and/or explanations. Where an answer is incorrect, some marks 

may be given for a correct method, provided this is shown by 

written working. You are therefore advised to show all working.

Worked solutions on CD:
Detailed worked solutions for 
this practice paper are given 
as a PowerPoint presentation 
on the CD. 

Practice exam papers  
on CD: IB examination papers 
include spaces for you to write 
your answers. There is a version 
of this practice paper with 
space for you to write your 
answers on the CD. You can 

papers for further practice.
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8 Use integration by parts to fi nd the rational values of  a and b such that 
9

1

x x x a bln ln d = +3 . [5 marks]

9 Consider the function f defi ned by f x

x x

x x

ax b x c
( ) =

≤ ≤

−( ) < ≤

+ < ≤

⎧

⎨

0 1 0 1

0 1 5 4 1 2

2

0

if 

if 

if 

otherwise

⎪⎪
⎪

⎩
⎪
⎪

a Given that f is a continuous pdf  of  a variable X, fi nd the values 

of  a, b and c

b Hence state the value of  the mode of  X. [7 marks]

10 Consider the function defi ned by f x x x( ) sin cos= −12 5 . 

Find the range of  f. [4 marks]

SECTION B

11 Consider the lines 

L L
x y z x y z

1 2

2

1

1

2 3

1

4

2

1

3

2
: := = = =and

a Show that the lines intersect and fi nd their point of  intersection. [5 marks]

b Hence fi nd the equation of  the plane that contains both lines. [4 marks]

c Show that the point A(1, −1, 0) does not lie on the plane π. [2 marks]

d Write down the equation of  the line L
3
 perpendicular to 

the plane π that contains the point A. [1 mark]

e Hence fi nd the distance from A to the plane π. [7 marks]

12 a Prove by mathematical induction that 

0 1 22 2 2 2 1 2 1

6
+ + + + =

( )( )+ +
... n

n n n
for all n ∈. [7 marks]

b Hence fi nd an expression for 3 6 32 2 2
+ + + ( )... n . [4 marks]

c Given that A nn = + + + −( )1 4 3 22 2 2
...  and B nn = + + + + −( )2 5 8 3 12 2 2 2

... , 

prove that A B n nn n+ = −6 3  and A B nn n− = −3 2

 Hence fi nd A
n
 and B

n
 in terms of  n. [9 marks]
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13 Let f : x ecos x ,where 
2



 < x < 
2



a State with a reason whether or not the function f  is even. [2 marks]

b Find f  ′(x). [2 marks]

c Given that the graph of  f   has a maximum point, fi nd its coordinates. [5 marks]

d Show there is a point of  infl exion on the graph of  f, for 0 < x < 
2



and fi nd its coordinates. [6 marks]

e Sketch the graph of  f  [1 mark]

f A rectangle is drawn so that its lower vertices are on the x-axis 

and its upper vertices are on the curve y = ecos x where 
2



 < x < 
2



 i Write down an expression for the area of  the rectangle. [1 mark]

 ii Show that there is a positive value x = a for which the area 

of  the rectangle reaches a maximum. 

Hence show that its value is given by 2

2 1

ae
a

a [4 marks]

Use the mark scheme 

in the Answer section 

at the back of this 

book to mark your 

answers to this 

practice paper.
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Practice paper 2

SECTION A

1 A rental agreement says that the yearly rent on an offi ce shall  

increase by €600 each year. In the fi fth year of  the agreement 

the rent was €12200. 

 Find:

a the rent paid in the fi rst year [2 marks]

b the total amount paid in the fi rst 5 year. [2 marks]

c the fi rst year that the annual rent will exceed €15000 [3 marks]

2 The complex numbers w and z are such that w a b c
az b

z c
= ∈

+

+

, , , . 

a  Given that w = 3i when z = −3i and w = 1 − 4i when z = 1 + 4i, 

show that b = 9 and  fi nd the values of  a and c. [5 marks]

 b Hence, show that if  Re z = 4 then Re w = 4. [2 marks]

3 A random variable X is normally distributed with mean and  

variance both equal to a. Given that P(X < 2) = 0.3, fi nd the 

value of  a. [4 marks]

4 Consider the function defi ned by f  (x) = 
1 x

x

2

a Find the fi rst and second derivatives and hence show that the 

graph of  f   has no maxima, no minima or points of  infl exion. [5 marks]

b Hence sketch the graph of  f, showing clearly the intercepts 

and any asymptotes. [3 marks]

Time allowed: 1 hour 30 minutes

● Answer all the questions

● Unless otherwise stated in the question, all numerical 

answers must be given exactly or correct to three 

signi cant  gures.

Full marks are not necessarily awarded for a correct answer 

with no working. Answers must be supported by working 

and/or explanations. Where an answer is incorrect, some marks 

may be given for a correct method, provided this is shown by 

written working. You are therefore advised to show all working.

Worked solutions on CD:
Detailed worked solutions for 
this practice paper are given 
as a PowerPoint presentation 
on the CD. 

Practice exam papers  
on CD: IB examination papers 
include spaces for you to write 
your answers. There is a version 
of this practice paper with 
space for you to write your 
answers on the CD. You can 

papers for further practice.
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5 Given the points A(1, −3, −1) and B(−5, 2, −4), fi nd the  

coordinates of  the point P that lies on the segment [AB] and is 

such that AP: PB = 1 : 2. [6 marks]

6 Given that (1 + x)5 (1 + ax)6 ≡ 1 + bx + 10x2 + . . . + a6x11, fi nd  

the values of  integers a and b. [6 marks]

7 Use substitution to fi nd e

e
d

2

44

z

x
x

+
[6 marks]

8 The hands of  a clock are 20 cm and 15 cm long. Let θ be the

angle between the hands at any time t between 14:45 and 15:15.

a Express the distance d between the tips of  the hands at the 

time t in terms of  θ. [2 marks]

b Assuming that the movement of  the hands of  the clock is 

continuous, fi nd the rate of  change of  θ in radians per minute. 

Hence fi nd the rate of  change of  d at three o’clock, in cm per minute. [6 marks]

9 Consider the sequence (u
n 
) defi ned by 

u

u nn

un

1

1

2

1

3

=

= ∈+

+

⎧

⎨
⎪

⎩⎪
+, 

Investigate the numerical behaviour of  the terms of  the sequence 

and deduce that un

n

=
+3 1

2

2

[8 marks]

SECTION B

10 A box contains a very large number of  ribbons of  which 25%  

are red, 30% are white and the rest are blue. Twelve ribbons are 

selected at random from the box.

a Find the expected number of  red ribbons selected. [1 mark]

b Find the probability that exactly six of  these ribbons are blue. [3 marks]

c Find the probability that at least two of  these ribbons are blue. [2 marks]

d Find the most likely number of  white ribbons selected. State 

any assumptions you have made about the probability of  

selecting a white ribbon. [4 marks]

There are two other boxes with large number of  coloured ribbons: 

one where 25% of  the ribbons are blue, 25% white and the others red, 

and another box where 50% of  the ribbons are white, 20% blue and 

the rest red.

e Kathy picks a box at random and, without looking, takes a ribbon out. 

If  she takes a white ribbon out, what is the probability that this ribbon 

was taken from the fi rst box? State any assumptions made. [4 marks]
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11 The points A(1, 2, −3), B(2, −1, 0) and C(−1, 0, 3) are given. 

a Find the vector equation of  a line (AB) that passes through the 

points A and B. [3 marks]

b Find the midpoint M of  the line segment [AB]. Hence show that 

the equation of  the plane α perpendicular to [AB] that bisects 

the line segment [AB] is

   2x − 6y + 6z = −9 [3 marks]

c Show that the equation of  the plane β perpendicular to [AC] 

that bisects the line segment [AC] is 

x + y − 3z = 1. [3 marks]

d Find the angle between the planes α and β

The plane γ perpendicular to [BC] that bisects the line segment 

[BC] has an equation 

    6x − 2y − 6z = −5. [4 marks]

e Show that the planes α, β and γ intersect and fi nd the vector 

equation of  the line of  intersection. [4 marks]

f Consider the plane π defi ned by the equation x + y + z = 0

Find the coordinates of  the point P on the plane π that is 

at the same distance from the points A, B and C. [6 marks]

12 Let f  (x) = cos(2x) + 1 and  



e e

2

x x

g x

a Show that both functions are even. [3 marks]

b Find the derivatives f  ′(x) and g ′(x). [4 marks]

c Show that both derivative functions are odd. [2 marks]

d Sketch the curves y = f  (x) and y = g (x) and fi nd their points of  intersection. [4 marks]

e Show that the tangents to the curves y = f  (x) and y = g (x) at the point 

of  intersection in the fi rst quadrant have equations y = −1.95x + 2.53 

and y = 0.719x + 0.751 respectively. [3 marks]

f Find the area of  the region enclosed by all four tangents to the curves 

y = f  (x) and y = g (x) at the points of  intersection. [3 marks]

g The region enclosed by the curves y = f  (x) and y = g (x) is rotated 

by 2π about the x-axis. Find the volume of  revolution generated. [4 marks]
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Answers 

Chapter 1 

Skills check 

1 a {1,2,3,4, 5} 
b {-4,-3,-2,-1,0, l }  
C {1,2,3,4, 5,6} 

2 a 26 b -12 C 2 

b 13✓23 a 3✓3- 7 

C -2=✓3
2 

l b x=--
2

4 a x= 5 
5 a 35 b -10 

Investigation - curious 

numbers 

Tiles Tiles 

along along 

dlagonal each 

edge 

9 5 
13 7 

133 67 

1333 667 

13333 6667 

ExerciselA 

1 a 

b 

C 

2 a

b 

C 

3 a

b 

C 

0, 1.5, 3 
9 11 13 ---

10' 12' 14 

99' 143' 195 
r (r + 1) 

r' +l 

2 r-3 
1,5,9,13 
l 2 3 4 
- - - -

3' S' 7' 9 
h _l_ _l_ __!__ 
'4' 9' 16 

Tiles total 

25 

49 
4489 
444889 
44448889 

4 a 2 + 6 + 12 + 20 

b l 2 3 4 s 
-+-+-+-+-
3 s 7 9 11 

C -1+4 - 9+16 - 25
� 10 

5 a I(4r-s) b Ic-1r 
r=l ,., 

6 

C I6xc-2r 
r=l 

Answers 

Investigation - quadratic 

sequences 

n2
- 2n + 3 

n = p-1 ⇒ n2 
- 2n + 3 

= (p-1)2 - 2(p - 1) + 3
n = p ⇒ n2 

- 2n + 3 = p2 
- 2p + 3

n = p + 1 ⇒ n2 
- 2n + 3 

= (p+1)2-2(p+ 1) + 3 
Differences 2p - 3 and 2p - 1 
Second difference 
(2p - 1) - (2p - 3) = 2 

2n2 
+ 2n + 1 

Entering data for 2n2 + 2n + 1 into 
the GDC gives the second 
difference is always equal to 4 
-n2 + 3n - 4
The second ifference is always -2
Conjecture: The second difference 
appears to e constant and equal 
to twice the coefficient of n2

. 

Proof: 
Three cons

l

cutive terms of N =
an2 + bn + c are NP 1, NP, NP+ 1 
NP_ 

1 
= a(p 1 )2 + b(p - 1) + c 

N = ap 2 + 'P + c
p 

NP + 
1 

= a(p + l )2 + b(p + l )  + c
First differences: 
Np - Np-i = 2ap - a + b 

NP+ 
1 

- NP = 2ap + a + b 

Second difference equals 2a 
which proves the conjecture. 

Investigation - triangular 

numbers 

Second difference is 1 which 
indicates that the numbers are 
generated by a quadratic formula 
an2 + bn + c where a= .!. 

2 

N =.!.+b+c=l ⇒ b+-G-=.!_ 
I 2 2 

1 N, = -x 4 + 2b + c = 3 ⇒ 2b + c = l 
2 
l.-. b =-,c =0 
2 

For triangular numbers: 
1 N =-n(n+l)
2 

Investigation - more number 

patterns 

Repeating the procedure we obtain: 

Number of 

Polygon sides of 

numbers N polygon N 

Triangular n(n + 1) 3 !!.en+ 1) 
2 

2 

Square n' 4 !!.(2n + 0) 
2 

Pentagonal 
n(3n-1) 

5 !!.(3n - 1) 
2 2 

Hexagonal n(2n -1) 6 !!.(4n - 2) 

Heptagonal 
n(Sn 3) 7 .'.'..(5n - 3) --

2 

Polygon !!..[i.k - 2)n 
2 

with k sides 
- (k - 4)1 

Term 1st 2nd 3rd 4th 5th 6th 7th 8th 

Triangular 
numbers 1 3 6 10 15 21 28 36 

Square 
numbers 1 4 9 16 25 36 49 64 

Pentagonal 
numbers 1 5 12 22 35 51 70 92 

Hexagonal 
numbers 1 6 15 28 45 66 91 120 

Heptagonal 
numbers 1 7 18 34 55 81 112 148 

Octagonal 
numbers 1 8 21 40 65 96 133 176 

Nonagonal 
numbers 1 9 24 46 75 111 154 204 

Each column in the table is made 
up of numbers with a constant 
difference. 

Exercise 1B 

1 a u = 6n-l 
b u = - 7n + 17 
C u = a-2 + 2n

2 a 128 

b SI
4 

C 4n + 3 
3 33, 38 - Sn 
4 4,-12 
5 €55000, 48 years 



ExerciselC 

1 a 522 
b 108 

C -1870
2 a 345 

b -285 
3 120 
4 -1,2, 5, 8, II 
5 d=4 5,9,13,17 
ExerciselD 

1 a u
6 

= 32 
un = I x 2n- 1 

1 b u =-• 27 
u. =&T'

C u, =(;)'
u. = (; J

4 

2 a 
1 3 
2'32 1 1 b 
-6, 2433 a 7b 9 2 4 ±3, ±-3

S 27
6 - 5

3' 2 

Investigation - convergent 

series 

n 3• 2• (H 
1 3 2 1.5 

2 9 4 2.25 

3 27 8 3.375 

4 81 16 5.0625 

5 243 32 7.59375 

6 729 64 11.390625 

7 2187 128 17.0859375 

8 6561 256 25.62890625 

9 19683 512 38.44335938 

10 59049 1024 57.66503906 

(;} 
0.5 

0.25 

0.125 

Exercise lE 

1 a 63 b _ 126116 64 
c 683 or 1.33 (3 sf)512 
d 0.125 (3 sf) 

2 a 3906 25 b 10" - I 
3 1365 or�32 32 

1 3 9 4 a 2' 4' s 5 
7 ✓l , f ( 3 - ✓2) metres

6

8 -4 < x< 2-
' 7 

g r= k k+l 
Exercise lF 

I 1 a -2 b 3.23 
2 $4000 
3 62, 19 
4 a $47.07 b $1130 
Exercise lG 

4 3 4 3x4+4 

7 8 7x8+4 

-6 -5 -6 X -5 + (-5)

11 12 11 X 12 + 12 

8 9 8x9+9 

16 

64 

25 

144 

81 

n(n + I)+ (n + I)= (n + 1)2 

(-�r 
5, (�} 

-0.2 0.75 

0.04 0.5625 

-0.008 0.421875 

0.0625 0.0016 0.31640625 

0.03125 -0.00032 0.237304688 

0.015625 0.000064 0.177978516 

0.0078125 -0.0000128 0.133483887 

0.00390625 0.00000256 0.100112915 

0.001953125 -0.000000512 0.075084686 

0.000976563 1.024 X 10-7 0.056313515 

ExerciselH 

all proofs 
Exercise 11 

all proofs 
Exercise 1J 
1 8! -7! 

10!-9! 

5! -4! 

7 X 7! 

9 X 9! 

4 X 4! 

9 5! - 94! 94 X 94! 

(n+1)! - n! n "n! 

2 a 1 30 b-+ 

C 241920 
3 a b (n-1)2 

n 

C (n! - 1) 
ExerciselK 1 15 600 2 a 479001600 b 41472 3 70 weeks 
4 a 4845 b 4280 
5 a 1176 b 294 c 420 
6 17 576000 
Exercise 1L 

1 proofs 2 a I + 22x + 220x2 + 1320.x3 + ...b 1 - 21x + 189x2- 945.x3 + ...
C 32 + 400x + 2000x2+ 5000.x3 + ...d 512- 768x+512x2 

1792 3 ---x 
3 a -2240.x3 

C -l 792a5b3 

4 126720 
b 95 2 -x 2 

16x' Bx' 2x4 5 32 + 16x + -- + -+ -5 25 125 
x' +-, 32.W&04 3125 

6 a 49- 2016 
b }.]_✓2 + '!..}_ Js5 25 
C 248✓7 7 a, b Proof c (a - b)(a + b)(a2 + b2) 

d, e Proof 
Answers 



Review exercise (non-GDC) 

1 4, 16, 64 and 64, 16, 4
2 736

3 33 -- -6
' 2' 

4 1, 3, 7, 15, 31, 63
5 proof 

6 a 
(n + !)!

4!(n-3)!

b 
(n-1)!

2!(n-3)!
C 8

7 a 2" b o 

Review exercise (GDC) 

l a 1 I I 

Ji'2'2n 
b 4.86 C 5.12
d 0.249 e 0.25

2 a 908 107 200
b 14688
C 384

3 66
4 20412
5 1001,2002,3003

Chapter 2 

Skills check 

1 y=(x -I)' _!2.
2 4' 

(
3 

� vertex 
2

, -
4 ) 

; 

. f 3 axis o symmetry x = -
2

4 1
2 a x = -- b x =-- or I

3 3 

3 a X = (y - 3)2 + 2

b x= 2y+I

2-3y 

Exercise 2A 

1 a Yes. D = { 0, 1, 2, 3} ;
R = {-1, 1, 2, 3} 

b Yes.D={-3, -2, -1,0};
R = {O} 

c Not a function
d Not a function

2 a Yes.
Domain={x l-3$x$3};
Range = {y I O $ y $ 3} 

Answers 

b not a function
c not a function
d Yes.

Domain = { x I x ;:: - I};
Range = { y I y ;:: 0 } 

Investigation - quadratic 

graphs 

(h, k) is the vertex. When h < 0,
the graph moves h units to the 
left, and when h > 0 the graph
moves h units to the right. When
k > 0, the graph moves k units 
upward, and when k < 0, it moves
k units downward. 

Exercise 2B 

1 y2 = x is not a function since
for two different y values there
is the same x value, e.g., when 
x = I y = ±I. y = ✓x is the 
positive square root of x so for
each value of x, there is only 
one value of y. 

2 a y = (x - 2)2 
- 2; Domain

is the set of Reals, and 
Range= {y I y;:: -2} 

b Domain is the Reals,
Range = {y I y :s; -3}

c Domain= {x I x;:: -2},
Range is the set of non
negative Reals. 

d Domain= {x I x $ 3};
Range is the set of non
negative Reals. 

e Domain is the set of
Reals; Range= {y I y :s; 2}.

f Domain= {x I x:s; 2},
Range = non-negative 
Reals. 

Investigation - absolute value 

functions 

a When h < 0, the graph moves
h units to the left, and when 
h > 0 the graph moves h units
to the right. When k > 0, the 
graph moves k units upward,
and when k < 0, it moves k
units downward. 

b For a > I, as a increases
in value, the graph gets 

closer to the y-axis. When
0 <a< I, the width of the
graph increases and moves
further away from the y-axis.
Similarly for a< 0, but the 
graph will be inverted. 

c The coordinates of the
vertex are (h, k). When
a < 0, the vertex is a 
maximum point, and when
a > 0 it is a minimum point.

Exercise 2C 

1 Domain= Reals; Range is
non-po�itive Reals. 

2 Domain= Reals; Range is
non-negative Reals. 

3 Domain = Reals; Range is
non-positive Reals. 

4 Domain= Reals; Range is
non-negative Reals. 

5 Domain= Reals; Range is
non-positive Reals. 

6 Domain = Reals; Range
={ y l y;::-2 } 

7 Domain= Reals; Range
={y l y:s;l }  

8 Domain = Reals; Range
= {y I y;:: -2} 

Exercise 2D 
21 D={xlx#--}R={yly#O}3 

2 D={xlx#2}R={yl y#0}
3 D={xlx#3}R={yly#O}

I 
4 D={xlx#-2}R={yly#O}

1 5 D = {x Ix ,t -}-R = {y I y ,t -1}
2 

6 D={xlx#-l }R={yly#3}

Exercise 2E 

1 D={xlx#-l}R={yly>O}
2 D={xlx#l }R={yly<O}

3 D= {xix# 0} R = {-1, 1}

4 D={x lx<l}R={yly<O}
5 a

D-{xl-li_<x<}i ,x70}
R={yly>0}



Exercise 2F 

1 a -1;1;1;1
b y 

f(x)={l,x;,O 2 
-1,x<O 1 _____ _

0 2 4 6 8 10x

-2

c Reals; y = ± 1
4; 2.5; 2; 52 a 

b 

1 

-1 0

c Reals: y � 2
3 a -4; -1;✓

2

; 3
b Y.

6 

4 

X 

f(x) _ {3x - 1, x s: O
6 .,/x+i,x>O

c Reals; {yly :s; -1 or y > l}
1 4 a 5, 2,0,-1

b y
3 
2

-2

-3 
c Reals; Reals

Investigation - odd and even 

functions 

a Even
b Odd
c Neither
d Even
e Even
f Odd

Exercise 2G 

1 many-to-one; even
2 one-to-one; odd

3 one-to-one; odd
4 one-to-one; neither
5 many-to-one; neither
6 many-to-one; odd
7 many-to-one; odd
8 many-to-one; neither
9 f(x) = 0

Investigation - composite 

functions 

a Not commutative
b Is associative
c i Even; 

iii Even
ii Odd;

d May be neither even nor
odd if one of the constituent
functions is neither even nor 
odd.

Exercise 2H 

1 a x� 0
b x� 0
C x> 0

2 x < -2 or x > 2
3 a 2 b -7 C -2

d -4 + 16x + 12 x2- 36x3 

4 a 

b 

-27:0 
3 - 2x2

ii 2x + 3

iii l-2,/2x+4

iv ✓2x'+2
Reals; y::; 3

ii x�-2,y�- 1
iii x� -2; y :-:;; 1
iv Reals; {y I y � ✓2}

d 1, ✓6
5 e.g.,f(x) = x - 2; g (x) = x2
6 e.g., h (x) = ✓x; g (x) = 2x - 3

Exercise 21 

l (x + 1)

2
3

4

5

3x + 1
,/x+2, X � -2

-✓x-1; x � 1

Jx+5 - 2;x�-4

6 No

8 l+x;x;c2
x-2 

Investigation - self-inverse 

functions 

f(x) = a - x, a is a real number;

f (x) = !!_, bis a real number.

The graph of the function will be
symmetric about the line y = x. 

Exercise 2J 

1 a y

-3

b 

2 a 

b

-6

-4

-6
3 a Y.

4 6 8 10x

y = t( lxl l

y= lt (xl I

X 

Answers



b ½ 

0 

4 a ½ 

b 

5 a 

3 
2 
1 

-8 -6 -4 -2 0 
-1 
-2 
-3

-4

b ½ 
2 

1 

-4 

Exercise 2K 

1 
X = -4 ½ 

4 

3 

Answers 

2 

X 

3 

Y = I f(x) I 

2 4 6 8X 

y- t( Jxl) 4 

2 4 6 8 X 

y = lt(x) I 

5 

y = t( Ix I) 

6 

2 4 6 810x 

½ 

y = 1 - 3x 1 

1 x--

0 2 4 6 8 lOX -10 -8 -6 -4 -fl I 

I 

-2 I 

1 

-3 
y =

rw 

-4

(2, 0) 

4 6 8X 

(0, -0.25) 

(0,-4) 

½ x=2

6 

4 

8X 

1 

Y • f(x) -
y = f(x) 

X = 0 

8X 

X = 1.5 

a ½ 

X 

b 
Y. 

X 

Exercise 2L 

1 a Translation(�) i.e.

g (x) = f(x - 3) + 2 

b Translation ( =�) i.e.

g (x) = f (x + 2) - l 
C g (x) = - f (x) - l, reflected 

in the x-axis and translated 

by(-�)
d horizontal compression by 

a factor of 2._ i.e. 

g(x) = f (2x) 
e Reflection in the x-axis 

and vertical stretch of 2 
i.e. g(x) = -2/(x)

f Reflection in the y-axis

and horizontal stretch 
-] 

of 2. i.e. g(x) = f (- x)

2 g(x) = h(-x - 3) 
3 a ½ 

3 

(2, 1) 

3 X 

(-6,-3) 

b ½ 
(-5, 2) 

3 

(2, 1) 

1 2 3 X 

(2,-2) 

C 

(2, 1) 

X 

(-5, -1) (-2.5,-1) 

d 
y 

( -4,0) 

(-s,-�) ✓,;_4 2 X 

(-5,-1) 



(4,2) 

4 a
y. 

f(x) = x
2 

(3,2) 

b

f(x) = Ix[ 

-8 -4
(-1+-f

/.'.4

C 

9x + 20 2 5 y = 3x + 6 or y = 3(x + 2) + 3
Domain= {x I x "#- -2}
Range = {y I y "#- 3}

1 6 a X = --
5 b (0, 5), (-
4
, 0)

C y. 

18 
x = --• 

2 � (0,5) 

1 2 3 4 5
X 

d f(x) = 3g (2x + 1) + 2
Review exercise - (non-GDC) 

1 a Reals, y ::;; 2
b No c No
d x "#- ± I, y::;; - 0.25 or

y>O 

2 3; 3
3 _

x -
_

I 
_

_ 2x
_
+

_
I 

2-x' x+I

X 

4 (-5, -2)
(-4, 0)
(-3, 2) 
(-1, -1)
(3, -3)
(8, 2)

5 a

➔ (-6, 1)
➔ (-5, -3)
➔ (-4, -7)➔ (-2, -1)
➔ (2, 3)
➔ (7, -7)

y 

15 

J'. 

b r

C 

d

e

5 

-4

-5 r 
y 

5 I 

�� 
1 

--

-4

-5 
y 

5 I 

�L 
1 

-

-3 

-4

-5

y 

5 

4 

3 

-4 

-5 

6 a g(x) = -f (x)

b g(x) = f(-x)

C g(x) = f (x + 1) - 1
d g(x) = -f (x) + 1

1e g(x) = 
f(x) 

f g(x) = -f (2x)

g g(x) = f(-x) + 2
7 Proof
Review exercise (GDC) 

1 a 3x2- 1
C ,,/3x -1

l b
x'+2 

3-7x d --;x*0 
X x-1 2 f(x) = -;g(x) = x2 

x+3 

3 g(x) = 4x2 
- 2x - 5 

y = g(f(X)) 

4 

-4 -2 Q 2 4 X =
6 

g(x) = 4x2 
- 2x - 5 

4 Vertical stretch of� followed
by a translation of ( 3�). Same
when x = -40 i.e.
-40°F = -40°C.

5 -l-4x 
y=--2(x + I)

Chapter 3 

Skills check 

1 a -3, l
-3C z' 1

2 a 2.x3 - 3

b 1, 10

b 6x4 - 8.x3 + 5x 2 
- 27x + 11

3 4 3 6 9 C -x4 - -x3 --x2 - -x - -2 5 5 5 10
Answers



Exercise 3A 

1 a O i '2 b ± 5 
C 0 i' s d No real roots 

1 f ± ✓2e 0 --' 121 
g 0,-11_ h ±g 1[ 

2 a 
I -2 --' 2 b 3 _!_ '3 2 2 3d C -1 - -

3'7 ' s 
s 7 4 6 

e X = -- x= -3 ' 3 f ii'ri 
3 a -2 ±✓2 

b 3± ✓14 
s 

C 1± ✓37 --6 
d -11± ✓17

4 
e 

23±ml 
22 

f 
29± .JI661 

10 4 a -2p,p 
b 2 -- -1

k' 6 IC ;·2 
d -2a + b, a - b 

Exercise 3B 

1 a 2 real roots 
b one real root 
c no real roots 
d 2 real roots 
e no real roots 
f one real root 

2 a k= -1 9 b k> --8 
c k> '}}_ 24 2 d k = -- or-2s e k> 0 
f -12-3✓14 < k < -12+3✓14

4 4 
Exercise 3C 

1 a 3 b 19
3 

C -1
d -12 

Answ: 

e -1 f 47 
7 

g 
64 

h 24336
2401 

Exercise 3D 

1 a Re (z) = 0, Im (z) = 3 
b Re(z)=-7,Im(z)= 0 

9 3 C Re (z) = 4, Im (z) = -2
11 .J7 d Re (z) = 4, Im (z) = 

5-2 4 e Re (z) = - Im (z) = -3;r' ' 3;r' 2 a 13 b 25 
c ✓13 d 1 

s e 
1[ 

Exercise 3E 

1 a 3 - 2i 
b -l+lli 

C 21 16i
10 S 

d 12i 
e 8 - 6i 

f 52 13.
---1 10 

401 46i 

g
----IS 

Exercise 3F 

1 2 9.a -- + -I 
s s 

s 

IS 8 . b --- -I 17 17 
25 S . C -- + -1 39 39 

d �+�i 2 2 13 84 . e -� +-1 25 25 
2 a a=4,b=-3 

b a=4,b= 19 
c a= 6, b = -5
d a= 0, b = 4

3 a 3 -1
4'2 

b s 2
3' 3 4 c l --, 3 

do� ' 13 

4 a 6 + 18i 
b 6 + 18i 
C 12 

5 a 
7 19.-- -110 10 b 2 - i 

C � - .!3_i 
13 13 

d .!...!..!. + 302 isos sos 
6 7 Re (z) + 2 Im (z) = 0 
7 3 Re (z) + 5 Im (z) = 0 
8 a _7___ - 3i 

b -1 -ii 4 
C 0-l _ _!_ + ✓3i _ _!_ _ ✓3 i' ' 2 2 ' 2 2 

Exercise 3G 

1 a 0 b 2 - 2i 

C 8+i d 7 26. 
-+-t 

2 
e 1 
a -20 + 4i

b 10 
C -18 
d -8 

f 

3 a ± (2 + 1) 
b ± (2 + 3 1) 
C ±(¾+i)

d ± (½-¾1) 

29 
1 

( I 1 . )e ± ✓2+
✓2

1 
f ± (l-Jzi) 

5 a n = 4k

29 

b n = 2(2k +1), where k EN 
Exercise 3H 

1 a ?.,=3,p=-2 
b ?.,=10,p=2 

2 a x5 - 4x 
b 81x5 + 81x4 - 256x - 256

3 a= 2, b = 2 



4 a=-1,b=-3,c=2 

5 a= 13, b = 12, 
f (x) = (x2 + 3x + 2)2 or

a=5,b=-12, 

f (x) = (x2 + 3x - 2)2 

6 g (x) = x3 + 6x2 
- 30x + 31

7 f (x) = x4 - 3x2 
- 2x

8 /(x) = 3x4 + 2x3 + 5x2 + 8x + 4
Exercise 31 

1 a x3 + 3.x2 + 2x - 1
b x3 + 3.x2 + 2x - 1 
c 2x3 - 5x2 + 4x - 1 2 a q (x) = 2x2 + 3x + 1,

r (x) = 2 
b q (x) = 3x2 - 2x + 1,

r (x) = 2x + 3 
C q (x) = x4 - x3 + X - 1, 

r (x) = x 

Exercise 3J 

1 a q(x)=x2+2x+2,r(x)=1 

b q(x) = 2x2 + 3x +l, r(x) = 2 
c q(x) = x4 - 2x3 + x2 - 2x + 2 

r(x) = -3 
d q(x) = 3x5 + 3x4 + x3 + x2

+ 6x + 6
r (x) = 4

2 Proof 
Exercise 3K 

1 a q (x) = x4 - x3 + x2 + 2x + 1, 
r(x) = -2 

b q (x) = x3 + x2 + x - 1,
r (x) = 7 

2 f (x) = 3x3 + 2.x2 - lOx + 6
3 a= -9
4 b = 0
5 a= -5, b = 2

3 5 6 Remainder = -x --
2 2 

7 Remainder = 0 
Exercise 3L 

1 a (x+2)(x+2)(2x - l) 
(x - 2)

b (2x - 1)2 (3x - 5)
2 a x3 -9.x2+23x- 15 

b x4 + 2x3 - x2 - 2x

C 3x4- 16x3+21.x2+ 
4x - 12 

3 a x4 - 5x2+ 6 
b 8x4 - 2x3 

- 43x2 + lOx + 15

c 5x6 - 7x5 - llx4 - 18.x-3 
+ 2lx2 + 33x+ 9 

4 a (x - l)(x - 3)(x+2) 
b (x - 1) (2x- 3) (x+ 2) 
C (x-l)(x+ 1)(5x+3)

(x - 3) 
Exercise 3M 

1 a -2i, -3 
b 1 + 2i, 4 

3 ✓3 . -2c----z-2 2 ' 5 
d i, 2, 2 
e -1+3i -- l' 2' 
f -2 - i -I 1' 2' 

1 ,J5. I
g -2 - 21' - 3, -3 
h .!. - Ji �i -i 3 3 ' ' 2 a a=-12;-3and4
b a= 17;2±i
C a= -8; -1 + i, 2, -2
d a = -16, b = 20; 2i, 2 ± i

Exercise 3N 2 1 a -3 
C 

5 
3 

e 34 
2 a 3 

C 2 
e -2 

3 a -2, 5 
I b -
4
, 0

C 0,22 
d 4 s 

s' s 
Exercise 30 

1 a 1,2,3 
b 1, 1, -4 
C 2, -2, -3 

5 d 3, -, -32 
Exercise 3P 3 11 a -1,-4,3

b -2, 3 ±✓2

b 43
15 d --2 

b -6 
d 4 
f I 

C --3 
f -1, 2, 3, -3 

2 a a=3 

b 1, -1 
3 a a= 2, b = 4 

b --25 b -a

Exercise 3Q 

1 a [1,2]u [3,oo [ 
b ] -oo, -4] or x =1 
c ] -oo, - 3 [ u ]  -2, 2 [ 
d l -3, 2.5 [ u l 3, oo[ 
e ] -oo, -I] u [-¾,1] 
f ] -2, 3 - ✓2 [u] 3_+✓2 ,oo[ 

2 
g l -oo, -3 [

h ]- oo,-3]u [-I,2]u 
[ 3, oo[ 
I 5 2 ] - 3, 2 [u]

2
,00[ 

3 a [-1, -0.921] u [1.26, oo[ 
b l -00, o l

4 a ] 1, oo[ 
b ] -oo, - l] u [ -0.366, I .37] 
C [-1, -0.544] 

Exercise 3R 5 13 . 3 2·1 a X = - - -1
, 
y = - + 1 

2 2 b x = 1 + 2i, y = 1 - i 
2 a (1,-2,3) 

( I 18 8 J C -19'19'-19 

b (1,1,1)

d ( 2y �. y, 4 -/y)

e No solutions 
f No solutions 

3 a k = 1 b k = 1 or 4 
4 a k = 2, (1 - 2y, y, 0) 

b k = 4, (y + 5, y, -4 - 2y)

5 m;c l [m-m'-1, _ _!!!__,l+mJ
l-m l-m 1-m 

Answers 



Review exercise (non-GDC) 

1 a= - 12 

2 X = i, y = l + i

3 1 
m<--

12 
4 1 + 2i, -3i, 3i 
5 m = -4 or 2 
6 a= 3 or± ✓3

9 2 
3 

10 b 2, -1 ± i ✓
6 

C 2 

Review exercise (GDC) 
1 XE[l.67,oo[ 
2 m E] -oo, -1.05 [ 

I 2 4 3 x=

2,y=

7, z= -3

4 143 
27 

5 0.833 

Chapter 4 
Skills check 
1 .Y. 

2 10 

Exercise4A 
1 -2 
2 3 
3 Limit does not exist 
4 Limit does not exist 
5 0 
6 Limit does not exist 

Exercise4B 
1 Not continuous 
2 Continuous 
3 Not continuous 

4 k = i

5 a = -
2 

Answers 

6 a Not continuous at x = ± l 
b Not continuous at x = ± 2 
c Continuous for all x 
d Not continuous at x = -4, 

x=l 

e Not continuous at x = l 
f Continuous for all x 

Exercise4C 
1 a 7 b -3 

C 0 d does not exist 
e 2 f 0 

g 
2 

h 2a -
3 

2 a 2 b 3 
C 

2 d 0 

e 0 f 4 

3 y= 3 b a y=-2 
C y=0 d y = -l 
e No horizontal asymptote 

Exercise4D 
1 a converges 

b converges 
c converges 
d does not converge 
e converges 

22 a converges; sum = 
3

b does not converge 
5

c converges; sum = 
2 
1 

d converges; sum = 
3

7 e converges; sum = --
20 

5
f converges; sum= 

2
-

3 a X < 0 
b x = -3 

1 1 4 --<x<-
4 2 

Exercise4E 
1 a 4 

b 
1
2 

C 3 
d -2 

e 1 

f 
4 

2 (-1, 1) 
1 3 f'(x) = 4x - ,; (1, 3) 

X 

Exercise4F 
1 a 

b 

C 

d 

e 

f 

2 a 

b 

2x + 2, 2 
3.x2, 3

2 2 -- --
X 

2 ' 9 

1 1 
2Jx-l 

' -2 

4 

-

16 
-l0a - Sh

-lOa

Exercise 46 
1 a 2 

b y = 2x + 10 
I I 5 

C y = --x + -2 2 
2 (2, 1) and (0, -l);y = -x + 3; 

y = -x- 1

3 a (½, 1:) 
b (0, 1) 
c none 

d (I _2.) 
2' 4 

e none 
4 y = 2. Normal is x = 1 

Exercise4H 
1 a -1 - 6x

b 8r' - 3 
3 4 c 12x2 + , + 4x - -· 

X 3x 3 

d _2_ -J-+ 15x2 
x' 

2 y = 8x- 6 
1 11

3 y= --x+-
3 3 

Exercise 41 
1 a 10(2x+3)4 

b 3 
2J2-3x 
2 

C -- - 3 + 15x2 

x' 

d lSx 
)(Sx' + l)' 



l-2✓x

2 y=2x- 1 
1 53 y=-3x -3

4 (1,-½)
5 

4,/.J; -x

Exercise 4J 
1 4x (x + 3) 2 

2 8 (2x - 3) (5x - 4) ( 4x + 1)2 

3 
2 

---

(x -1)2 

4 (l-3x)

(1-2x)' 

5 (3-4x') 
(x' -3x+l)' 

6 
2(x-1)'(7x-5) 

(3x -2)' 

Exercise4K 
1 a 

b 

C 

d 

e 

f 

21-x'
x' 

(x' + l)' 

3-4x3 

(x' -3x+l)' 
l 

✓x (1-✓x )'

3x'(2-✓x) 
2(1-✓x)4 

7x- 12x' -3 
3 

x' (1-2x + 3x' )' 

2 0 
25 3 

3 y=-x+-
16 80 

4 2 

3(2+x)',C_J__ 
v

i -
z+x 

Exercise4L 

1 
2 

x' 

2 -2, 12 
3 x = 2 
4 r = 2, s = -8, t = 5 
5 a O ms- 1 

b O ms-2 

c 870 ms-3 

Investigation - Leibniz's 
formula 
f "'(x) = u'"v + u"v' + 2u"v' + 2u'v"

+ u'v" + uv'"
J<4l(x) = u<4lv + 4uC3)v' + 6u"v" + 

4u'f3) + u,!4) 

J<")(x) = i, (nJ u<klv<" k) 

>=O k 

J<5l(x) = u<5lv + 5u<4)v' + IOu<3)v" 
+ IOu"i/3) + 5u1v<4) + ui/5) 

Exercise4M 
1 a M. . 1 5 m1mum va ue = --

3 4 
(at x= -) 

2 
b Minimum value= -3 

(at X = 0) 
Maximum value = 5 
(at X = 2) 

C Minimum values are 59

I 16 
(at x =--) and 2 (at x = 1) 2 
Maximum value is 4 
(at X = 0) 

d Horizontal point of 
inflexion at (0, 0). 
Minimum value of -27 
(at X = 3) 

Exercise4N 
1 a x=±l; 

ii 

iii 
b 

II 

iii 

2 a 

ii 
iii 

b 

ii 

iii 

]- oo, -1[ and 
] 1, oo [ 
]-1, 1( 
x= -1, 0.5, 1.5 
]-1, 0.5[ and 
]1.5, oo[ 
]-oo, -1 [ and 
]0.5, 1.5[ 
x = 0.5 
]-0.5, oo[ 
]-oo, -0.5[ 

I 3 x =
± 2'

x =
2 

1 1 3 - -<x<- x>-2 2' 2 
1 I 3 x<---<*<-
2' 2 2 

3 a (1, 2) maximum; 
x< l;x>l 

b (-1, -1) minimum, (I, 1) 
maximum; -1 < x < 1; -Ji. 
< x < -1 and 1 < x < ✓2 

c (-1, _ _!_) minimum, (1, _!_) 
2 2 

maximum; -1 < x < 1; 
x < -1 and x > 1 

d [_!_ -2_: minimum· x > _!__
2' .! ' 2' 

2' 

x-<-· 
2, 

e Maximum at (±� i �J 
3'3fj_ 

Minimum at (0, O); 
-2 2 

-Ji. < x < - and O < x < -·
3 3' 

2 2 --< x < 0-and -< x < Ji. 
3 3 -

Exercise 40 
1 a max (-2, 17); min{l, -10) 

b max (0.794, 0.191) 

2 

c max (-1, 4); min (1, -4) 
d 

e 

ii 

iii 

b 

max (-1, -3) 
1 max (-3, 
3); mm (1, 3) 

max (4, -256) 
(-oo, OJ and (4, oo); (0, 4) 

y 

300 
200 y-x5-5x4 

100 

max (-2, 0.25); 
min (4, -0.125) 

ii ]-oo, -2[ and ]4, oo[ 
]-2, 4( 

iii y 

(-2,0.25) o.5

-4 -2 2 

6 X 

X 0 

-0.5 
(4, -0.125) 

Answers 



Exercise4P 

1 a (0, O); 
II concave up] 0, oo[, 

concave down] -oo, 0 [ 
b none; 

ii concave up: ] -oo, 0 [ 
and] 0, oo[ 

C i none 
ii concave down for 

0::;; x'.$ 4 
d none 

ii concave down for all x
(x # 1) 

e none 
II concave up for ] 1, oo [ 

concave down for 
] -oo, I [ 

2 a max x = 0, 2; 
min x= 1, 1 

b -l<x<0;l<x<2 
ii x<-l;0<x< l;x>2

C i 
1 1 3 x<-,-<x<-

ii 

d 

-6

2 2 2 
1 I 3 

--<x<-·x>-
2 2' 2 

}'. 

-4

Exercise4Q 

1 a 10 m b 2 s
c -15 ms-1;-I0 ms- 2 

The diver is moving 
downwards and speeding 
up as he hits the water. 

2 a 41.7 m 
b ± 36.1 ms-1; 36.1 ms-1 

c -30 ms- 2 d � s 

Answers 

4 X 

3 a 7 ms 1
; 10 ms 2 

b 3 ms-1
; -14 ms- 2 

4 a 21 ms 1 

b 33 ms-1; 2 ms-2 

c speeding up 

d 20 secs

5 a V (t) = t2 
- 6t + 8;

a (t) = 2t- 6
b t = 2, 4 

ii 2 <t<3;t>4

iii 0 < t < 2; 3 < t < 4 
c at t = 2, a= -2 ms 2

; 

at t = 4, a = 2 ms- 2 

d t = 2, 4 
e 9.33 m 

Exercise4R 

1 a c'(x)=l80-0.2x

b 160 euros/tank 
c 159.90 euros 

The cost of producing 
1 extra tank is nearly the 
same as the marginal cost 
function. 

2 a 0 < X < 3500 

3 

ii c' (x) = 3 euros, 
so it will cost an 
extra 3 euros at any 
production level to 
make an extra memory 
stick 

Ill r (x) = x (7 - 0.002 x)

b 134 < x< 1870 
½ 

10,000 f(x) - 500 + 3x
8,000 
6,000 

4,000 
2,000 

0 1,000 2,000 3,000 4,000 X

141 
4 a 272 b 367 

Exercise 45 

1 3.65; 6.67 
2 80 000 m2 

3 rectangle is 0. 778 by 1 metres; 
r = 0.903 

4 14.7 cm, 34.7, 2630 cm3 

5 9.43 cm 
6 a l = 14.5 cm 

w = 1.46 cm 
b l= 18-✓12 

w= ✓l2 

Exercise 4T 

1 a dy -
dx 

X 
3y 

2 

3 

4 
5 
6 
7 
8 

9 

b dy - � 
dx 

-
4y' 

C 
dy = 3-2x 
dx 2y + 4 

d dy _ 3xy' -2x
dx - y-3x'y 

e dy = (l+x+ y)
dx x+ y 

f dy = l-3x' -2xy
x' + I dx 

5 
y = -x- -

4 4 

_ 4 10 
y- -X--

3 3 
y = 2, X = ✓3
(3, -1); (3, 9) 
1,6 
(✓3, 0) and (-✓3, 0)
X = 6.63; y = 2.84
dy _ 2x-2y-l 
dx 2x-2y+l 

Exercise4U 

1 dA = 2nr 
dr 

dt dt 

2 dA = 4nr dr + 2n (r dh + h dr)
dt dt dt dt 

3 

l di+ w dw + h dh
dt dt dt 
.J t' + w' ±ft' 

4 -14 cm2s-1 

ii 0 
iii .!..± cms-1 

13 
5 1.39 m2s- 1 

6 a 0.375 ms-1 

b 0.4345 m2s-1 

7 _.!__ cm s- 1 

Sn-

8 160 mph 
9 0.866 ms- 1 

10 18.6rr m2s -1 "" 58.4 m2s-1 



11 / (x) = x2 units/ s 

12 -90 m/min
20n

Review exercise (non-GDC) 

1 a -1 b none 
c In (3) = (1.10) d 4 
e O f 0 

2 No 
3 Yes 

54 Yes, 
2 

5 a -:t:- 0, I + a2 

6 a y=-1 
b (±v's,-1)

7 y = 2x + 1, y = - .!. x + l
2 

8 If f is an even function, 
then J is symmetrical about 
the y-axis, hence there is a 
stationary point at x = 0, so 
its gradient is parallel to the 
x-axis.

9 (-%,-287)
10 (3.08, -2.20) 

111 y = 2x - -
8 

12 a -6 (3x - 1)6 (3x + 5)2 
(l5x + 16) 
5 J 

b 
2 

(4x' -3x + t)' (8x-3)

3x' +4x+3 
C J 

2(x + 1)2 

d J�+x
2� 

e 3 (x + 2 + (x - 3) 8) 2 

(1 + 8 (x - 3)7) 
13 a = -2; b = - 18 
14 a (0, 0), (3✓

3

, 0), (-3✓J, 0) 
b max (-1, 2); min (I, -2) 
c none 
d ]-oo,- l (u]l ,oo( 

ii l -1, 1 [
15 a x = ± l; y = o 

b f(-x) = -J(x) 
dy 2(x' + 1)c - = -

( 
2 )' , negative dx x -1

for all x. 

d y 
4 

\:0 

16 a (3, 0), (0, -3); y = l; 
x= ±✓

3 

b min (3, 0); max (1, -2) 
C (4.20, 0.0979) 
d ] -oo, - 1.73 ... [, 

e 

] - 1.73 ... , 1 (,] 3, oo( 
ii ] l, 1.73 ... [, 

]1.73 ... , 3 [ 
y 

__)

18 I 

I I 

I I 

I I 14 I 

I I 

y- 1 I I ------�- _.,
f(x) 

; (x - 3)2 

x2 
- 3 

-8 _ : 0 (3: 0) 4 8 X 

1o, :-3J :(1, -2) 
r4 I 

17 -I .!_ 
'4 

Review exercise GDC 

1 .Jus 

2 20 
n+2

3 324n cm3min-1
, increasing 

4 16.4 cm; 11.0 cm 
5 2 

125 

Chapter 5 
Skills check 

1 The liney =xis a line of 
symmetry. 

y 

-4 

-8 

f(x)--
x


x - I 

2 (fog)(x)=(gof)(x)=x 

Exercise SA 

1 

2 

1 .!. .!. .!. .!.
' 2' 3' 4' S 

u-= - -,, n
2 2 2 -2 -- --

' ' 3' 5' 

u 
2 

- ---
2n-3

2 
7 

3 a 2 I � 2. .!.2. 33
'2'4'3'16'3 2 

2" + I 
b u =-- -n 211

2 
9 

4 a 1,2,5,10,17 

Investigation - sequences 

1 1, 1, 2, 3, 5, 8, 13, 21 
3 qr=<p+I 

<p3 = F3<p + F2 

<p4 = F4<p + F3 

Conjecture: qi'= F.(f) + F._
1 

4 (-¼)
2 

=F
2
(-¼)+F,

(-¼J =F
3

(-;)+F
2 

(-¼) 
4 

= F
4 
(-1) + F

3 

Conjecture: 

(-.!_)" = F (-.!.)+F ip n ip n I

5 Binet's formula: 

F,, 
=✓S(l+/5}"-✓5(1-

2
✓5r

Exercise SB 

1 a 16 
5 

3 y6 

b 

5 0 

2 
3 

C 

6 x=l,x=0

Investigation - music and 
indices 

G# below middle C: 
220 x 2;,Hz 
G# above middle C: 

II 

220 x 212 Hz 

8 27 

C in next octave above middle C: 

220 x 2ii Hz 

Answers 



Lowest note on grand piano: 
27.5Hz 

Highest note on grand piano: 
4186Hz 

Exercise SC 

1 3% 
2 a 19.6% b 6.12% 

C 2.47% 

3 Samira $3280 

Hemanth $3340 

4 €16700 

Investigation - compound 

interest 

( 
1 

)
" 

A= l+
-;; 

n 

1 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

5500 

6000 

6500 

7000 

7500 

8000 

8500 

9000 

10000 

', y 
3 

2.5 

2 

1.5 

1 

0.5 

... ••• 

A 

2 

2,715569 

2,716924 

2,717376 

2,717603 

2,717738 

2,717829 

2,717894 

2,717942 

2,71798 

2,71801 

2,718035 

2,718055 

2,718073 

2,718088 

2,718101 

2,718112 

2,718122 

2,718131 

2,718146 

A 

i••· . .. .. 

• A

4000 8000 12000 X 

Answers 

Exercise SD 

1 2.5; 0.25 

2 2"/ (x)

3 

f(x) = 2-x 

y 
8 
6 

f(x) - 2' 
-,--,,--=;==;=---4----=;::::::c,=-,�-► 

� � � � 0 2 4 6 8 X 

10 
8 

6 

f(x) = 21,1 

-4 -3 -2 -1 0 1 2 3 4 X 

4 x=Tior 
loge 

x = 1n(-
1 �L 0.541

e-!J 

5 a Reflection in the y-axis 

-3

b Reflection in the x-axis 

c Reflection in the y-axis 
followed by a reflection in 
the x-axis 

y 

8 

6 

4 

y 

3 5 X 

f(x) = - e-x 

f(x)=e-' 

-2 -1 0 1 2 3 4 5 X 

-5 -3 -1

f(x)=-e' 

y 

3 X 

Investigation - the graph of y =ax 

a Graph of ax 

1 

.1 f(x) = l' 

I I I ), I I I 

-8 -6 -4 -2 0 2 4 6 8 X 

2 y. 

! t•)-i
0.693 

-8 -6 -4 -2 0 2 4 6 8 X 

2,5 l.� �•) _ (2.5)'

-8 -6 -4 -2 0 2 4 6 8 

3 y. 

!1r-r
-8 -6 -4 -2 0 2 4 6 8 

3.5 
8 

f(x) = (3.5)' 6 
4 
2 
L 

-8 -6 -4 -2 0 2 4 6 8 

4 y. 
8 

f(x) = 4' 6 
4 
2 
L 

-8 -6 -4 -2 0 2 

Exercise SE 

1 a log
5
125 = 3 

b log
10

1000 = 3 
I 

c log 3 = -
27 3 

4 6 

d log
10

0.001 = -3 

e log11 m = 2 

f loga2 = b 

2 a 32 = 9 

b 106 = 1000000 

8 

X 

X 

X 

·x

:1,=0 

dyl dx x=O 

=0 

tl,=0 

= 0,693 

tlx=O 

= 0.916 

tlr=O 

=1.098 

tl,=0 

= 1.252 

tl,=0 

= 1.386 



I 

C 492 = 7 
d a0 

= I 
e 4b 

= a 

f p' = q

3 2 b I 
a 

2 

C -2 d 
I -
2 

0 f 
1 

e 
3 

4 a 9 b 81 
C 2 d 125 

e 64 f 
2 

Exercise SF 

1 a 2 log
0
p - log

0
q 

b 
I 2 

3 
Iog

0 
p-

3
log

0 
q

2 a log6 b log
0 

\{pq 

C log20 
3 a I b 4 C 3 
4 a y =xJ 

b y = 2x

C y = 2x3 

d y = I02+3x 

ExerciseSG 

1 4 b 
1 

a C 

d 1 e 2 f 1 

3 
I log,a = -

I log
1 
a= -

q 

Exercise SH 

1 a 1.21 b 0.896 
2 -2 

Exercise 51 

1 a 0.774 b 1.55 
2 a ✓3 or !n b 2 

3 
3 1.89 
4 64;256 

-1; 0.861
6 3; 9 
7 1.71 
8 x=✓

2

,y=4 

9 x = 25,y=5

10 X = 5, y =
3 

11 a x = 1,y = 0

b x=2,y=-l

Exercise SJ 

1 f(x) = e', x E IR, y E IR, y > 0 
g(x) = lnx, x E IR, x > 0, y E IR 

½ 

-8 -4 

f(x) = ln(x) 

-6 

2 r
1(x) = log. x, foF

1

(x) = X 

3 
y 

8 

6 

4 

2 
f(x) = I ln(x) I 

0 

-2
f(x) = - ln(x) 

-4

4 y 

8 

6 
f(x) = I ln(x) I 

-4 f(x) - In( lxl)

-6 

-8 

5 y 

-2 f(x) = log3(x - 3)

-3 

-4 

f(x) = logix- 3)

Translation of(�) 

y 

1 

-2

-3

-4

-5

-6 

(0,27) 

f(X) = I%(X) - 3 

f (x) = log
3
(x) - 3 

Translation of ( _�)

6 y 

2 

1 

0 

-1

-2

-3

-4

f(x) = log(x-1) -1 

a Vertical asymptote at x = 1 
XE IR, x>l 
(e+l,O) 

y 

2 

1 
(2.96,0) 

-4 -3 -2 -1 4 
-1

-2

-3

b Vertical asymptote at x = 3 
x E IR, x < 3 

G� . o} (0, 4 )

Exercise SK 

1 a 3xe'' 

b 15e-lx+l 

C 4e4x-l 

d e'-_!_ 
e' 

e 3elx-l

f -
1
-e'

0

' 

E_ 

Answers 



2 a e'(x + 1)

b xe-<(2 -x)

e'x 
3 a --(4x-1)

2x✓x 

b x' -2x-1 
ex

e'x (2+3x)C 
(1 + X )' 

d 
2ex

(1-ex)'

4 a e' ( x + 1 + e' )

( 1 +ex )' 

b 2e' (1+e)

-1C 
2e'�

d e' ( x + 1 + 2e')

-4e 
(e -e-')'

5 a Minimum at (-1, -�)

b POI at ( -2, ::) 

y

(-1, -0.368) 
-1

c Equation of tangent
X 4

y=----e' e'
d (-4, 0)

e Area of triangle = � 
e' 

Answers 

2 X 

Exercise SL 

1 a (3ln5)5,.

b 
4 

( 4x + 1)

2 a 
2
X 

b 
x(lnx)' 

Exercise SM 

1 a x(1+2lnx)

b ax(xlna+ 1)

2 a b 
2

X X 

c 1-lnx
x' 

3 a 
dy lnx-1
�

= 

(Inx)'

b 2x'' (1 + In x)

4 b Minimumat(0,-1)
c x-intercept (1, 0)
d 

Y. 

3 f(x) = e' · (x - 1) 

2

5 a xelR
b f (-x) = f (x)

C f'(x)=�
I+x' 

d 

2(1-x')
f"(x) = ' 

( 1 + x')

y
5 

4
3 
2

f(x) = ln(l + x2) 

-5 -4 -3 -2 -1 0 1 2 3 4 5 X

e 2 

Investigation - converting 

between degrees and 

radians 

2n; n·, -n; i 
n 

11 

2' 

3n:
2

Angle measure conversion 

table 

Degrees Radians 

ff 

30 
-
6 

ff 

45 
-
4 

1T 

60 
-

3 

5n:
75 -

12 

1T 

90 
-

2 

120 
2,r-
3 

135 
3n -
4 

150 
5,r 

6

180 1r 

210 
7n 

6 

225 
5,r-
4 

240 
4,r 
-

3

270 
3n 
-

2 

285 
19n 

12 

300 
5n -
3 

315 
7n 
-

4 

330 
11,r 

6

360 2n 



Investigation - areas and perimeters of sectors 

1 
Number of 

Number of Angle subtended 

diameters 
congruent 

sectors 

1 2 

2 4 

4 8 

8 16 

16 32 

by minor arc 

(radians) 

ff 
2 

ff 

4 

ff 

8 

ff 

16 

Area of one sector 

� ( nr2) = (.!!_ ),2
16 16 

..!.. ( nr,) = (.!!_ ),, 
32 32 

Length of minor 

arc 

1 
-(2nr) = nr
2 

1 
) 

n -(2nr = -r
8 4 

1 n -(2nr)=-r
16 8 

1 n -(2nr)=-r
32 16 

Exercise SN Review exercise (non-GDC) 
5 a X = 27, y = 3 

b x = 8, y = 4 
C x= 14,y= 8 

6 a O 

1 a 
Sn: 2Sn

4'_8_ 

b Sn:. 10n:
3 ' 3 

c 26.9cm; 72.7cm2 

2 a 22.4m2
; 19.2m 

3 69.6cm 
4 a 46250km 

b 13.5% 
5 Sum = area of triangle ABC 

1 

2 

3 

4 

3" 

a 

b 
a 

b 
C 

d 

2; I 
2 
48 
160 
27; 2_

49; 7 

b 6 

c In 2 
7 64 
10 ln(2+/s) 
11 ln(2± ✓3) 

Answers 



12 a X E JR, X > 0

b f'(x) = 2lnx
,

f"(x) 2(1-�x)
X 

c Minimum at ( 1, 0) 
POI at (e, 1) 

2xd y=--1

e Area of triangle = e 
2 

13 S
1 

=: (272"-3✓3) 

S = 3a
2 

(272" - 3.Jj) 2 16 

S = �(272" - 3✓3 )3 64 
Total area = a2 ( 2?I -3✓3 )

14 96✓3 -487r=l5.5cm 2 

Chapter 6 
Skills check 

1 a 96.5 kg 
b 103 kg 
c 98.6 kg 
d 29 kg 
e LQ = 91.75 kg 

UQ= 106kg 
f IQR = 14.25 kg 

2 a 56 
b 920 

Exercise 6A 

1 a discrete 
b 

Time spent studying 
maths (minutes) 

2 a continuous 
b 17 

Answers 

C y 
� 5 
-5 4 
.m 3 
� 2 
E 1 
z --1--+-o 10 20 30 40 50 60 70 X 

Age in years 
3 a continuous 

b 
Mass of Number of 

chickens ( kg) chickens 

1<w<2 8 
2<w<3 24 
3<w<4 50 
4<w<5 14 

C 96 
4 a continuous 

b 
Time to get Number of 

home (mlns) students 

5S:t<10 
10 < t < 15 
15::; t < 20 
20::; t < 25 
25::; t < 30 
30::; t < 35 
35 < t < 40 
40::; t < 45 

c 5 mins. 
5 D,A,C 

Exercise 6B 

1 a 1 goal 
b 170 $ h < 180 

2 a 

1 
2 
4 
4 
2 
2 
1 
1 

t (minutes) Frequency 

0:::; t < 1 8 
1 < t < 2 11 

2 < t < 3 10 
3 < t < 4 7 
4 < t < 5 8 
5 < t < 6 4 
6 < t < 7 1 
7 < t < 8 1 

50 

b 

CF 

8 
19 
29 
36 
44 
48 
49 
50 

y 
>- 50 -1-��-.---,---r--:.=-::1 
'-' 

� 40-l-�:t=.f,;.;.µ.p-.;ti;,"+�-4-'-:r-i 
i 30-l-+--t-�+-t---!':frl-;+-7
!!; 
§ 20-+---!+--.1<..J...-f--+'--r-:t=t-;:;:;:;i
� 10-l--4,.,G..-J.+:t=-=::J:.i.......,:f-+,=-;F'7 
u 

0 1 2 3 4 5 6 
Waiting time (minutes) 

12 % 
c Mean""' 2.8 mins, Median 

""'2.6 mins 

3 a 

b 

Modal class is 
1 $ t < 2 mins 

Height (m) Frequency 

0:::; h < 5 15 

5::; h < 10 20 

10:::; h < 20 15 

20:::; h < 30 10 

60 

Height (m) CF 

5 15 
10 35 
20 50 
30 60 

y 
60-+-,-�---,--,--.--r---r� 

i;- 50..J.--...:..µ::::,+-j--:;;¥'---t-...-i 
& 40¼--+-+t7'9...,___._.t----,--t;j:t:Jj
� 
i 30-1--+l->A-----.::iF-,---t:;:;::::;tH� 
� 20 +++-+l--r+---1-i-rr-E'i=:+::i:ci
E 
8 1 o--h---..JJ-.-,-,-+l--��-t==i=rt-'--'� 

0 

C 22% 

10 20 
Height (m) 

d Mean""' 11.0m, 
Median""' 9m, Modal 
class is 5 $ h < IO m. 

4 a mode is 3 
median is 3 

b a = 6 

30 X 

The new data set is bimodal 
with modes 3 and 6 



l . 25 a r= - sum 1s 2 lna o-(lna) 
2 

2' -1 b µ=-l-na-
n X 2•-• 

C n = 200 

Investigation - what happens 

to the measures of central 
tendency when the data 
values are adjusted? 

Data 

Data set 6, 7, 8, 10, 12, 14, 
14,15,16,20 

Add 4 to each 10, 11, 12, 14, 16, 
data set 18,18,19,20,24 
Multiply the 12, 14, 16, 20, 24, 
original data 28,28,30,32,40 
set by 2 

Exercise 6C 

1 a 95 cm 
b 67.5 cm 
c 56.25 cm 
d 101.25 cm 
e 45 cm 

2 a 75 cm 
b 5.5 cm 

3 y 
i;- 40 -t-r-rrr.-r.--,----.::,,<,-, 
C 

5- 30 +-----t++-++--b"--'-+H--1
� 20 +-'---++r-+-1+-+----+-'-�
� 10 +----+Tt-+--,-..+----+r---.
::, 

u 

10 20 30 40 50 X 
Length (mm) 

4 a

y 

� 80-B±l=t-f:i:HE�=f:........J�W4---.LJ 
::, 
C" 

� 60 ++t--+-+-+t-"""+'+-+..---,,i-+-+--t----t 

"ii; 40 ++t--+tcttt-�+-#----t--+-r+-t--+---t 
:5E
::, 

u 

0 5 10 15 
Time {minutes) 

11 mins 
ii 5.6 mins 

b p = 32, q = 8 

20 t 

5 a 1100 
b a = 39, b = 64 
C 7.1% 

6 a 23 mins 
b 15 mins 
c 37 mins 

Mean Mode Median 

12.2 14 

16.2 18 

24.4 28 

Exercise 6D 

1 a= l,b=2 
2 a a+ 1, 2.5 

b a+ 4, 2.5 
3 a 9.4, 1.41

b 1 
4 5 and 11, 9, 6.75 
5 a llk+3

5 
b 34k' _ 56k + 96

25 25 25 
C 

l lk-7
5

d unchanged 
6 C 

l 2 l-n - -

3 3 
Exercise 6E 

1 a .!. b 
I 
4 

d 3
C 

e 

2 
5 

3 a

C 

2 

l 
4 
3 
8 

1 

2 

5 

6 

e s 

b 
2 

d 
3 
1 

3 

13 

17 

26 

4 11 
20 

5 a 
3 b 
4 2 

C 3 d 
4 2 

e- _!_ 
2

Exercise 6F 

1 
8 
25 

2 a 11 
32 

b- �
32

3 a 0.33 
b 0.24 
C 0.3 

4 a
4 

b 3
4 

5 a 0.6 
b 0.4 
C 0.6 

Exercise 6G 

1 
2 
15 

2 iii-- 2-
36 

b 15
28 

3 a 
7 

44 
b 35

44 
4 a 2 

91 
b 24

91 
C 

11 
91 

5 a 0.175 
ii 0.0827 
iii (0.7)"(0.75)"-l 0.25 

C 0.368 
Exercise 6H 

1 a 0.3 
b 0.1 

C 0.7 

Answers 



2 0.55 

3 a 0.95 

b 0.35 

C 0.75 

4 a 0.7 

b 0.35

C 0.15 

5 Proof

6 Proof 

7 Proof 

Exercise 61 

1 a i 0.21 

ii 0.33 

b 252

2 a 0.27 

b No. Biased towards 1.

C 450 

51 53 3 a - b
250 100 

C 
299 

500 
2 3 

4 a - b -

5 5 

C 
I 
-

2 

Exercise6J 

1 12 
8 23 

a - b
27 27 

C 
4 

5 

2 a 0.2 b 
7 

3 
C 

15 

3 
13 

16 
1 2 4 a - b
3 5 

3 
C - d -

5 2 

5 
61 
-

95 

6 
I 
- -

6 
7 a 0 b 0

C 0.63 

8 67.3 %

9 
34 

47 

An�wers 

10 a 
43 b 

10 50 

11 

13 

11 
3 

Exercise 6K 

1 A and B, A and C

2 A and B, B and C

4 Yes

5 a 0.4 b 0.27 

C 0.33 

6 
1 1 

P(A)=
4

,P(B)=
2
I 

7 a - b -

12 4 

C 
1 
-

6 

8 1 b I 
a - -

2 5 

C 

9 4 
4 

10 9 

Exercise 6L 

1 0.12 

2 0.851 

3 0.3125 

4 
7 b 4

a -

15 5 

5 a
204 b 811 

1015 1015 

C 
663 

1015 

6 a 
2 b 11 

17 850 

22 d I 
C --

425 5525 

Exercise GM 

1 a
47 b 20 

90 90 

2 a 0.038 b 0.789

3 a 0.51 b 0.25

4 0.381 b 7 
a 

13 
29 20 5 b ii 
36 

-

29 

iii 3 -

7 
5 5 

6 a b -

12 7 

7 a 0.674 

b 0.754

197 72 
8 a - b

360 197 
9 a 0.8875 

b 0.482

C 0.178 

19 6 
10 a - b

33 49 

C 
18 

49 

11 a 0.59 

b 0.102

C 0.427 

12 0.33 

13 �-
171 

14 0.6 

1s I 
7 

Review exercise (non-GDC) 

1 6,6,8,12 
7 

2 -

8 
3 a 68 kg b 61 - 77 kg 

C 36 

4 220 b 11 4 
a - C

22 11 

5 b 10 
C 7 

-
21 10 

6 
4 

11 

7 
1 b 3 5 

a - - C -

6 4 9 

d 5 

9 

8 a i 18 II 3 

b No

9 a 3n+ 1 b n+l 

2 3n + 1 

Review exercise (GDC) 

1 170.8 cm
3 7 

2 a 50400 b C 
10 10 

1 71 31 
3 a - b - C 

2 500 1000 
4 0.1351 

5 a 337.5 km b 132.64 km,

602.8 km 

6 

7 17 times 

8 a 4.69; 0.552 b 4.64

C 10 
9 a

1 b 7 
-- --

38760 38760 

10 a 0.568 b 0.505



Chapter 7 
Skills check 

1 a 1 + lnx 

b 
e"-' (9-4x)

:!. 
2(2 -x)' 

3 4 
C 4x I 5

X 

2 a (2, 4), (3, 7) 
b (0, 1) 
C ( -2.95, - 10.9) 

or (2.95, 10.9) 
3 v=l2t3-3t2+l 

a= 36t2- 6t 
Exercise 7A 

1 -x2+c 
X 

2 -+c
3 

3 -x5 + C 

I4 --+c 
4x4 

5 

5 2x 2 -+c
5 

6 -.Jx +c
7 4x 2 -+c

3 
8 --J +c 

21x4 

Exercise 7B 

5 3 1 1 a �+-+c
3 Sx 

2x3 5x2 

b -+--3x+c 
3 2 

-1 1 
C -+-

3 
+c

X 3x 
x3 1 

d -+2x--+c 
3 X 

e __ l_+_l_+�+c
2x2 3x3 x 
3 2 

2x2 15x3 
f ----+c 

3 2 
2 y = x3-4x- 1 

t
2 

I 3 f(t) = -+ 3t + - - 5 
2 t

4 y = 2x4 + l2x3 + 27x2 + 27x + 12 

or (2x+3)4 +15
8 

X x
3 

2 7 5 A=2+3-x -x+6
3t2 8 

6 s=-+--8 
2 t 

x
2 

7 y = _x.L-- 6x + 6 2 
8 v(t)=3t2+t+2; 

t
2 s(t) = t3 + 

2 
+ 2t + 1

Investigation - integrating 

{ax+ b)" 

f (ax+ b)" = _ _  l_ (ax+ b)"+1 + ca(n + 1) 

Exercise 7C 

1 (3x - 1)8 

+ C 

24 
l 

2(2x + 1)2 2 -_:_ _ ___;.._ + C 

3 

3 -----,-+c -
16(4x - 1 )4 

4 
3 8 

(3 :X )4 + C 3 
2 ± 

3(2 -Sx)3 3( 1 -x)3 

+ 5 - --'-----'-- C 

5 4 
5 

6 
3 

8(2-3x)2 

9 
6(3x + 2)3 

+ C 

5 

Exercise 7D 

1 se-2x--+c 
2 
-3.r-2 

2 =:___+c 
3 

3 2e-x-l + 3 e3 + C 

3' 4 -+cln3 
(.!.)

2x 

5 - _3_ + C 

21n3 
41-x 

6 --+c 
ln4 

Exercise 7E 

1 lnlxl + c 

3 
2 - 61n lxl + c 
3 

-ln l3x -21 +c
3

4 -ln I 5x -31 + c

-2lnl3x + 41 5 ----'--� + C 

Exercise 7F 

38 

2 13 

3 
2(e9 

- 1) 

3e5

4 _3_6 __ln2 
5 13 072 
6 -1 

Exercise 7G 

l 121
5

2 Not possible: s ,t, 0 
3 Not possible: x ,t, l; 1 is an 

element of (0, 2] 

4 � 
9 

5 Not possible: x ,t, - l 

6 ln(i
7

6) 

7 
4 2 + 4e--
e 

99 
8 

ln(lO) 

Exercise 7H 

1 1 sq. units 
2 2 10- sq. units 
3 

3 16 sq. units 
4 e3 + 6 ln3-14 sq. units 

5 16.9 sq. units 

6 16 -sq. units
3 

7 6.3 sq. units 
2 

8 -sq. units 
ln2 

g 3 .32 sq. units 
10 2ln(2) sq. units 
11 ln(3) sq. units 

12 10 1.75 sq.units 
5 13 -sq. umts
6 

14 3 sq. units 

Answers 



Exercise 71 

1 36 sq. units 
64 2 3sq. umts 

3 16 . -sq. umts
3 

4 4 
3

sq.umts
9 5 "z1'q. umts

Exercise 7J 

1 9 -sq. umts2 1 . 2 -sq. umts12 
3 9 2sq. umts 
4 1 -sq. umts
5 72 sq. units 
6 128 . -sq.umts 15 
7 13.2 sq. units 
8 5.4lsq.units 
9 7.00sq. units 
10 4,

11 4.5 sq. units 

12 2( 1 -�)sq.units
3 

13 - + lnt3) sq. umts s 
Exercise 7K 

1 32m3 
20 2 a- -m 3 

3 3.25m 
4 26.3m 
Exercise 7L 

b 30m 

1 Sn · 1 68 · -cu.umts or . cu.umts
IS 

2 4;. (2✓2 + 3 )cu.units or
24.4 cu.units 

3 4ncu.units 

Answers 

4 2n - cu.umts3
5 16. 1 cu.units 
6 7.2n cu.units 
Exercise 7M 

1 
2 
3 

4 

117n --cu.units 
108n --cu.units 5 16n . -cu.umts15 
�.units 15 

Review exercise (non-GDC) 2 2 32 24 1 y=-x ----
5 5x 5 

2 I . - sq;--11mts3 
3 41.3 cu.units 
4 a 41 b 54 c -ln(2)24 

d 

Review exercise (GDC) 

1 �m 
4 

2 2.Sm 
3 r;; 40 3--,., - -sq. umts

4 a 
3 

x4 - 6
--+c

X 

x3 1 b -+- + C 3 X Inl3x - 21 C - --'------'- + C 

g_ -..JI -4x + c
e -2 e-3

x + 3� + C 3 
2 7 5 --- + x + 2Bn3 + -

(2x - 1) 2 
6 4 - ln(S)sq.units 
7 2 . - sq. umts3 
8 2 or -2 
9 64Jr --cu.umts 91n3 

Chapter 8 
Skills check 

1 2.48 m 
Exercise SA 

1 a 62° , 3.76 cm, 7.06 cm 
b 5.6 cm, 36.9° , 53.1° 

2 38.8 m 
3 2.10  radians 
4 13.3 m3 

Exercise 8B 

1 a sin 36° 

b - cos 30° 

c tan 50° 

d sin(f) 
e tan (f) 
f - cos ( i) 
-12 -52 13' 12 

3 -4 3 -3
5'4'5 

4 a Max = 6 at 0 = 2n,

Min= - 2 at 0 = n 
312" b Max = 8 at 0 = -2 ' 

Min= 2 at 0= !!... 
7[ c Max= I at 0 = -, 
2 

Min= -3 ate- 3n2 d Max= -1 at 0 = n,Min= - S at 0 = 2i. 
Investigation - trigonometric

identites 

a sin 0 = cos (90° - 0) 
cos 0 = sin (90° - 0) 
tan 0 = cot (90° - 0)

e sin0 b tan = --
cos0 

C sin2 e + cos2 0 = 1 
e tan 2 + I = sec 2 0 
f cot2 0 + 1 = c sc 2 0 



Investigation - exact values 

of sin, cos and tan 

• 1[ .Ji, 7[ 
a Sin - = - = COS -

4 2 4 
tan�= 1

4 
b sin�= ✓3

3 2 
,r I cos-= -3 2 

tan�= ✓3
3 

. 7r: I 
Sill-= -

6 2 
7[ ✓3 cos-= -
6 2 

tan�= -1-
6 ✓3 

Exercise SC 

✓151 cos0= --
4 

1 
tan0= - ,.;:

vlS 
5

2 sin0= -13
5 tan()= --

12 

Exercise SD 

1 a l+✓3 
2J2 

2 

3 

6 

b ✓3-1 
1+✓3 

_W, 
C 

-
✓3-1

a 
2

b 
( 1 +✓3)'

4 
3 -
4 

b 3,r
4 

Exercise SE 

4 44 2 -or--
5 125 

7 173 -9, 81 
1 5 a- - (oos-2A + 3)
2 

b .!_ ( cos 2A + l )2 

4 

c .!. (1 - cos2A)2 

4 

Exercise SF 

1 g(0) 

2 a : y• 5cos2x 

I 
I 

- 0 2 

C 

b
y = COS X + 2 

! 
I \ I \ 
I \ 

'� 0 

I I 
\ J . \l/ 

C 

' y • -4cos (nx) y 

I \ / I\ 
\ I \ 

-� 1 
0 

I \ I \ 
I/ 11/ \ 

d y y • 2cos(4x + 1T) 

n /I r 

"' IT 

3 a 

X 

+ 1 

X 

b 

" ,, 

- ..

I\, r� 

,, 

- ..
II rr 
I I \i 

d 

{\ I\ 
' 

II 
1\1 \1 

-21l -Tl 

4 y 

I\ 

I\ 

I\ 
I 

Y. 3 y- sin x
11 ' - ,, 1/1 '\ 

C ...:x 
I\J I\ f\J \, ' -

y = Sin XY. 3. 3 
I\ /1 /1 

0 ...:x 
II II 

I\J II 111 Ii 

t; 
y = 3(1 + sin(3x)) 

I\ I\ {\ 

Y. 

I I I 

lo 

II II 

l\i I\ \J \1 
0 

f(x) - g(x) 1 solution 

5 a /(x) = 4 sinx cosx = 2sin2x 
f (x) is odd, period = rr

y 

2 
I \ I \ 
I \ I \ I 

0 
3 IJl X 

-1 ' J 
\ I \ I 

-2 \ J \ I/

b g(x) = 1 - 2sin2x = cos2x

g (x) is even, period= rr 

1 
\ I \ I 
' I/ ' I 

0 
\ \ 3 1[ I 2vr 

X

-1 \ !/ \ '!/

Answers 



c h(x) = xsinx 
h(x) is even , not periodic 

y 

/�'\ 

0 / 

-5 

Exercise BG 

li a7!!....!!_
' 3' 12 

b -4, 10 

�,Hl 

� 
0 

1 . 

ii a 3, re, !!_ 
4 

b - 8, - 2 
y 

3 C X 

j 

I 

I'-' 

2i'I 

2 a 220 
C 220 

b -220 

d 
60 

v(t) 

220 

/i\ I\ 
I \ I 

0 

\ ) J 

-220 
\I/ 

3 a a= 6.6 
h-= !!_ 

C = -5.25 
d= 7.8 

b 02.15 
C 00.00 to 00.05 

04.25 to 12.05 
16.25 to 24.00 

Answers 

\ 

t 

\ )o 
\ I 

4 a= 1.05 

b = }:.!!_
365 

C = -80.75
d= 11.7 
12.7hours 

Exercise SH 

1 a ✓2 b ✓S
2 2 

C 
l d 5;r

6 
JZ' f -
4 6 

2 b 
24 25 

C 

Exercise 81 

1 0, ± 0.841, ±re

2 0.170 

3 + !!_ + 5;r
- 6' - 6 

4 � or 3
3 
JZ' 5 -or re

JZ' 

6 2 

7 � 

a 12

b -3±✓l3

8 0, re, 5.17, 2re

9 0, 0.294, 0.536, 1.02, 1.32 

Exercise BJ 

1 a 4.44, 116°, 34.3° 

b 6.67, 48.3°, 36.7° 

C 30.8°, 24.1°, 125° 

2 89.2° 

3 29.0° 

4 X = �. 32.2°, 87.8° 

3 

Exercise BK 

1 a 25°, 16.4 cm, 8.45 cm 
b 95° , 9.86 cm, 6.36 cm 
C 30.0°, 110° , 13.2 cm 

2 37 secs 
3 299 m 
4 MC = 20.5 m, MB= 8.93 m, 

MA= 8.03 m 
5 55°, 55° , 70° or 55°, 15° ,110° 

Exercise BL 

1 197 sq. units 
2 1350 cm2 

3 19.7 cm2 

4 156°,ll.8m2 

5 a ✓3r' r' --,-
4 4 

r' b -(4re- 3✓3)
12 -

r' C -(re- 3)
12 

Review exercise (non-GDC) 

1 2;r
0,-,2re

3 

2 a 
✓6-✓2 

4 

b ✓3 +1
1-✓3 

C 
✓6-✓2

4 

d ✓2 - 1 

4 a 
4 

+3-✓3

10 

b 24 
--

25 

C 
7✓2 
10 

5
y 

/ ----I\. / �
V 

'\. V 
V '\. 

/ / '\. / " I\. 
..,. V ,, "�'y 

lir 
0 

B 

Review exercise (GDC) 

1
JZ' 

B 

2 a y = arcsin(l.1 -sin x)

= g(x) 

X 

y = arccos(l.8 -sin 2x)

b x=0.619,y=0.546

or x = 1.09, y = 0.216 
3 a 110° 



b 1.90 m 
C 0.428 m 

4 b ( o,f) 
C p = 3.87, q = 5.55 
d 

(2. 77, 2.56)

e 0.510 < X < 3.53 
3.99 < X < 5.49 

f Max value is 2.39 
(when x = 1.88) 

5 a 8.60 cm 
b 11.3 cm 
c 7.30 cm 
d 49.4° 

e 31.4 cm2 

6 b 17.3 m, 10 m, 26.5 m, 
3.27 m 

7 83.6 cm 

Chapter 9 
Skills check 

1 Proof 
2 a f'(x) = 6e2x - 4x

b g'(x) = 21n (x + 1) + 2 
C h '(x) = (2x' + 2x -l)e' 1 

(x + I)' 
Exercise 9A 

Proofs 
Exercise 98 

1 a - csc2 x b -cot x - csc x
c 3cos 3x d 5 sec2 (5x - 3)
e 3 sin (8 - 3x)

f - ± cot ( x � 3 ) csc ( x � 3 )
g �csc2 (�) 13 13 

2 a 5x4 cos (x5 - 3) 
b -e' sin (e') 
c -2x cot (x2 + 11) 

csc (x2 + 11) 

d -(12 x2 - 4x+7)
csc2 (4x3 - 2x2 + 7x + 17)

e 2 sec' (ln(2x + 1)) 

f 
2x+1 

e' sin(�) sec'(�)
2/Z+I 

g -cos (cos (tan x))
sin (tan x) · sec2 x

Exercise 9C 

1 a 2cosx - (2x - 1) sin x
b (3 - 2x) sin 2x + 

2(3x - x2) cos 2x
C e 1

-x (sec2 x - tan x) 
d xcos x-sin x 

x' 
e 2 sin2x -(4x + 6)cos2x 

f 
2 a 

sin' 2x 
2(2 -x) sec' x + tan x 

2(2-x)✓2-x 
b 3✓7.

2 
C -2 d -2 
e 

37l 

2
g I 

3 a 0 
b tan/3 · sec/3

c 4 sec2 
40

d �sec2 3P 
2 2 

f 

e cos<p - sin<p
Exercise 9D 

97l
2 -127l
8

1 a f'(x)=-�
-.J1-x 2 

b f'(x)= �1-9x' ' I 
C f(x) =

2x'+2x+I 
2 a dy = 2 arcsin x + �dx �

b dy _ x+arccosx-1.id.._ 
dx - x'JI-x' 
dy 2x+l c - = 2 arctan x + --d x I+x' 

d d y _ 1 _ x arcs in x
dx- � 

e d Y = 8x arc tan 2x + 2 
dx 3 a arcsin x + arcos x = !!...2 b arctan x + arctan (-x) = 0 

C 2Mctanx-arcsm(�)=0x' + I 

4 a y' =secy 

b y' = cot2
y 

, 1+ cosx 
C y =---1-sin y 
d y' = 2x·e-sinysecy 

e I 

cosy-ysiny 
f y 

2xysec' 2y- x 

Exercise 9E 

1 a y = 3x 
7l ✓3b y = -x + -+ - -I 
3 2 

C y = -2x + I 
d 2 :r 

y =

3x-2+2

2 a X = 0 I ll b y = --x + -+ 18 128 
C y = -x 

d y=x- n- 3 

3 y=x-1 14 y = -x-l2 5 a (0.974, 0.583)
b T

1 
:y = -1.58 x+ 2.12, 

T2 : y = 5.03 X - 4.32
C 0= 0.760 or0= 43.5° 

6 n2 
Exercise 9F 

1 a 8✓3 
b 2 
C 1 
d -½(cos½+sin½) 

- - -e -3e• 
f -2n 

2 a JM(x)=sin(x+(n�l)ll),n E z+ 

b JM(x) = 3" sin (3x n; ), 
n E z+ 

C f(n)(x) = 
a" sin ( ax +b + (n �l)ll J 
n E z+ 

3 a l, ✓2, -2.Ji,�

b 615✓2 
2 

Answers 



Exercise 9G 

d0 1 - = -0.0175 csec- 1 
dt 

2 a 

b 

3 a 

b 

4 a 

b 

5 a 

b 

6 a 

b 
7 a 

b 
8 a 

-240 ms- 1 

d0 . 
1 

- = 0.466 cmm-
dt 
d0 
- = 0.880 csec- 1 

dt 
d0 
- = 0.496 csec- 1 

dt 

-0.025 c sec- 1 

-0.0231 csec- 1 

d
r = -0.00111 cm min- 1 

dt 

dA = -1 cm2 min- 1 

dt 

0.995° s- 1 

1.63° s- 1 

65.0 km h- 1 

0.1 ° sec- 1 

0.144 c s- 1 or 8.27° s- 1 

b 5.77 m s- 1 

9 1.28 m s- 1 

Exercise 9H 

I 1 a - -cos 3x + c
3 

b .!. sin (2x + 1) + c 
2 

I c - tan 3x + c
3 

d - tan (1 -x) + c 
= tan(x - I) + c

3 Sx-1e --COS -- + C 

f 

2 a 

5 3 

f sin (3\+2 
J + c 

I . 2 --sm x + c
2 

b tan x + c

c .!. x - ..!.. sin 2x + c 
2 4 

d .!. x + ..!.. sin 2x + c 
2 4 

I e - sm 4x  + c
4 

f 3. tan 5x + c
5 g x+ C 

h l l . 4 -x - -sm x + c
2 8 

Exercise 91 

1 a -2 cos x - 3 sin x + c
1

b 
l

x3 + 7 cos x + c 

Anslers 

c 4e - .!. tan x + c
3 

d x - 2xFx - 2 cos 3x + c
3 3 

5 X e -In l.x-1 + 3tan-+ c 
2 3 

f x-lnlx+ll+

1cos(3;) + c
2' X g - -10cos--

ln2 2 

% sin(
2
; )+ c

3
-2x

h - 21n3 
- tan (1 lx) + c

Exercise 9J 

1 a f (x) = Sx - 2sin x 
b f (x) = 2x2 + 3 cos 2x - 2 
c f (x) = 3 sin x - 2 tan x - � 

2 
d f (x) = x3 - 2e x + ..!..sin 4x - 3 

4 

e f(x) = 3 ln lx l �sin 3x 
3 - 4x + 4

7f f(x) = -
4

Inl3 - 4xl 

- 4x2 + 2e Zx - I - 2
2 a f (x) = -4 sin x + 2x + 1 

I 7 
b f(x) = -x2 + 3x -cos x --

2 2 
c f (x) = e 1

-x - sin (1 - x) 
+ 2x-1

d f(x) = ..!.e 2x - ..!.sin 2x + 
4 4 

I 1 I 7 
- x5 --x3 + -x2 + 2x + -

20 3 2 4 

Exercise 9K 

1 a 5:rr' -18
36 

b 10:rr+3 --
6 

C 
:rr+8 

4 

d e' 
3'" - 3->ff

e 2+--
ln3 

f I � 13 -e' + -
45 

g :rr 
2 
.!!... 

h 212 -1 
ln2 2 

:rr'+l536 
768 

Exercise 9L 

2e'" + 4 

1 a - COS x2 + C 

b �(x 3 + 3) ✓x' +3 +c 
3 

c e'+3.r-2.r
2 + c

d ln I sec x I + c 
e esin 2x + C 

f e
.J; + C 

g - COS 2x + C 

h .!. (arcsin x)2 + c
2 
I - (arctan (2x))2 + c

2 
2 a l . ..J -sm x- + c2 

b .!. (x6 - 1) <f x6 -1 + c
8 

C .!. e]x2
tlh-7 + C 

6 
l d -ln I sec (5x + 4) I + c

25 
3c:053x 

e ---+c 
3ln3 

f -4..c.o.s 1/x + C 

l . 5 g -sin '+c 
lnS 

h - 2 ln I e -2x - e2x I + C 

¾( arctan ff + c 

1 . ( , 3x2 J 3
sm x +

2 
+c

k ..!..arcsin3 (2x + 1) + c
3 

Exercise 9M 

1 I a -
5 

C 
✓2 

6 
e In 3 - In 2 
g l 5

-Sill-

3 2 

Exercise 9N 

1 (x - 1) e + c

b In 10 

d 9
2 

f ln 2 
h 54-4✓2

3ln2 

2 (2x + 9) sin x + 2 cos x + c
3 (5x - 2) cos x - 5 sin x + c 
4 3(3x - 2) e 3x + c,

5 (X - 2) e 4x-l + C,
x+3 

6 - -
4

-cos (2x + 3) +

.!_ s.in.._{Zx + 3) + C 



7 (3 -x) sin � - 4 cos�+ c4 4 
8 (�- -1-) 2x + C ln2 In' 2 
g ( 1 -X + _I_ ) 5x + C ln5 In' 5 
10 (x-2 +-1-) 3-x + C 7ln3 7ln'3 
11 ( 4x _ 4 ( 3 )' ln3-ln5 -(l-n -3--ln-5-) 2

---l S + c 
Exercise 90 

1 x' -(2 In x - 1) + c 4 
2 (%-x' +2x )inx-¾x' -2x + c

4 I ·1 4 I l -x' n x--x +c
2 4 

5 (Ix '- 2x)tn�-Ix' +2x+c2 5 4 
6 ( 2x' +3x +�)in(3+4x)-x'

3 (3+4x)' --x+c or2 16 (2ln(3+ 4x)-l)+ k 
7 _J__(4 - llx)2 44 (2 In (4 - llx) - 1) + c

x' 8 -(3 In x - 1) + c9 
g rx -x: + �' )

x
z 

x
J 1n3x-2x+---+c4 9 

Exercise 9P 
X 1 x log x - -- + clnlO 
X 2 x log x --- + c

a Ina I 3 x arctan x - -In (1 + x2) + c2 
4 xar cosx-� + c 
5 (x2 + I) arctan x -x + c
6 x' . (x' +2)� --arcsm x + + c3 9 

Exercise 9Q 1 (_x2 -2x + 2) e' + C 

2 (I - x2) cos x + 2x sin x + c 
3 (2 + 2x -x2) sin x + (2 - 2x)

COS X + C 

4 .!e2x (2x -x2) + c2 I 
5 2(2 + x + 2x2) sm 2x +I -(4x + I) cos 2x + c4 6 .!(2x2 - I) cos (1 -2x) +4 .!.sin (1 -2x) + c2 
7 -1-Y (x2 ln2 3 -2x ln3 + 2) + cIn' 3 
8 2e2(.x3 - 6x2 + 24x - 47) + c 
9 - cos5x (25.x3 + 25x2 - 6x - 2)125 + sin5x (75x2 + 50x - 6) + c625 
10 (x4 - 12x2 + 24) sin x +(4.x3 -24x) COS X + C 

11 e
2x (�-� +� 2 4 2 

15;' 1:x ln + c
Exercise 9R 1 I -e> (sm x -cos x) + c2 
2 .!e2x (2 cos x + sin x) + c5 I 4x 

3 -e ( 4 cos 3x + 3 sm 3x) + c25 
4 - .!e-x (sin 2x + 2 cos 2x) + c5 
5 edX+b (a sin (mx + n)

a'+ m' -m cos (mx + n)) + c
Exercise 95 2 l 1 -(3x-4)(x+2)' +c15 1 _1. 2 --(3x+l)(l-2x)' +c5 3 I 1. -(10x' -6x+3)(4x+3)' +c28 3 !.. 
4 -(4x-9)(x+3)' +c28 4 1. 5 -(45x' -40x+32)(x+l)• +c585 

6 --5-(176x' +165x' +150x+125)3696 
• (1-x)'+c 

Exercise 9T 

1 sin x -.!sin3 x + c
23 1.2 J.4 -x + -sm X + -Slll X + C 8 4 32 
3 -5 cos(¾) + c:) cos3 ( f )-

cos5( ¾ }+ c
4 I 5x + 6 sin 4x + 2-sin 8x -1 . 3 -sm 4x + c2 
Investigation - recursive 

formula 

1 J · d.x -1 · I sm" x = -;;-cosx sm•- x
n -1

+-I,_,n 
2 J cos" x d.x = �1 sin x cos•-• x

n-1 +-1,_, n 
Exercise 9U 

1 2arcsin (�) + !_x✓4-x2 +c2 2 --
2 lnl�+xl+c 
3 2. In (-J x2

_+ 9 + x) + !_ x J x' + 9 + c2 2 
4 3 arcsin ( i) + c
5 - 24ln 1Jx 2 -l6+xl+

�x✓x2 -l6+c2 
6 5ln1Jx 2 _±121+xl+c 

. (2x) 7 arcsm 9 + c
8 -25.Jj ln l✓x 2-25+xl2 + ..Jj xJx2 -25 + c2 
9 ✓7 In 1..J.2 + 4 + x I + c

Answers 



Exercise 9V 

1 1. 72 X 0.652 
2 1.11 
3 b 1.05 rad 
4 a 0 = !!... b 21.213 m 

,r' 
5 a - 36 -d(t)

b 0.740 ms-1
, 4.5 s 

6 h
rru

n = 1.82 m, closer to the 
first pole since x = 1. 31, 
3 - X = 1.69. 

Exercise9W 

1 a 2.87 
b 2 
C 2 
d 0.278 
e 1.62 

2 a 0.342 
b 0.560 
C 30.8 
d 0.282 
e 0.475 

3 2.38 
4 1.30 
5 10.3 
6 a (2, 1), (-2, 1) C 4.95 
Exercise9X 

1 a re 

C 
41r2 -3,r✓J 

12 

d 21r2 + 3,r✓J
12 

2 a 
21r-1rsin 2

4 

b ,r' 

4 

C 1.17 

d 0.771 

3 a re 

C 2.35 

b re 

b 31r✓J
16 

d 4.18 

Review exercise (non-GDC) 

1 a 2sinx + (2x + 3)cosx 

b ex + (cos3x - 3sin3x)
C 

x-sin2x
2x' cos' x

2 y = -2x

3 m=!!... 

Ans+ 

4 a (x - 3)e2x+ c
b (.x2 - 5x - 2)sinx + 

(2x- 5)cosx + c
e' c -(cos3x+3sin3x) + c
10 

5 .Ji cm2 s-1 

6 a y = 2x

b e-2

4e 

C 
(e' -3),r

12e' 

7 ficm2 s-1 

8 b 
3,r 

9 a 
15

( 
�

) 
2 1-e'

b 7.5 m 
3 1 10 y=--x+-
2 2 

Review exercise (GDC) 

1 (-0. 760, -0.577), (0, 0), 
(0.760, 0.577) 

2 y = -0.423x + 1.24 
3 a= 0.500 
4 960 km h- 1 

5 v= 1.31 

Chapter 10 
Skills check 

1 a 

2 a 0.8 
Exercise lOA 

b 5
36 

b 0.4 

1 a I;/(x)=0.2+0.3+0.4 
, I +0.2 = 1.1 > 1.

Therefore, f cannot be a 
probability distribution 
function. 

b I;J(x)=0.2+0.3+0.4
x•I 

+0.2 = 1.1 > 1
Therefore,/ cannot be a 
probability distribution 
function. 

c /( -1) :5 0 therefore, 
/ cannot be a probability 
distribution function. 

2 a a = 0 12 b 0.87 
C 0.87 

1 3 a k=-
10 

b I 

2 

5 

0 

P(X= X) 
27 

-

343 

0 .4+-+--+--+-

0 .3 
0.2 

0.1 

0 

X 

P(X= x) 

0.5 

0.4 

0.3 
0.2 

0.1 

0 

2 

0 

120 -
2184 

1 2 

1 

108 -
343 

1 

702 

2 

144 
-

343 

3 y 

2 

1008 -- --
2184 2184 

3 y 

3 

64 -
343 

3 

336 --
2184 

Exercise 10B 

1 a 6.2 b 50.2 

c 11.76 d J¥! or 3.43 (3 sf)

2 a a = ..!. and b = 2
8 24 

b E(X) = 
23 and
8 

E(X') = 265
24 
533 c Var(X)=--
192 

3 a 0.5. As the cards are 
distinct P(bottom > top) = 
P (top < bottom), and as the 
two events are mutually 
exclusive and exhaustive 
P(bottom >top)+ P(top > 
bottom)= I. 

1 b P(S=4)=-
45' 
3 

P(S=8)=- and
45 

1 
P(S =11)=-

9 



C 
X P(S = x) 

1 -
45 

1 
4 -

45 

2 -
45 

2 
6 -

45 

7 
3 -
45 

3 
8 

-
45 

4 
9 -

45 

4 
10 -

45 

1 
11 -

9 

4 
12 

-
45 

4 
13 -

45 

3 
14 -

45 

3 
15 

-

45 

2 
16 

-

45 

2 
17 

-
45 

18 
1 -

45 

1 
19 -

45 

d E(S)=lland 

2 Var(S) = 14-
3 

4 £20 
I 5 a k=-

44 

b P(T =4)= 
t1, 

15 P(T:54)=-and
22 

P(T=4IT:5�)=_! 
15 

17 c E(T)=4andVar-(-1')=-
11 

d 4 

Exercise lOC 
1 a 0.4 

b 

X 5 10 

1 3 f(x) = P(X :5 x) 
15 15 

C 20 

2 a 0.47 

15 

6 

15 

b E (L) = 2.32 and 

Var(L) = 1.5376 
C 

X 0 1 

f(x) = P(XSx) 0.07 0.28 

d 2 
3 a 

X 

f(x) = P(X = x) 

f(x) = P(X :5 x) 

2 

1 

36 

1 

36 

2 

0.53 

3 

4 

36 

5 

36 

20 25 30 

10 13 
1 

15 15 

3 4 5 

0.84 0.96 1 

4 5 6 

10 12 9 

36 36 36 

15 27 

36 36 

�9-----ffiean�mea-i-an-§.-a-na-
3, 

mode 5 

✓IO 
C -, l.05(3sf) 

3 

4 b 2n+I 

3 
5 b F(x) = l - 3---x 

wherex=l , 2,3,  ... 

Investigation - the Gal ton 

Board 

a 

0 

G) G)

G) (D G)

• 

G) CD G) CD

_,��-1� 
• 

b 

• 

0 
G)(D 

G) G) G)

®®@@ 

c The coefficients are equal 

• 

• 

• 

to the Pascal triangle entries 
as each of them is obtained 
adding the two coefficients 
above it. 

• 

• • 
d The rth entry of the nth row 

is given by (: ]p' q•-, where

(:J- r!(:�r)!
Exercise 10D 

1 a 0.205 (3 sf) 
b 0.377 (3 sf) 
C 0.63 (3 sf) 

2 a 0.230 4 
b 0.903744 
C 0. 733 (3 sf)

3 a i 0.0 773 (3 sf) 
ii 0.999946 (3 sf) 

b 0.0341 (3 sf) 

Answers 



4 a 2 

b 2 

C 0.667 (3 sf) 

5 a

P(X< x=O x=1 

n = 2 0.36 0.84 

n=5 

0.00605 0.0464 
n = 10 

(3 sf) (3 sf) 

b 26 

6 15 

x=2 

0.167 

(3 sf) 

7 a 0.003 74 (3 sf) 

b 0 .898 (3 sf) 

C 0.0417 (3 sf) 

8 4 

Investigation - parameters of 

a binomial variable 

E(X)= E(X
2
) VAR(X) = 

p q: 1-p EIX')-
L

_-r
-p·-4· . r. ;rl PI q• I 

(EfXl)' 
, .. 

1 0.5 0.5 0 5 0.5 0.25 

5 0.5 0.5 2.5 7.5 1.25 

10 0.5 0.5 27 .5 2.5 

1 0.2 0.8 0.2 0.2 0.16 

5 0.2 0.8 1.8 0.8 

10 0.2 0.8 5.6 1.6 

1 0.8 0.2 0.8 0.8 0.16 

5 0.8 0.2 16.8 0.8 

10 0.8 0.2 65.6 1.6 

E (X) = np and Var(X) = npq

Exercise lOE 

1 

2 

3 

b 

C 

b 
d 
4 

5 

a 0.124 (3 sf) 

C 0.826 (3 sf) 

e 1.92 

a 0.565 (3 sf) 

C 0.671 (3 sf) 

X 0 

f(x) = P (X=x)
1 

-

32 

F(x)=P (Xs;x) 
1 

32 

mode is 2 and 3 
2.5 
a 0.0188 (3 sf) 
b 0.904 (3 sf) 
n = 8,p = 0.25 

Answers 

b 

d 

b 

d 

1 

5 

32 

3 

16 

C 

0.950 (3 sf) 

3.2 

0.647 (3 sf) 

2 

2 3 4 5 

5 5 5 1 
- - -

16 16 32 32 

1 13 31 

2 16 32 
1 

0.6 days 

6 

7 

8 

9 

p 

0.5 

0.4 

0.3 

0.2 

0.1 

a 

b 

C 

a 

b 

C 

e 

g 

a 

b 

a 

0.00317 (3 sf) 

ii 0.00394 iii 0.617 

5 and 1.94 (3 sf) 

0.000154 (3 sf) 

0.298 (3 sf) 

0.863 (3 sf) 

1 d 4.5 

3.69 f 25 

0.414 (3 sf) 

i 0.02835 ii 0.16308 

0.05913 

p=Ol 

11■-

0 1 2 3 4 5 6 7 8910 x 

p 

0.5 

0.4 

0.3 

0.2 

0.1 

1-1-

�I 

p · O.B 

j 1. I-'-

p 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

p 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

= 0.7 

1 2 3 4 5 6 7 8 9 10 X 

D = 0.9 
--

I-

� 

.. JI � 
�i--. 

1 2 3 4 5 6 7 8910 x 

b The graph is symmetrical 

C 

when p = 0.5 and asymmetrical 
with respect to the line x = 4.5 
otherwise. For p < 0.5 the 
graph is positively skewed 
and for p > 0.5 it is negatively 
skewed. The graphs for values 
of p that add up to I are 
reflections of each other 
in the line x = 4.5 

mean mode median 

p = 0.1 0.9 0 and 1 1 

p = 0.3 2.7 2 and 3 3 

p = 0.5 4.5 4 and 5 4.5 

p = 0.7 6.3 6 and 7 6 

p = 0.9 8.1 8 and 9 8 

The values of the parameters 
of the distributions reflect the 
symmetries observed ( eg. the 
sum of the means for p = 0.1 

0 1 2 3 4 5 6 7 8 g 1o x andp = 0.9 is9). 

p 

0.5--i--.--.---r--,----.����� 
p = 0.5 

0 .4-t--+--+--+-+-+--lf--1'-+-� 

0 .3-t--+--+--+-+-+--11--1---1--+---< 

0.2+-+--+--+

o .1 -t--+--+-

0 1 2 3 4 5 6 7 8 9 10 X 

10 

a 

w 0 

P(W=w) (1-a)2(1-2b) 

b E(W) = 4ab 

1 2 4 

4ab 2ab 
a

2
b

2 

(1- a)(l- b) (a+ b- 2ab) 



Exercise lOF 

1 

P(X=K) • 1 2 3 4 s 

m•l 0.368 0.368 0.184 0.0613 0.0153 0.00307 

m •3 0.0498 0.149 0.224 0.224 0.168 0.101 

m = 5 0.0067 0.0337 0.0842 0.140 0.176 0.176 

(to 3 sf) 

0.5-t-,-,r-.--.-������
0. 4-t--i----ii---t----t---+-+'-+-'c.+-+-+-l 
0.3 
0.2
0.1 

0 2 3 4 5 

0.5-t-.---r-.--.-������
0.4-t--i----ii---t----t---+-+-"+--+-+-+-l 
0.3 +-+-ii--+-+-+-+--+--+-+-� 
0.2-+-l-+-+-
0.1 

2 3 4 5 

p 0.5-t' -,-,-,-.,--,-,-r-,-,�-,
0 .4-t-+-i---t----t---+m-+..c..51--+--+---+---1
0.3-t-+-i---t----t---+-+-+--+-+-+-l 
0.2 +-+-ii--+-+-+-+--+--+-+-� 
0 .1-t-t-t-+-

o 1 2 3 4 5
2 a 0.224 (3 sf)

b 0.423 (3 sf) 
C 0.353 (3 sf) 
d 0.4 76 (3 sf) 

Exercise lOG 

1 a 0.122 (3 st) 
b 0.156(3st) 

2 a 0.353 (3 st) 
b 0.423 (3 st) 

3 0.12, 3.58 
4 1.68 

Investigation - parameters 
of a Poisson distribution 

1,2 

X 

X 

:E x'·P(X=x) 

m :E x·P(X•x) .L, x'·P(X=X) -(.L, x·P(X=x)) 

0.1 0.1 0.11 0.1 

0.2 0.2 0.24 0.2 

0.3 0.3 0.39 0.3 

3 The values are the same . 
4 E(X) = Var(X). 

Exercise lOH 

1 a 0.450 (3 sf) b 0.552 (3 st) 
2 a 0.184(3st) b 0.221(3st) 
3 a 3 b 0.0166 (3 st) 
4 a 0.216 (3 st) 

ii 0.463 (3 st) 
iii 0.407 (3 st) 

b E(X) = Var(X) = 3.5 
C 15.75 

5 a 3.1612 (4 dp) 
b 0.611 (3 sf) 

6 0.247(3sf) 

7 a p = e-' ( 1 + J + :
2 

J 

(or equivalent) 

b dp A,
2 

-A h' h . -=--e W IC IS 

d,1, 2 
negative for all values 
of ?t, > 0. 

C y 
2+-------

1. 5 +-"1-"-':!1!"!���!.:.!f 

A2 
1-+-=::J---+.f:,f-,,.�,,-,}.,,-�-,I. 2 )

0.5+-+---P-�i4---+---l 

0 1 2 3 4 5 5
X 

Exercise 101 

1 a discrete b continuous 
c continuous (sometimes 

treated as discrete) 
d discrete as milk is bought 

in prepacked containers of 
fixed sizes 

2 f (x);:: 0 for all values of x and 
2 2 1 

[ ' ]' ff ( x) dx = f -x dx = .:._ 
0 0 2 4 0 

3 a 0.5 
C 0.5 

Exercise lOJ 

1 a y 

0 

=1-0=1. 

b 0.05 
d 0.5 

X 

b 0.262 (3 sf), 0.285 (3 st) 
and 0 

2 a 12 b 0.4 and 0.04 
3 a 0.25 

b �y 
1 

0.75 
0.5 

0.25 

0 

median= 2 
7 c E( X)=-and
4 

37 Var( X)-=-
48

4 a b = l-9a 

2 

b a = _J_ and b = 25
16 48 

c E(X) = �: = 1.08 (3sf) 

9987 and-V-a-i:-( X) = --
20480 

= 0.488 (3 sf) 

5 a E(T)=6ln i =2.43(3st)
2 

b Var(T) = 6-36ln' I2
= 0.0815 (3 sf) 

c 2.4 d 2 

Exercise lOK 

1 a f(x)= .:._ 
27 

b f(x)=x(x'+3x+3)
26 

c f(x) = sin x 

2 a f(x) = 8x' -x'
16 

95 9 b - and -

3 a 
256 16 

Answers 



b k = l C � 
6 

4 a f k ( e -e") dt = I 

ke[t];-[e"l 
=

1 

ke-e

+

l = I
k = l 

2 I 

b �-e 3 +e 3 

3 

c E
(

X
) 

= e-2 and 
2 

( ) 12 + 4e - 3e

' 
Var X 

12 
d 0.290 (3 sf) 

5 a a=-

2 

- for
f (x) = 

8 
b 1x' 

3x-5 �-for

6 b 

for y < -3 

d 

F(x) = 

0 
1T for X < -
2 

(x-cosx) I ,r 5,r �---- for-<:;x<:;-
2,r 4 2 2 

5,r for X >-

e 4.62 (3 sf) 

Investigation - the normal 

curve 

X 

A X~N(l,l) 
B X ~ N(2, 1) 
C X~N(3,l) 
D X~N(4,l) 

2 E X ~ N(O, l) 
F X ~ N(O, 2) 
G X ~ N(O, 3) 
H X~ N(O, 1) 

( )=
l

(

:

+

3

)' 
f y 36 

for -3 � Y � 3 Exercise lOL
I for y > 3 

7 5 c - and-36 9 

d 1, 3 and 2 
e 0, lowe r quartile 

-2 8 -1 7 a= - b = -- and c = -

9 ' 9 3 

8 b 
I I 3 -I 
-+-,--4 (2:r) 4 (2:r) 

C Y. 

\ 

I\. _/ 
0 n n 3n 2n 5n 3n x 

2 2 2 
3:r 

me dian =-
2
-

Answers 

1 a 0.290 (3 sf) b 0.401 (3 sf) 
C 0.159(3sf) 

2 a 0.401 (3 sf) b 0.516 (3 sf) 
C 0.460 (3 sf) 

3 a 35 and 7 
b 0.766, 0.609 and 

0.0766 (3 sf) 

Exercise lOM 

1 a 0.0228 (3 sf) 
b 0.00135 (3 sf) 
C 0.954 (3 sf) 

2 a M ~ N(l .1, 0.152) 
b 0.161 
c approx. 19 

3 a 0.256 and 0.762 (3 sf) 
b 0.0236 (3 sf) 
C t= 19.9(3sf) 

Investigation - further 

properties of the normal 

curve 

1 (a-d) 0.682689 .... the 
probability stays the same 

2 0.682689 .. . 
3 0.954499 ... , 0.997300 .... 

and 0.999936 ... 
4 a equal 

c 2P(X < µ - a)+ 
P(µ - a < X < µ + a) = 1 

Exercise lON 
1 a 0.3 b 0.7 C 0.4 

2 a 0.2 b 0.2 C 0.3 
d 0.6 

3 a 0.2 b 0.3 C 0.4 
4 a µ = IO and cr = 5 

b P(X < 5) = 0.158655 ... and 
P(X;,: 15) = 0.158655 ... 
values are equal 

c a=6.189 ... and 
b = 13.81... 

Exercise 100 

1 a 0.115l and 0.8849 
b 0.01072 and 0.9893 
c 0.0047 and 0.9953 

They all add up to I. 
2 a -0.524 and 0.524 

b -0.253 and 0.253 
They are sy mme tric. 

3 a 0.674 and -0.126 
b a= -0.126 and b =0.674

4 a both equal to 0.841 
b both equal to 0.3829 

5 both equal to 0.433 
6 a P(Y<O) 

b 

1-P(lO s; X s; 20)
P(X�I0)= 

2 

<0.5<P
(

IO�X�20

)

. 

c they are equal 



Exercise lOP 

1 {L = 2.94 (3 sf) 
2 µ = 1.40 (3 sf) and 

a=I.01(3sf) 

3 µ = 53.9 (3 sf) and 
a= 2.25 (3 sf) 

4 µ = 0.0143 kg 
5 a µ = 45.6 (3 sf) and 

a= 3.85 (3 sf) 

b 0.383 (3 sf) 
6 µ = 58.9 (3 sf) and 

µ = 16.5 (3 sf) 
7 a 0.988 (3 sf) b 576 g (3 sf) 

C 830 (3 sf) 
d µ = 573 g (3 sf) and 

a 2 = 670 g 2 (3 sf) 

8 a 2 > 7.39 x 10-5kg 

Exercise lOQ 

1 a µ=13.6(3sf)and 
a= 8.24 (3 sf) 

b 0.137(3sf) 
C 0. 995 (3 sf) 
d Independence of events 
e Independence may not 

hold (eg .  bad weather 
conditions , strikes) 

2 a 0.000342 (3 sf) 
b allow at least 87 minutes; 

assumptions: normally 
distributed, customers 
arrive on time 

c 18 waiters . The 
assumption of 
independence may not 
hold (eg .  contagious 
diseases) 

3 0.0560 (3 sf) Limitations: 
assumption of independence 
and validity of historical data 

4 a 0.990 (3 sf) 
b 0.0383 (3 sf) 
C 97.8%(3sf) 

5 a O .114 ( 3 sf) 
b 57.1 (3 st) 
c 125 days 

6 a 2.26 (3 sf) b 0.0280 (3 sf) 
c flaws randomly 

scattered on the sheets; 
independence of number 
of flaws per sheet 

Review exercise (non-GDC) 

1 a a=_! b =.!l!. 
7 µ 49' 

mode 2 and median �
2 

2 .Y. 

-2 -1 0 1 2 3 4 5 X 

a k= 8 
b median= I, mode= 0 
C 0.5 

3 a OJ b OJ 
5 5 -21 3104C 

-5-5 - = 3125 

4 a (½J = 312

b 12.5; 2.5 marks more 
than if he answers just the 
questions he knows 

5 a 2 

6 a 1 

b
e' 

1 b arctan -
2 

f(x) = l'"/ 
for 0-:S: X :S: !!_ 

C 

otherwise 

d ✓3 

3 

Review exercise (GDC) 

1 a 0.625 (3 st) 
b 0.00621 (3 sf) 

2 8 years 

3 a 4✓
2 

7[ 

4 1b - arctan � r;; 
7[ bl. 

✓2 
C -ln2

2Tr 

4 a 0.982 (3 sf) 
b 0.215 (3 st) 

4 

5 a a= 1.82205 (5 dp) 
b {L = 2 and a 2 = 0.359 (3 st) 
C 0.5 

6 a 111 
b 0.0435 (3 st) 

ii 0.00332 (3 st) 
C 0.00109 (3 st) 

Chapter 11 
Skills check 

1 a 5 b (1, -2) 

2 a 2 b y = 2x + I

Exercise llA 
- -

1 b ED andFC 
___.. - _.. _.. _.. 

ii AD, DA, BE, EB and FC
2 b No . If we draw all the 

diagonals we notice that 
all segments have either 
different directions or 
different lengths . 

Exercise 11B 

1 

- - -

2 a BD b AC c AB 
- - � 

d AE e CD f CB
(other answers are possible) 

3 a i u + v ii 2u -w 

iii -2u - 2v + w 

iv -v + w 

b i 117° ii 10.7square units 

4 a x = u + 2v 
Ib x=-(-u + 3v)
2 

c x = 3u + 2v 

Exercise llC 

1 • U] ii [i] iii [: J

Answers 



b 2. 3.
- 1 + -1

2 
iii -Si+ j 

. 7 •ii -1 + - J2 

C fil=mob=(:).

fil = [ (
i
]. cw =(:]and

00 = (�)

2 a OP = [ Jnd OQ = [:] 
b 2i-j + 2k 

3 a m b 
[ =il 

c 
[_;]

d [_;]

· [=il , l=ll
4 a OP=(-�),QC=(�)and

� = (
-

�)
b M(l, 4) and N(-2, 3) 

Exercise 11D 

2 a x = 4, y = I 
3 7 b X =

2 ,y =
2 

3 a 3u + v commutative and 
associative properties 

b -3u + v distributive, 
commutative and 
associative properties 

1 1 d" "b . c --u+-v 1stn utlve, 
2 2 

commutative and 
associative properties 

4 u. = 1, /3 = -1; 2a -2b 

Answers 

Exercise llE 

C ±[::J 
5 (=!)or -2i - 3j

t 5✓29]+ 29 
-

2✓29 
29 

6 l ✓
i

: l +(✓IO. 3✓10 ·
)± or_ -1---J 

3✓10 2 2 

2 

Exercise llf 

1 a A( 2, S); B(S, 6); C(4, 2); 
D(l, 1) 

b � = (�J. AC= ( _!) and

_.. (-1)AD= 
-4 

� (-4) c BD = _5 

2 a � = ( =�) b 2'3_ 

c M(O, 5); M is the midpoint 
of AB 

d P(-¾, 1
3
4
) and Q(-6, 2)

PQ has greater magnitude 
4 a=2±-..lf)_ 

Exercise llG 

1 a u + v = u = -3i + Sj - 2k 
b -3u = 6i -9j - 3k 
c 4u - 2v = -6i + 8j + 1 Ok 

d 
-2(u -v) = 2i - 2j -8k.

2 a 
[: l

C 
[ =il 

e ✓14. 

g ✓35 

d 

f 3 

5 
2 
3 
2 
5 

h ✓11 

b � -AC =[Jnd 

BC = 2i - 2j + 2k 

4 a u =

b ± 

0 
✓5 
5 

2✓5 
5 

0 
✓5 
5 

2✓5 
5 

[ 

0 

l C ✓5 
-2-E



5 a �=rn�=r:Jand

cc=H] 

b 00 +n at +n 

� +;]
and

oo=[-:]
Exercise llH 

1 r = GJ+AG}x = 1 + A,

y = 3 + 2A and x -l = Y -3
I 2 

(or equivalent) 

2 , = HH-} = J+Z,, 

y = -1 - A, z = 1 + 3A and 
x-1 = y+I = z-1

2 -1 3 
(or equivalent) 

3 (-1,0, l)andanyv ector 

co!linm wiili m 
4 a (1,1,-1),(0,l,2)and 

(-1, 1, 5) [ others possible] 

5 a (1,0,2)and (2,-1,2) 
[ others possible] 

Exercise 111 

1 3✓3 

3 0 

4 a xycos a = :x2 

b y 2sin2a

c -y2 sin 2 a 

5 ±6 
B a 13.5 b 11 
9 a 6cosa 

b the centripetal force is 
perpendicular to the 
displacem ent 

Exercise llJ 

1 a 12 b 6 
2 0 and 9 
3 a C(l, 0, 0), G(l, 1, 0), D(0, 

1, 0), 0(0, 0, 0), A(0, 0, 1), 
B(l,0, 1),F(l, 1, l)and 
E(0, 1, 1) 

b 2 and 1 

4 a B(✓2,o,o), 

c(o,✓2, o), 

D(-fi., 0, o), 
A(0,-✓2,o)and 

E(0,0,2) 

b ✓6 and 4 
C 48.2° (3 sf) 

Exercise llK 

1 120° (3 sf) 
2 33.6° (3 sf) 
3 a 90° b 36.0° 

90°, 36.0° and 54.0° 

4 a <-4 or a> 3 

5 a sin4a-4
5 

b 0.870, 1.49, 2.44, 3.06, 
4.01, 4.63, 5.58, 6.20 

Exercise lll 

1 a r=ii b m 
C Hl d 

[{

e m f D'l 
g [_�]

2 e.g. the v ectors from 
qu estion I 

4 a D(-3, 5, 5) 

C 6✓13 

5 a D(-4,-4, 1) 

b 19 

Exercise llM 

1 a r = (-3 + 4a)i + (I + a - f3)j
+ (1 - a -2/3)k

b x = -3 + 4a, y = I + a - [3,
z = I - a - 2/3 

c -3x+8y- 4z=l3 

Other forms ar e possible in a 
and b 

2 x-3y+z=2;e.g. (0,0,2), 

(0, 1, 5), (2, 0, 0) 
3 a x-2y-z= -11 

b 2x-3y+4z = -I 

cy-2z=l 

4 a y=0 b z=0 

C x= 0 
5 a A(2, 0, 0), B(2, 2, 0), 

C(0, 2, 0), 0(0, 0, 0) and 
V(0, 0,4.5) 

b r = (2-2/3)i+2aj+4.5/3k 

C 9y+4z = 18 

d r = (2+4a)i+(2+4a)j-9ak 

e 4z = 36-9x, y = 0

Exercise llN 

1 75° 

2 6.93° (3 sf) 
3 73.2° (3 sf) 

Answers 



4 a student verification 
m -m b tan(a -/J) = ' 2 

l+m,m, 
( /J) II+ m,m,I 

C COS a - = �"==�=="'= 

F+m[-}r+m: 

d cos(a -/J) = cos 0
since 0 = a - fJ

Exercise 110 

1 arcsin � = 19 .5° (3 sf) 
3 

2 arcsin 
✓
-ls�= 19.0° (3 sf)
38 90 

19 3 arccos ,.---; r. = 42.8° (3 sf)
_y) )--.J6) 

4 a X - 5 y -7 Z = -6

x-I z-Ib -=y=-
2 2

c arcsin 17
i:;-

= 40. 9° (3 sf)
15v3 __ 

5 k = 0 or k = I 

Exercise llP 

1 (2, -2, 2) 
2 (16, 6, 9) 

3 a x = 4 -2a + fJ , y = I -fJ

and z=2-a-2fJ

b (rf,¾) 
4 r=Ai+2A.j+(;\.-2)k 

(or equivalent) 

5 '!:..✓30 or 2.19 (3 sf) 5 

Exercise llQ 

1 a (2, 2, 1)

b do not intersect 

2 
x + 5 = y + 2 = z - 1 

( 
or

J5 1 -2 equivalent 

3 a k = -I 

4 b 5x -y + 3z = 7 

6 a ( 
24 4Sa+84 -l4a-8

)7a+2s' 7a+28 '7a+28 

b a= -4 
11.Jm. 

111 

Answers 

ExercisellR 

4 b a= I or c = b

but a, b, c not all = 1 
5 ,r

2 
is parallel to ,r

3
• So the 

planes do not intersect. 
5 6 a (1, 2, -1) b k = -

3 

ExercisellS 

1 a A(3, -4) and B(4, 3) 

C 97.1° 

d 1.5 hours 

2 a (5,20,-10) 
C i t = 2 

II (25, -20, 50) 
iii 20✓14 

d 0.496 (3 sf) 

ii P(9.96, 10.1, 4.88) 
and Q(0.492, 
0.00802, 1.25) 

e ii the particle path is not 
a straight line 

____.. ____. 

3 a OP= I , OQ = 
0 

�<lOR• [tj 
3 b x+y+z=-2 

3✓3 
4 

e (½,½,½I) 
f ✓3

2 

0 

2 

Review exercise (non-GDC) 

b 5,.J°26 and.Jss 
1 7 3 2 --a+ -b + -c

3 a

4 4 4 
✓2
2

2✓2 
5 

3✓2 
10 

5✓2 
2 

b ± 2✓2 
3✓2 

2 

6 a 2 - 2 cos 0 and 2 + 2cos 0 

b 4
5 

x = 2 + 2a, y = 3 - 3a + f3 
and z = 4 + 2a - 2{3

x = 1 - 2a, y = - {3, and 
z=-2+a 

8 (2, 3) 

Review exercise (GDC) 

1 48° 

or equivalent 
x = 1 -2a + {3, y = I, and 
z=2a-3{3 

y = I 

or equivalent 
x = -I - a+ 2{3, y = I -2a

+ 2/3 and z = I + a -3{3;

4x- y + 2z = -3 

3 a 

, [JHHJ-, 



b ,[-;]=[H[-]]=1 
4 a 2x-3y+4z=29 

b -2x-y+4z=-12 

C -2x+ y = -4 
d 5y+2z=-11 
e x= 3 
f x-y-z=0 

g x-2y-z = 0

5 80.4° (3 sf) 

6 , = [l]•a[\ l· prn 
7 The planes intersect at a point 

with coordinates (3, - 2, 2). 

8 a x = 5-2a-3b
2b 

4a + I lb-10 y = 
2b 

2a-5 z=--
2b 

5 
b Whe-n--a----a= 2 and b = 0,

they meet in a line. 

Chapter 12 

Skills check 

1 lm(z) 

� 
V 

� -

-3 -2 1 0 

1 

- - 2i 

2i 

3i 

2 a z* = 5 + 4i and 
-z = -5 + 4i

b .!_=2._+_±_i 
z 41 41 

3 Rez = - 3, Im z = 4 and 
lzl = 5 

e(z) 

4 a 7 b 12 - 19i 
I 7 . 

C ---1 
10 10 

Exercise 12A 

y 

2 r = 0 or r= 2; 
1t 2kn 

0=-+- kEZ 
6 3 ' 

0 
-4+4i✓3

-4 - 4i✓3

8 

3 a = + J2 and 0 = !!... + kn, 
4 

k E Z. Two.
4 a and b e.g. z

1 
= I + i and 

z
2 
= -1 + i 

Exercise 128 

1 a z, = 3.fi. + 3.fi.i 

b z
2 

= -sfi + s-lii 

C Z
3 =2- 2✓3i 

d 
5✓3 5. Z =----1 

4 

2 2 

2 a z, = ✓2cis(-3
:)

b z, = 4cis( ¾) 
c z, = 4.fi.cis(-1)

d z, = s.fi.cis(3:)

3 a z, = 3cis(-f)

b z, =4cis(f)
c z

3 
= 2 cis 0 

d z
4 
= 4 cis(n) 

y 4 
Z2 

3 

2 
1 

Z4_,........,c--r---c+--'r--Z..-3 ·_-�_. 
-4 -3 -2 -1i° 1 2 3 4 X

-2

-3
-

4 
Z1 

4 a z* = 4 cis(- 40°) 

b -z = 4 cis(220°) 

c - z* = 4 cis(140°) 

d 3z* = 12 cis(- 40°) 

e - z* = 16 cis(l40°) 
5 a z

3 
= - 24i 

b z = 4cis(
4n

) I 3 I 

z, = 6cis (¾) and

z, = 24cif f}

c I z
3 
I = I z

1 
I I z

2 
I and 

arg z
3 

= arg z
1 
+ arg z

2
• 

Exercise 12C 

1 a 5 cis(l35 °) 

b � cis(
31n)7 24 

2 a fj 1 · b r,;2 · ( n) -- +-1 vL ClS --
2 2 4 

C zz =1-✓3 + l+fi
iI 2 

2 2 

3 a 

r,; . 77T
Z

1
Z

2 
='\IL ClS-; 

12 
' 71, fi.+16 

Sln-=---
12 4 '

cos 7 
7T = ✓2 - J6 and 

12 4 

tan ln = -2-✓312 

5 l ln r>- and 0=-
2 6 

1b 0 < r <- and 
2 

0=!!... 01' 0= 41t
3 3 

Answers 



4 -z = 2-13 cis (-i} 
z* = 2.J3 cis (-5

: )and

-z* = 2.Jj cis !!...
6 

5 a z = cis ( f-a)

and w = as (-f + 2a J

b zw = cis a 

Exercise 12D 

1 a 2 cis 45 ° 

2 

b 7 . 2517 
-CIS-
8 24 

a 2✓2cis(-f J 

b 2_✓2ci�) 

c 4✓2cis (1:;)

d ✓2 . (Af--c1s 
2 12 

e � cis (-�;)

3 a 2cis (-i)

b cis (-�;J
,Ji . ( BC -ClS -
14 6 

4 

==4(cos(-i)+i sin(-iJ)and

w= �(cos f-fJ+i sinf-f)) 

b 4✓2cis (i�)

C (2✓3 +2)+i(2✓3 -2) 

d cos_!!__= ✓6 + ✓2
12 4 

. IT ✓6-✓2 ds1n -=---an 
12 4 

tan_ 17 = 2 - ✓3
12 

Exercise 12E 

1 a 32 cis n = -32 

Answers 

b cis !!... 
3 

c cis !!... 
4 

. . "· 
2 a 2ei,' b 256e 12' 

,. 
c Se�• d 

1 !, -e'--

3 -1 

5 a 4 b 
6 2c is O = 2 or 

512 

2 

2cis ( ± 2; ) = -1 ± ✓3i

Exercise 12F 

1 2 . 17 2 . 717
a CIS-, CIS-

9 9 

d 2 . 1317an ClS-
9 

b ✓2 +i✓2 
-✓2 +i✓2
-✓2-i✓2

✓2-i✓2 
-�i �i �i 

c 2 e  ', 2e' ,2e', 2e'; 
7R 

and 2e'' 

2 a ifi_cis (-i) or 1/Zcis (7;)

b ifi_cis ( 517) ifi_cis ( 1717)
24 ' 24 ' 

.� . 
(
2917

] 
.�2 . 

(
4117)vLClS - or vLClS -

24 24 
H .  3H. 

C z = 3e12', z = 3e 7' and
I 7 ;r. 

z = 3e1
2
'

d 0, ✓2cis (-i)or✓2cis (7;)

3 . Q . 17 . 217 . 
a c 1s , c 1s -, c 1s -, c1s1T, 

3 3 
. 417 d . 517 

c1s- an c 1s-. 
3 3 

y 

4 

5 

b z
1
, z

3
, z

5 
are cube roots of l 

and z
2

, z
4

, z
6 

are the cube 
roots of-1 

I . 417 1 . 1617 1 . 2217 
-ClS- -ClS- -CIS-

2 15 '2 15 '2 15 
I . 2817 and-c1s-.- -
2 15 

Jcis (�) = 

3✓ 2 ± 3 ✓2 i
4 2 2 
. 

( 
317) 3✓2 3✓2 . and3c1s ±
4 

= --
2

- ± -
2

-1. 

Hence the solutions 

of the equation are 

(3+
3:J± 3

�i

and(3 3�J� 3�i.

3 

Investigation - properties of 

roots of unity 

1 a 1 and _..!_ ± J\ 

b CO* 
2 2 

ii co2 = CO* and (co*)2 = 
co; twice the argument 
of one root gives the 
argument of the other, 
as the cube roots of 
unity divide the unit 
circle into three equal 
parts. 
I 1 

iii - = m* and - = m. 
Ct) CtJ* 

The roots are 
symmetric with respec t 
to the x-axis. 

c The three roots define an 
equilateral triangle with 
centre at the origin which 
means that the origin 
divides the height with 
respect to the vertex ( 1, 0) 
in the ratio 1 :2. Therefore 
the real parts of the 
complex roots add up to 
-1.

d 1 0 II 

iii - 1 iv -co 



e Both 1 and -1, and their the sum of nth roots of unity is 
corresponding cube roots 0 and the points that represent 
are symmetric with respect these roots divide the unit circle 
to the x-axis. into n equal arcs. Also, if w is a 

2 The nth roots of the unity nth root of unity, W* is also a nth
appear in pairs of conjugate 
complex numbers which 
are represented by points 
symmetric with respect to the 
x-axis; when n is even these
points can also form pairs of 
points symmetric with respect 
to the y-axis. 

The list of properties is as follows: 
The complex cube roots of 
unity are conjugate of each 
other, the reciprocal of each 
other and if we square one of 
them we obtain the other one. 
Geometrically, the three cube 
roots of unity are represented 
by points that divide the unit 
circle in three equal arcs 

with length 2Jr ; the real root 
3 

corresponds to the point 
(1,0) and the complex roots 
are symmetric with respect 
to the x-axis and correspond 

. 
( 

1 2Jr
J to the pomts -

2 
± 

3 
.

This symmetry explains the 

properties above. 
I, wand w 2 are consecutive 
terms of a geometric sequence 
with common ratio w whose 
sum is 0; similarly, 1 ,  W* and 
(W*)2 are consecutive terms 
of a geometric sequence with 
common ratio W* whose sum 
is 0. 
If we reflect the points that 
represent the cube roots of 
unity in the y-axis we obtain 
the points that represent the 
cube roots of -1 .  

The properties above make 
the cube roots of unity a very 
important case. However, some of 
these properties can be extended 
to other roots of unity. In general 

root of unity. 

Exercise 12G 

1 
10 5 I 

b z' -5z' + l0z--+ ,-,;
z z z 

1 5
--cos5a+-ros* 

80 48 
5 

---eosa+C 

I O 2Jr 4:r 6:r . 
' 7 ' 7 ' 7 ' 

8Jr I 0Jr -a-ad I 2Jr. 
7 ' 7 7 

4 b cos2 0 cis 20 

c 0 = ± .::. or 0 = ± .::. 

5 C ✓2 
3 2 

6 b n E Z because De 
Moivre's theorem has been 
proved for these values. 

7 b a = - 2, b = 2 and c = - I 
C 2./3 i, -2./3 i 

8 Proofs 

9 n = I2k, k E Z 

10 a J(i)=fi, /(-i)=-fi, 

/(I+i)=ln✓2 + !:. i and 
4 

f (1-i): ln ✓2 -.::.i._ 
4 

d All complex numbers 
with I z I = 1 ; z * 1 

ii 0 < I z I < 1 and 
arg z = 0 (positive real 
numbers between 0 
and 1) 

iii 1 

Review exercise (non-GDC) 

1 a -I-./3i 

b - I+ i 

C _ ✓3_li
3 3 

b cis(-f J 

C ✓2 ci-j _!!_J
2 1_ 12 

3 a 8 . 
(
23:r

J ZW = CIS l2 ,
z I . r 7Jr

J -=-c1sr- and
w 2 , 12 

z'w' = 256 cis(
1
:; J

b z+w = (-1-2✓2) 

+ i ( ✓3 - 2fi)

z-w = ( 2.fi -I)+ i( ✓3 + 2✓2)

z' ✓6 + ✓2 ✓6 -✓2 .+ 1

w 4 

4 a 
✓3
3 

b o 
C 0.5 

5 0, ± I and± i 

6 cos 0 cis(-0) 

7 a a=+..!.. n=4- 4' 

4 

b [ -1
4
+ 1 ; -1

4
-i l[ - 1

4
+ i ; 1: 

i
]

9 a 2 cis (2 10°) 

b 1/2 cis(70°) 

C 1 2  

12 a - 1 
b 2 
C - 1

13 b ±1,±i, ± ✓2 ± ✓2 i
2 2 

c (x-l)(x+l)(x2 +1)

(x2 
- ✓2x + 1)

(x 2 +✓2x+l) 

Review exercise - with GDC 

1 a = -8, b = 24, c = -32, d = 20 

Answers 



Chapter 15 

Mark scheme 
,-

When marking scripts, examiners use mark schemes similar to these. There are different types of marks 

that can be awarded under specific conditions. It is important that you are familiar with these rules as this 

may help you to maximise your score in your final 1B examination. 

Types of marks 

M These are method marks awarded for attempting to use correct method. They can just be awarded if 

the working is seen. 

(M) These are implied method marks that can be awarded even if the working is not seen but it is obvious

from the subsequent work that the correct method has been used (or attempted).

A These are answer or accuracy marks. In case they depend on preceding M marks, they can just be

awarded if the answer is obtained using a correct method (correct answers from incorrect methods

receive no credit).

(A) These are implied answer or accuracy marks. They also may depend on preceding M marks and they

are awarded even if you skip an intermediate step but subsequent correct work shows that you have

considered this/these values. In general it is better to write down all the intermediate steps as you

do not know beforehand which steps may not be considered necessary.

R These are reasoning marks. It is important that you state your reasons clearly, namely when you write

proofs or answer show that questions. It is not enough to quote answers that are given or rephrase

those using equivalent expressions.

N These are marks for correct answers with no working. They appear mostly in paper 2 in questions

where the answer can be obtained with GDC.

AG This is an indication for examiners that the answer is given in the question and no credit should be 

awarded for copying it. Therefore, do not waste time copying answers that are given if you do not 

know how to obtain them. 

Examiners also follow some rules that you should be familiar with: 

Follow through marks (FT) 

If you give an incorrect answer to a part of a question but it is possible to answer subsequent parts 

using this answer, you get credit for correct work in these subsequent parts using incorrect values. 

In general, if the difficulty of subsequent parts remains the same you are not penalized twice for 

the same mistake. However, if the question becomes much easier due to use of a different value, 

examiners may decide to give no credit or just partial credit to your work. In case you notice that a 

question where you need to use a previous answer is either too easy or extremely difficult for the 

marks available, it is wise to double check previous work for calculation errors. This may save you 

from wasting time trying to answer something impossible! 

Alternative forms 

Alternative forms of notation are accepted as long they are correct and used consistently. 

Simplification of expressions is not always required. The mark schemes in general show the 

simplified form in brackets as an indication that it is not necessary to simplify the answer to obtain 

credit. However, you may need to simplify answers even if you are not required to in a situation where 

it is needed to answer subsequent parts. 

Crossed out work 

This is not marked at all. Do not cross any answer unless you have written a new answer to the 

same question and you do not want the first one to be marked. Be aware though that if you give two 

answers to the same question, the one the examiner marks first will be the only one considered. 

Answers 
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where the rounding criterion is not given. In an y c ase , you should also look c arefull y and see if your 
answer makes sense in the context of the question. 

Practice paper 1 

SECTION A 

1 4ln2-3ln4 + lnk = 0 ⇒ lnk = -4 ln2 +3ln4 
lnk=ln2-• +ln43 

lnk=ln2-• x43 

k=z-•x4'=4 

x2 -2x +5
2 a 2x+l)2x3 -3x2 +8x+5 

-2x3 
- x2 

- 4x2 + 8x + 5
4x2 +2x

10x+5 
-IOx-5

0 
as the remainder is 0, p(x) is divisible by 2x + 1.
Alternative method: 

2 8 5 -3
+
-1

+ + 

2 -5

2 -4 IO 0 

b p(x )=(2x+1)(x2 -2x+5) 
p(x)=0 ⇒ 2x+l=O orx2 -2x+5=0 

x=-_!_ or x=l±2i

3 a +a =� ⇒ a+ar =� ⇒ a(l+r)=�I 2 9 9 9 

⇒ a=-8-
9(r+I) 

26 8 2 26 
� +� = 

27 ⇒ 9+ar = 27

9 

⇒ �+_8_,2 = 26 ⇒ 12,2 = r+ l
9 9(r+l) 27 

l 1 ⇒ r=-orr=--3 4 
2 32a=--or a=-
3 27 

2 32 
S=_j_=lorS= 27 =128

1 __!_ 1+!. 135
3 4 

Ml 

Al 

(Al) 

Al [4 marks] 

MlA2 

( Use s ynthetic d ivis ion ' 

I 
for the v alue of-½. 

J 
Rl 

(Al) 

(Ml) 

AlAl [8 marks] 

Ml 

Al 

Ml 

Ml 

Al 

Al 

AlAl [8 marks] 

Answers 



4 P(AuB)=P(A)+P(B)-P(AnB) and 

3P(AnB)= 0.3+0.2-P(AnB) 

P(AnB)=½ (0.125) ( accept }0)

P(AIB)= P(AnB)
I 

8 =2. .P(B) 0.2 8 

P( An B') = P( A)-P(A n B) = 0.3-0.125 = 0.175

5 Let z=a+ib where a=Re(z) and b=lm(z),

a z + z* = (a+ ib) + ( a - ib) = 2a 
=2Re(z) 

b z -z* = (a+ ib )-( a - ib) = 2bi 
= 2iim(z) 

c Re( z) = a�lal = fcll 

�.Ja2 +b2 =lz 

Therefore Re( z) � lzl 

6 eliminate z first, i
x+ 2y - z = 5

-3x - y + z = I
⇒ -2x + y = 6 ⇒ y = 2x + 6, express all in terms of x.
z = I + 3x + y ⇒ z = 5x - 5

, +: J + tm- t E Z 

7 x2 +4y2 - 2x+ 16y+ 13 = 0 ⇒ 2x+8y dy -2+16 dy = 0
dx dx 

dy 2-2x

( 
1-x

J=> dx = 8y+l6 = 4y+8 

d y -=-0 =>-x-=-I-
dx 

12 +4y2 -2+16y+13=0=> y2 +4y+3=0 
⇒ y=-3 or y=-1
So the points are (1,-3) and (1,-1) 

8 J9✓x lnx dx=[fx✓xlnxI-1J•✓xdx
I I 

= -x✓x lnx -- -_x✓x =36ln3--[ 2 ]9 2 [ 2 ]9 I 04 
3 I 3 3 I 9 

J•✓x lnx dx= aln3+b => a=36 and-b-=-11�
, . 9 

Answers 

Ml 

Al 

MIAl 

MlAI [6 marks] 

MIA! 

AG 

MIAl 
AG 

RI 
Al 

AG [6 marks] 

MIAl 

Al 
Al 

MIA! 

MlAI 

Al 

Ml 

Ml 

Al [6 marks] 

MIAI 

Al 

AIAI [5 marks] 



9 a fis acontinuousPDFofX ⇒ Iimf(x)=limf(x) 
x➔r x➔ r 

⇒ 0.6=2a+b
Iim f ( x ) = li� / ( x ) ⇒ ac + b = O
::t➔C X➔C 

The area under the graph is 1 

O OS 0.1+0.6 l (2a+b)+(ac+b) ( 2) l. + 
2 

X + 
2 

X 
C- = 

⇒ c=4

Solve simultaneously to obtain 
a=-0.3 and b=l.2 

b 2 

10 /(x)=12sinx-Scosx⇒ f(x)=lJ[gsinx-gcosx]

⇒ f(x)= 13sin(x-a) where a =ar-Etan 2-
12 

The range of /is [-13, 13] 

SECTION B 

11 a x - 2 = Y - 1 ⇒ 2x -y = 3 and x - l = y - 2 ⇒ x - 4 y = -7
2 4 

19 17 =>x=
7 

and y=
7 

15 z=- --
7 

Therefore, as the system of equations has unique 
solution 

[
19 17 15

)The lines meet at 7,7,7 

19

[:�]fl{�] :� ⇒ -x+ 2y - , = 0 ( oo- 2y+,=0)

c As -I x I + 2 x ( -1 )-1 x 0 * 0 

A( 1, -1, 0) does not lie on the plane 11: 

d x-I y+I z 
---=--t = -2- = =-i" ( or eqmvalent)

Ml 

Al 

Al 

Ml 

Al 

Al 

Al [7 marks] 

MlAl 

(Al) 

Al [4 marks] 

Ml 

AlAl 

Al 

Rl 

MlAl 

MlAl 

MlRl 
AG 

Al 

Answers 



e 

12 a 

b 

z = t ⇒ x = t + I and y = -2t -I 
-x+2y-z = 0 ⇒ -(t+I)+2 (-2t-I)-t = 0

⇒t=-.!.
2 

The intersection point of L 3 with the plane is ( ½, 0, -½ J
So the distance from A to the plane is 

�( 
1 
J 

2 ( 1 
J 

✓61-
2 

+(-1-0) + 0+
2 

=2

n ( n + 1 )( 2n + 1) 
Let P(n):0 2 +l 2 +22 + ... +n2 = where n EN. 6 
Verify that P(0) is a true statement: 

0(0+1}(2x0+1) . P(0):02 = 6 (venfiedtrue) 

Next, assume the truth of the proposition for a 
particular value of n, say k: 

k ( k +I}( 2k +I)P(k):02 +l 2 +22 + ... +k2 = 
6 (assumed true) 

Consider the proposition for the next value 
of n, ie, n = k + 1 :  

P(k+ 1): 02 + 12 +22 + ... +(k +  1)2 = (k+ I}(k+
/)(2k+3) 

(under consideration) 

As 0 2 + I 2 + 2 2 + ... + k 2 + ( k + I )2 

= k(k+I�(2k+l) +(k+I)2 (using the induction hypothesis)

= ( k + l)  [ k ( 2: 
+ 1) + ( k + l))

= ( k + I l[ 2k2 +
: 
k + 6

)

= (k+I)(k+2)(2k+3) (QED)6 

We have shown that P(k) true ⇒ P(k + I) true and, as we 
had established that P(0) is true, by the principle of 
mathematical induction, we can conclude that P(n) is 
true for any n E N. 
J 2 +6 2 + ... +(3n)2 =9xl2 +9x22 + ... +9xn 2 

=9x(12+22+ ... +n2) 

= 9( 
n(n+ 1

�
(2n + 1)

)

_ 3n ( n + 1 }( 2n + 1} 
2 

Answers 

MIAI 
MIAI 

Al 

MIAI [19marks] 

Al 

Ml 

Ml 

Al 

Ml 

Al 

RI 
Ml 

(Al) 

Ml 

Al 



c A. +B" =( l2 +4 2 + ... +(3n-2)2 )+( 22 +5 2 +8 2 + ... +(3n-1)2
) 

= ( 12 + 2 2 + 4 2 + 5 2 + ... + ( 3n -2 )2 + ( 3n -I )2 )
= ( 02 + 12 + 22 +32 .•. + (3n )2 

)-( 32 + 62 + ... +(3n )2 )
3n(3n+ 1){6n+ 1) 3n( n  + 1)(2n + 1) 

6 2 

3n (18n2 + 9n + 1-3n2 
- 9n -3)

= - n
3 

-n

A,, -B" =( 12 +4 2 + ... +(3n-2)2 
)-( 22 +52 +82 + ... +(3n-1)2 ) 

=(12 -22 )+(42 -52 )+ ... +( (3n-2)2 -(3n-1)2 )
=-3-9-.... -(6n-3) 

-3+{-6n+3) 
=-�-�xn

2 

=-3n2 

Solve simultaneously A" + B" = 6n3 
- n and A,, -B,, = -3n2 

A = _6n_ 3 _ -_3_n_2 _-_n and B = _6n_ 3 _+_3_n_
2 

_-_n 
n 2 n 2 

13 Let/· x ➔ ecosx where _!!_ < x---<e�n __ _ . ' 
2 2 

a As cos(-x)=cosx 

/(-x)=ecos(-x) =ecosx = f(x)

Therefore/is even. 
b /' ( X ) = -sin X ecosx 

c f'(x )=0 ⇒ sinx = 0 
⇒ x =0 (as_!!_< x <!!_)

2 2 

/'(0-)>0 and f'(0+ )<0
/ has a maximum at (0, e) 

d f"(x)=-cosx econ +sin 2 X ecosx 

e 

=(-cosx +sin 2x) e'0
" 

f" ( X) = 0 ⇒ -cos X + sin 2 X = 0 
⇒ -cosx +l-cos2x=0(or cos2x+cosx-1=0 ) 
⇒ cosx = _ l+/S (as cosx > 0)
The infl exion point is arccos [-l � ✓5 ,e -i�./s ) 

1! 
2 

y 

0 

e 

1! X 
2 

Ml 

Al 

Ml 

AlAG 

Ml 

MlAl 

AG 

Ml 

A 1 [20 marks] 

Rl 

Al 

AG 

MlAl 

MIA! 

Al 

Rl 

Al 

MIA! 

Ml 
Ml 

Al 

Al 

Al (1) 

Answers 



f A(x)=2x ecosx 

ii A' ( x) = 2 ecos ' -2x sin x ecos ' 

=2(1-xsinx) ecosx 

A'(x)=0� 1-xsinx=0 and this equation must have a 

zero in [ O,i] because g(x) = 1-x sin x is continuous and 

changes sign in this interval 
A'( ) 0 . 1 d R 

✓a
2 -1 

a =  ⇒s1n a=- an cosa= 1--=--
a _____si_ a 

Therefore A (a)= 2a e-.-

Mark scheme 

Practice paper 2 

SECTION A 

1 a 12200=a+4x600⇒a=9800 

b 
s 

= 9800-12200 X 5=55000 
5 2 

c 9800+600(n+1)>15000⇒ n>7} 

So on the 8th year. 

2 a 3. a(-3i)+b 9 3 . b 3 .1=---⇒ + Cl= - Ql
-3i+c 

⇒ b = 9 and c = -a

. a(l+4i)+b ( 
.
)( 

.
) 

. 1-41= . ⇒ 1+41 l+c -41 =a+b+4ai1+41+c 
⇒ c+l 7-4ci =a+b+4ai

As b = 9 and c = -a,

-a+ 17 +4ai=a+9+4ai ⇒a= 4 and c = -4 

b w=4z+9 ⇒ w=4(4+yi)+9
z-4 4 +yi-4 

w=25+4yi
⇒ w 4 2\ 

yi y 
So, Rew = 4 

3 P(X <2)=0.3⇒ 2
-,_:1 

=¢- 1 (0.3) 
',/a .._,___, 

-0...5244 

a = 2.89 (3 sf) 

Answers 

(Can be solved on a GDC) 

1199 

Al 
MlAl (1) 

Rl 

Ml 

AG [21 marks] 

MIAl 

MIAl 

MIAl 

Al [7 marks] 

Ml 

Al 

Ml 

Al 

Al 

Ml 

Al 

AG [7 marks] 

MIAI 

(Ml)Al [4 marks] 



4 a 

b 

Method 1: 

f'(x)= 
-2x2-l+x2

x2 

⇒ f'(x)
x2 + 1 0 . h d . f /

2 
-t mt e omam o 

X 

So no maxima/ minima points 

f"(x)=-
2x3 - 2x(x2+1)

x4 

⇒ f" ( x) �i-n-ili.€-<lomain off
X 

Method 2: 

l-x2 1 
f(x) = --=--x

• 
X X 

f'(x) =--
1 -14 O

x2 
So no maxima/ minima points 

2 
f"(x) = 3"- 0 

X 

I\:, :
,, : 

\ \ ' 

\ 
'. \ 

-� � 3 -2 · I\ 0 ', \ 
X 

'i '\ 
''"

� 
).., 

Note: Al for shape, Al for zeros, Al for asymptotes 
(no equations required) 

s AB{:] 
either 

....... 1 ....... 
AP · PB = 1 · 2 ⇒ AP = - AB . . 3 

-2

....... 

AP= 5 
3 
-1

..................... [ I] OP = OA + AP = =� + 

or 
AP: PB= 1: 2 ⇒ PB= 2P A 

-2

=[-I] 5
3

-1

✓(6-6t)2 +(St-4)2 

+(3-3tJ2 =2✓(-6t)
2 

+(St)2 +(-3t)2 

( 6-6t J
2 + ( St-4 J

2 + (3 -3t J2 = 4 ( (-6t J2 + ( St J2 + (-3t J
2

) 

1 ⇒ t=
3 

(t>O) 

Therefore 

P(-1 -! -2J ' 3' 

MlAl 

Rl 

AG 

Al 

Rl 

Ml 

AlRl 

AG 

AlRl 

A3 [8 marks] 

Al 

Ml 

Al 

MlAl 

Ml 
MlAl 

Al 

Al [6 marks] 

Answers 



6 (l+x)5 (l+ax)6 =(1+5x +l0x2 + .. . +x 5)(1+6ax +I0x 2 + ... +a6x 11 ) 

= 1+(6a+5)x+(15a2 +30a+10)x2 + ... 

( 1  + x )5 (1 + ax )6 = 1 +bx + l 0x2 + ... + a6x 11 

Note: award Al for first two terms, Al for third term 

⇒ 6a + 5 = b and 15a 2 + 30a + 10 = 10

⇒ a=0 and b=5
a=-2 and b=-7

7 s�dx=f e

2x 

dx 4+e4x 

4+(e2xJ
2 

u = e" ⇒du= 2e" dx 

J�dx = .!.J-1-du 
4 + e4 ' 2 4 + u2 

I 

=.!. f _l_du 
2 1+(1)' 

= .!.arctan1!:_ +C 
4 2 

I e2x 
=-arctan-+C 

4 2 

8 a Attempt to apply cosine rule 
2 2 ! 

d=(20 +15 -2x20xl 5cos0)2 ( or equivalent)

b Minute hand moves 2rr 
(=

.!!....
)60 30 

Hour hand 1 /:.
60 [ = 3:0) radians per minute

d0 rr rr llrr 
-=---:--'�� dt 360 30 360 

d'=..!.(202 +152 -2x 20 x 15cos0)-½ 600sin0 de

2 dt 
55rr i 2 ! . =-

6
-t20 +15 - 2  x 20 x 15cos0f2 sm0 (or equivalent)

rr 5 Srr 2 2 _! At3 o'clock, 0=
2

⇒ d'=--6-(20 +15) 2 =1.15 (3 sf)

9 For investigating the pattern or deducing that [ un -½) is a GP with

r=.!. and a=I 
3 2 

u _.!.=l(.!.)"-'
" 2 2 3 

1 3 X 3 t-, 32
-" + 1 

u,, =_2+-2- -=�

Answers 

Ml 

AlAl 

Ml 

Al 
Al (6 marks] 

Ml 

(Al) 

Al 

(Al) 

(Al) 

Al (6 marks] 

Ml 
Al 

Al 

Al 

Al 

MlAl 

Al (6 marks] 

M3 

AlAl 

M!Al 

AIAG (8 marks] 



SECTION B 

10 a 12 X 0.25 = 3
b Let B be the number of blue ribbons taken from the box.

B - B (12, 0.45)

P(B=6)=(
1:}o.45J6 (0.55)6 =0.212 (3sf)

c P(B:2:2)=1-P(B:5:1)=0.992 (3sf)
d Let W be the number of white ribbons taken from the box.

W - B (12, 0.3)
The value of W for which the pdf takes the maximum value is 3
Assumptions: independence of events and
probability of success constant due to big number of ribbons
in the box 

e Attempt to use Bayes' theorem or correct tree diagram

P(box IIW)= 0
·
3 

0.3+0.25+0.5
= 0.286 (3sf)

blnomP<m12,0.4S,6) 

l-blnomCdl\12,0 45,1) 

binomPdr(12,o 3) 

0 212385 "<

0 991711 

{o 013s41,oon1s4,o 16779,o 2397,0.231•

maK(blnomP<irl12,o.3)) 0.2397 

I

b M(
1+2 2-1 -3+0)=(1.!. _i)

2 ' 2 ' 2 2'2' 2 

4199 

( GDC may be used)

n = d⇒, n = m •⇒[�}[-:]- j[-:] 
2 

3 3 9x-3y+3z =-----⇒ 2x-6y+6z =-92 2 2 

Al

Al

(Ml)Al

MlAl

(Al)
(Ml)Al
Al

Al
Ml

Al

Al [14 marks]

Al

MlAl

Al

MlAl

AG

Answers 



c Let Q be the midpoint of [AC]. 
Q(.!_--=-!. 2-0 -3+3)= (0 I 0)

2 ' 2 ' 2 ' 
' 

AC= [ ��-}[ J-2,[ _;]⇒ ., = [} 
r•n,-q••,

⇒ D[J[H[_i] 
x+ y-3z=l 

-3

f) = 1.07(61.0°)
e Attempt to solve the system of three simultaneous equations: 

({
2·x-6y+6·z•·9 

) linSolve x+y-3·:z• l , {xJ',Z} 
6·.x-2y-6·:z--5 

{ 3·c1 3 3·c1 11 } -----1--,1 
2 s· 2 s · 

n 

11 

1199 

x=lA_l 
2 8 

3 11 -y-2/2-4-
s°'

,l,.e....lR�- - - - -

z=A 

(Can be solved with GDC) 

f Since the point P is equally distant to the points A, B and C therefore 
it lies in the bisecting planes of the line segments 

Al 

Al 

Al 

AG 

MlAlAl 

Al 

(M2) 

A2 

[AB], [AC) and [ B C]. Rl 
Attempt to find the point of intersection between the line in part e) and
the plane x + y + z = 0. 

l}.-l+i}.,+!..!.+A=O Ml Al 
2 8 2 8 

4A=-l ⇒}. =-_!_ Al 

x = ¾(-¼)-¾ 
Y=l(-l)+ !..!. ⇒ P(-I 1-.!.)

2 4 8 4' ' 4 
MlAl (23 marks] 

1 
,!;=--

Answers 



12 a 

b 

C 

d 

f (-x) = cos(-2x)+ l = cos(2x )+ 1 = /(x) 
e-x + ex g(-x)=--=g(x) 2 

f'( x) = -sin(2x) • 2 = -2sin(2x) 

1 e'-e-x g'(x)=
2

(e +{-I) x e-•) = -2
-

f'(-x) = -2sin(-2x) = 2sin(2x) = -f'(x) 

, e-X-eX eX-e-X I g (-x)=--=---=-g (x) 2 2 
Correct shape of the graphs 

(-0.668, 1.23) 
(0.668, 1.23) 

r Notice that we stored the x-value of the point in the first quadrant to a 
variable called a, that will be seen in the following parts 

MlAl 

Al 

MIAl 

MlAl 

Al 

Al 

AlA I 

Al 
Al 

e Attempt to u se the formula for the tangent y = f' ( x1 )( x -x
1 ) + y1 

M 1 

y=f'(0.668)(x-0.668)+1.23 Al 

y = -1.95(x -0.668)+ 1.23 

y=-1.95x+2.53 

y = g'(0.668)(x-0.668)+ l .23 

y = 0. 7l 9(x -0.668)+ 1.23 

y=0.719x I 0.751 

·l 94$$11204964-m ·l 94SSl

:x(n{x))ix-a
0 719314 

0 71931392938095 ➔n 0.719314 

fl(a)-m·a -+k. 2 S322S 

da)-n·a-1 0.751031 V 

4,13 

AG 

Al 

AG 

Store all the values 
found. It saves you 
time and reduces the 
risk of errors due to 
randing and mistakes. 

Answers 



f Since the functions are even, their graphs and the respective tangents 

are symmetrical with respect to the y-axis. They form a kite so the 

area is half the product of the diagonals. Rl 

½ 

A=e·f ⇒A=(2.53-0.751)·(2·0.668)=1.19 2 2 

g Either V = :ref 0668 

(/ 2{x) - g2 (x)) dx = 7 .88 
-0.688 

or o.66s 

V = 2rr i (f2(x) - g
2 (x)) dx = 7.88 

MlAl 

MlAIA2 

MlAlA2 [23 marks] 

Note: M 1 for correct formula, A 1 for correct limits, A2 for correct final answer 

!·mm• •F: ,:,i 13 '7 (" 

(k-J)·a 1.1906 � 

.J_)fl(,))2 -(n{,))2 )dx 
7.88235 

h r Q ((mxl)2 ¾1)2 ldx 
7.88235 

• 0

--.

: . � 
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Subject index 

absolute values, 711-12 
absolute-value functions, 57-8 
abstract models, 167 
academic honesty, in explorations, 

666---7 
acceleration, 613 

instantaneous, 209-10 
addition 

algebraic fractions, 712-14 
complex numbers, 109 

geometrical meaning of, 630-2 
see also sum 

aesthetics, in mathematics, 232-77 
al-Khwarizmf, Mul;iammad ibn 

Musa (c. 780-c.850), 50 
al-Kuhl (fl. 10th century), 54 
algebra, 697-718 

fundamental theorem of, 131-3, 
163,630 

see also vector algebra 
algebraic fractions 

addition, 712-14 
subtraction, 712-14 

alternate angles, 398 
angles,267-73,275, 599-613, 728 

alternate, 398 
between lines and planes, 602 
between two lines, 599---602 
between two planes, 603--4 
compound, cosines, 398-9 
included, 416 
non-acute, trigonometric ratios, 

390 
non-included, 419 
and radians, 394-5 
special, trigonometric ratios, 395 

anti-differentiation, integration as, 
344-51 

antiderivatives, finding, 458-9 
Appel, Kenneth Ira (b.1932), 277 
Archimedes of Samas (287-212 

BC), 343 
arcs,267-73,275, 730 
area,267-73,275, 732--4 

between curves, 366-8 
between graphs, 355-7, 379 
circles, 730, 733 
irregular shapes, 357---65 
and kinematics, 369-71 
kites, 733 
parallelograms, 732 
rectangles, 732 
sectors, 269-72 
squares, 732 
trapeziums, 733 
triangles, 423-5, 431, 732 

see also surface area 
areas of revolution, 483-8 
Argand, Jean-Robert (1768-1822), 

107 
Argand diagrams, 107, 630 
arguments, of functions, 51, 92 
arithmetic progressions, 10 
arithmetic sequences, 10-14 
arithmetic series, 10-14 

sum, 12-14 
Arnheim, Rudolf (1904-2007), 432 
arrangements, 33-7 
arrowheads, 729 
art, mathematics in, 493 
Aryabhatta (476-550), 386 
associative law, 697 
associative property, 688 
assumptions, 432 
asymptotes, 59, 175-6 

and continuity, 170-3 
horizontal, 173-5 
vertical, 170 

authenticity, in explorations, 666 
average rates of change, 181-3 
average values, 498 
averages, 288-91, 750-1 
axioms, 617 

complex numbers, 115, 161 
of fields, 115 
probability, 306 
vs. truth, 47 

axis symmetry, 79-83 

Babylonians, 100, 140 
bar charts, 745---6 
Baranger, Michel, 381 
base vectors, 569 
bases, and logarithms, 249-58 
Bayes, Thomas (c.1701-1761), 329 
Bayes' theorem, 326---33, 339, 552 
BEDMAS rule, 673 
BEMDAS rule, 673 
Bernoulli, Jacob (1654-1705), 230, 

503 
Bernoulli experiments, 504 
Bezout, Etienne (1730-83), 126 
BIDMAS rule, 673 
bimodal data, 288 
binomial distributions, 503-13, 551 

parameters, 507-13 
binomial experiments, 504 
binomial theorem, 38--43, 45 
binomial variables, parameters, 

509-11
binomials, 698 
birthday problem, 341 

BODMAS rule, 673 
Bohr, Niels Henrik David 

(1885-1962), 230 
BOMDAS rule, 673 
Boole, George (1815---64), 231 
Bortkiewicz, Ladislaus Josephovich 

(1868-1931), 518 
brackets, expanding, 697-702 
Briggs, Henry (1561-1630), 250 
Briggs logarithm tables, 249-50 

calculations, 673--4 
calculus 

and chaos, 381 
discovery of, 231 
evolution, 342-81 
fundamental theorem of, 357, 

378,459-60 
integral, 343 
power of, 434-93 
see also differential calculus; 

differentiation; integration 
calculus wars, 380 
Cardano, Gerolamo (1501-76), 

106 
Cartesian coordinates, 738 

and polar coordinates, 635-6 
Cartesian equations, 580, 623 

of planes, 596---8 
Cartesian form, 649 

and polar form, 635-6, 657 
Cauchy, Augustin-Louis 

(1789-1857), 357 
Cayley, Arthur (1821-95), 563 
CDFs see cumulative distribution 

functions (CDFs) 
central tendency, measures of, 

288-91, 338, 750-1
certain events, 306 
chain rule, 191-3, 227 
Chaitin, Gregory John (b.194 7), 

165 
change, rates of, trigonometric 

expressions, 450-5 
chaos 

calculus and, 381 
paths of, 654 

charts 
bar, 745-6 
control, 495 
pie, 746-7 
tally, 282 
see also diagrams; graphs 

chords, 730 
Chu Shih-Chieh (fl. 1270-1330), 38 
Chung, Fan (b.1949), 33 

Subject index 



circles 
area, 730, 733 
definitions, 730-1 
properties, 730-1 
and trigonometric ratios, 389-97 
unit, 389-97 

circumference, 730, 731 
co-function identities, 393, 429 
coefficient patterns, 613 
collinear vectors, 569-71, 621 

in three-dimensional space, 
577-9

column vectors, 83 
combinations, 34 

linear, 119,563 
common difference, 10 
common fractions, 678 
common ratios, 15 
communication, in explorations, 

661-2
commutative law, 697 
commutative property, 688 
complements, 694 
completing the square, 702--4 

quadratic equations, 98-101, 
716-17

complex coefficients, linear 
equations with, solving, 
153-8

complex numbers 
addition, I 09 

geometrical meaning of, 630-2 
approaches 

algebraic, 106---7 
geometric, 107-8 

axioms, 115, 161 
conjugate, 112 

polar form, 637, 657 
division, 112-15 

polar form, 641-2 
field of, 115 
imaginary parts, 106 
introduction, 97-109 
modulus, I 08-9 
modulus-argument form, 636, 657 

operations, 638--42 
multiplication, 110-11, 633,657 

by real numbers, 631, 637-8, 
657 

operations with, 109-18, 161 
polar form, 633-8, 641-2, 657 
powers, 116---18, 643-9 
properties, 116 
real parts, 106 
reciprocals, polar form, 641 
roots, 116-18, 643-9, 657 
subtraction, I 09 
transformations, 632-3, 656 
as vectors, 630-3, 656 

complex plane, 630-1, 633-8 
components, 563 
composite functions, 73 

Subject index 

compound angle identities, 
398--400,430 

compound angles, cosine ratio, 
398-9

compound interest, 243 
concavity, points of, 205-7 
conditional probability, 312-17, 339 
cones 

surface area, 736 
volume, 736 

congruence, 722--4 
conjectures, 4, 24-5 
conjugate 

of complex numbers, 112 
polar form, 637 

opposite, of complex numbers, 
637,657 

conjugate root theorem, 133-5 
consistency, in explorations, 668 
constant functions, 65, 120 

derivatives, 189 
constant multiples, of functions, 

190 
constants, and variance, 298 
context, 51 
continuity, 168-80 

and asymptotes, 170-3 
continuous data, 280-1, 750 
continuous functions, 171, 226 
continuous random variables, 

520-31, 551
parameters, 522-7 
probability density functions, 522 

control charts, 495 
control limits 

lower, 495 
upper, 495 

convergence, 168-80 
of sequences, 178-9 
of series, 179-80, 227 

convergent sequences, 178 
convergent series, 18-21, 179-80 
coordinate geometry, 738--45 

three-dimensional, and vector 
algebra, 573--4 

coordinates, 344, 738-9 
see also Cartesian coordinates; 

polar coordinates 
cosine functions 

integration by parts, 470-1 
inverse, 410 

cosine ratio, 384, 429 
compound angles, 398-9 
exact values, 396---7, 429 

cosine rule, 415-18, 431 
cotangent identities, 429 
counting methods, 31-7, 45 

and probability, 304-6 
Cresswell, Clio, 545 
cross product 

properties, 593 
vectors, 592-6, 624-5 

cubic equations, Viete's formulae, 162 

cubic functions, 121 
cubic polynomials, 208 
cubics, parameters, 122 
cumulative distribution functions 

(CDFs), 501-3 
and probabilities, 527-31 

cumulative frequency, 284-5 
cumulative frequency diagrams, 

285 
curves 

areas between, 366-8 
gradients of, 441-2 
see also normal curves 

cylinders 
surface area, 735 
volume, 735 

dal Ferro, Scipione (1465-1526), 
106 

d'Alembert, Jean-Baptiste le Rand 
(1717-83), 627 

data 
analysis, 749-53 
bimodal, 288 
continuous, 280-1, 750 
discrete, 280-1, 749 
and information, 341 
qualitative, 280 
quantitative, 280 
see also statistical data 

data fitting, sine functions, 406---8 
De Moivre, Abraham (1667-1754), 

532,645 
De Moivre's theorem, 643-9, 657 
decagons, 729 
decimal fractions, 678 
decimal places, 688 
decimals 

and fractions, 678-80 
recurring, 679 
terminating, 679 

decisions, 552-3 
decomposition, unique, 126---7, 162 
definite integrals, 459-61, 491 

geometrical significance of, 
355-76

and integration by substitution, 
463-5

properties, 353-5 
definite integration, 352-5, 378 
definitions, equivalence of, 590-1 
degrees, and radians, 268 
dependent variables, SO 
derivatives, 184 

constant functions, 189 
exponential functions, 261-6 
of functions, 180-9, 227 
and functions, relationships, 

205-8
graphical meaning of, 199-203 
inverse trigonometric functions, 

442-3,490
logarithmic functions, 261-6 



trigonometric functions, 436--49, 
490 

see also higher derivatives 
Descartes, Rene (1596-1650), 106, 

140,344,563,738 
Descartes' rule of signs, 140 
diagrams 

Argand, 107, 630 
cumulative frequency, 285 
phasor, 638 
polar area, 634 
probability tree, 321-6 
stem and leaf, 748-9 
Venn, 302--4, 313 
see also charts; graphs 

diameters, 730 
dice problems, 299 
difference 

common, 10 
of functions, 190-1 

difference of two squares, 699 
factorization, 701-2 

differential calculus 
applications 

economics, 211-15, 229 
kinematics, 208-11, 229 

differentiation, 180 
implicit, 444 
of implicit functions, 218-20, 

229 
rules, 189-205, 227 

dilations, 84-9 
horizontal, 85 
vertical, 85 

directed line segments, 556 
direction, vectors, 556-7 
discontinuous functions, 171, 226 
discrete data, 280-1, 749 
discrete random variables, 496-503, 

520-1
parameters, 498-501 
probability distribution functions, 

496-8
discrete values, 496 
discriminants, 160 

of quadratic equations, 102--4 
disjoint sets, 307, 693 
dispersion, measures of, 291-8, 

338, 752-3 
displacement, 557, 613, 620 
displacement vectors, 622 

in three-dimensional space, 
574-5

distances, 599-613 
between points, 740 

distribution functions, 501 
distributions, 495 

Gaussian, 532 
random, 496-503 
see also binomial distributions; 

normal distributions 
Poisson distributions 

distributive law, 697 

distributive property, 688 
divergent sequences, 178 
divergent series, 18-21, 179-80 
division 

complex numbers, 112-15 
polar form, 641-2 

polynomials, 125-6 
domains 

of functions, 50 
restriction, 52 

dot product, 584 
double angle identities, 401-2, 430 
doughnuts, 435 

volume, 488 
dynamical systems, 654 

e (constant), 245, 276 
see also Euler's number 

economics, differential calculus, 
211-15, 229

Eddington, Sir Arthur Stanley 
(1882-1944), 165 

Egypt, fractions, 679 
Einstein, Albert (1879-1955), 276, 

433 
elements, 691 
elimination method, simultaneous 

linear equations, 708-9 
empty sets, 691 
enlargements, 721 
equal geometric vectors, 557-8 
equations 

cubic, 162 
exponential, 255-8 
logarithmic, 255-8 
of normals, 188, 444-6 
with rational coefficients, 714 
recursive, 10 
systems of, solving, 153-8 
of tangents, 188, 444-6 
see also Cartesian equations; 

linear equations; parametric 
equations; polynomial 
equations; quadratic 
equations; trigonometric 
equations; vector equations 

equations of lines, 622-3, 744-5 
gradient formula, 744-5 
and vectors, 571-83 

equilateral triangles, 729 
equivalence, of definitions, 

590-1
equivalent fractions, 679 
equivalent geometric vectors, 

557-8
Eratosthenes of Cyrene (c.276 

BC-c.195 BC), 432 
Erdos, Paul (1913-96), 307 
Escher, Maurits Cornelis 

(1898-1972), 277 
estimation, 688-90 
Euler, Leonard (1707-83), 5, 51, 

106,276,627,731 

Euler's number, 243-7 
alternative approaches, 248-9 

even functions, 67-8, 71, 363, 
429 

events, 299, 339 
certain, 306 
impossible, 306 
independent, 318-21,339, 513 
mutually exclusive, 303--4 

exhaustion, method of, 344 
expected values, 551 
experimental probability, 308-12 
experiments, 299, 339 

Bernoulli, 504 
binomial, 504 
random, 299, 339 

explorations, 660-71 
academic honesty, 666-7 
aims, 662 
authenticity, 666 
conclusions, 662 
consistency in, 668 
internal assessment criteria, 

661-5
introductions, 662 
malpractice, 667 
marking, 666 
overview, 660-1 
rationale, 662 
record keeping, 667-8 
sources, acknowledgement, 66 7 
starting, 669 
topic choice, 668 
use of mathematics in, 665 

exponential equations, 255-8 
exponential expressions, 709-10 
exponential functions, 243-7 

derivatives, 261-6 
integration, 349-51 
integration by parts, 470-1 
and invariance, 248-9 
inverse, 259-60 
properties, 245-7, 275 

exponents 
properties, 238--43, 275 
use of term, 709 
see also indices; powers 

expressions 
exponential, 709-10 
radical, substitution in, 472-6 
with roots, 674-6 
trigonometric, rates of change, 

450-5
see also quadratic expressions 

factor theorem, 127, 163 
factorial notation, 31-2 
factorization, 697-702 

difference of two squares, 701-2 
quadratic equations, 99-101, 

715 
quadratic expressions, 700-1 

factors, 677-8 

Subject index 



multiplicities, 131 
failures, trials, 503 
Fermat, Pierre de(c.1601-1665), 

3,299 
Fermat's Last Theorem, 3-4 
Feynman, Richard (1918-88), 95 
Fibonacci, Leonardo of Pisa 

(c.1170-c. 1250), 97 
fields 

axioms of, 115 
of complex numbers, 115 
of real numbers, 115 

financial problems, and indices, 
242-3

finite, vs. infinite, 230 
finite planes, 728 
finite series, 5 
first derivative test, 201-3, 228 
fluxions, 645 
Forbes, Bertie Charles (1880-1954), 

553 
formalism, 659 

inspiration and, 554-627 
formulae, 704-6 

gradient, 744-5 
Leibniz's, 198 
quadratic, 97-101, 160 
rearranging, 704--5 
recursive, 4 7 5---6 
reduction, 466 
substituting into, 705--6 
total probability, 326, 339 
Viete's, 136, 137, 162 

four-color problem, 277 
four-dimensional numbers, 595 
Fourier series, 433 
fractals, 381,492,629 
fractions 

common, 678 
decimal, 678 
and decimals, 678-80 
equivalent, 679 
improper, 6 79 
proper, 679 
see also algebraic fractions 

frequency 
cumulative, 284--5 
relative, 309 

frequency density, 284, 285 
frequency diagrams, cumulative, 

285 
frequency polygons, 284 
frequency tables, grouped, 282, 338 
FTA (fundamental theorem of 

algebra), 131-3, 163, 630 
FTC (fundamental theorem of 

calculus), 357, 378, 459--60 
functions 

absolute-value, 57-8 
arguments of, 51, 92 
classification of, 65-9 
composite, 73 
composition of, 72 

Subject index 

constant multiples of, 190 
continuous, 171,226 
cubic, 121 
and derivatives, relationships, 

205-8
derivatives of, 180--9, 227 
difference of, 190--1 
differentiable, I 84, 186, 227 
discontinuous, 171, 226 
distribution, 501 
domains of, 50 
even,67-8, 71,363,429 
graphs of, transformations, 79-89 
identity, 74--5 
implicit, differentiation, 218-20, 

229 
invertible, 76 
linear, 120 
many-to-one, 65--6 
non-differentiable, 188 
odd,68, 71,363,429 
one-to-one, 66 
operations with, 70-8 
pathological, 433 
piecewise defined, 63-5 
quartic, 122 
quintic, 122 
radical, 56 
range of, 50 
rational, 59-63 
recursive, 234-8, 274 
and relations, 50--3 
self-inverse, 78 
special, graphs, 54--69 
sum, 190-1 
Weierstrass, 433 
see also constant functions; 

cumulative distribution 
functions (CDFs); 
exponential functions; 
inverse functions; 
logarithmic functions; 
polynomial functions; 
probability density functions 

(PDFs); probability 
distribution functions 
(PDFs); quadratic functions; 
trigonometric functions 

fundamental theorem of algebra 
(PTA), 131-3, 163, 630 

fundamental theorem of calculus, 
357, 378,459-60 

future, predicting, 553 

Gabriel's Horn, 493 
Galileo Galilei (1564--1642), 49, 

493 
Gallup, George Horace (1901-84), 

340 
Galton, Francis (1822-1911), 504 
Galton Board, 504--5 
Gauss, Carl Friedrich (1777-1855), 

12, 107, 156, 532 

Gaussian distributions, 532 
Gaussian planes, 107 
general quadratic function, I 02 
genetic fingerprinting, 553 
geometric progressions, 15 

problem solving, 22-4 
geometric sequences, 15-24 
geometric series, 15-24 

sum, 17 
geometric transformations, 

720--2 
geometric vectors 

equal, 557-8 
equivalent, 557-8 
operations, 556--62, 620 

geometry, 719-45 
vector, 555 
see also coordinate geometry 

Germain, Marie-Sophie 
(1776-1831), 46 

Girard, Albert (1595-1632), 136 
Godel, Kurt Friedrich (1906-78), 

165,433 
golden ratio, 233-4 
gradient formula, equations of 

lines, 744-5 
gradient function, 184, 227 
gradients, 184 

of curves, 441-2 
finding, 742-3 
negative, 199-200, 201, 741-2 
parallel lines, 743 
perpendicular lines, 743 
positive, 199-200, 201, 741-2 
straight lines, 741-2 

Graham, Fan Rong K Chung 
(b.1949), 33 

graphs 
areas between, 355-7, 379 
of functions, transformations, 

79-89
polynomial functions, 118-31 
of polynomials, 177 
quadratic, 55 
special functions, 54--69 
statistical, 745-9 
trigonometric functions, 403-9, 

430 
see also charts; diagrams 

grouped frequency tables, 282, 338 
Guthrie, Francis (1831-99), 277 

Haken, Wolfgang (b.1928), 277 
Hamilton, Sir William Rowan 

(1805-65),595,659 
harmonic series, 5 
HCF (highest common factor), 678 
height 

perpendicular, 7 36 
slanted, 736 

heptagonal numbers, 9 
Hermite, Charles (1822-1901), 

245 



Hero(n) of Alexandria (c.10-c.62), 
106 

Hersh, Reuben (b.1927), 659 
hexagonal numbers, 9 
hexagonal prisms, 734 
hexagons, 729 
higher derivatives, 197-8, 228 

trigonometric functions, 447-9 
higher dimensions, 659 
highest common factor (HCF), 678 
Hilbert, David (1862-1943), 4 7 
Hipparchus (c. 190 Bc-c.120Bc), 386 
histograms, 282 
horizontal asymptotes, 173-5 
horizontal dilations, 85 
horizontal translations, 83 
Horner, William George 

(1786-1837), 127 
Huygens, Christiaan (1629-95), 299 
hyperbolas, 59 
hyperbolic space, 659 
hypotenuse, 719 
hypotheses, 327, 339 

ideas, infinity of, 230-1 
identities 

co-function, 393, 429 
compound angle, 398-400, 430 
cotangent, 429 
double angle, 401-2, 430 
Pythagorean, 393, 430 
tangent, 393,399,429 
trigonometric, 393, 399 

identity functions, 74 
imaginary parts, l 06 
imaginary units, 106 
implicit differentiation, 444 
implicit functions, differentiation, 

218-20,229
impossible events, 306 
improper fractions, 679 
included angles, 416 
Incompleteness Theorem, 165 
increments, 168 
indefinite integrals, 344-5 
independent events,318-21,339,513 
independent variables, 50 
indices 

and financial problems, 242-3 
and music, 241 
see also exponents; powers 

induction, mathematical, 25-31, 45 
inequalities 

properties, 710-11 
quadratic, 717-18 
and sets, 695-6 
solving, 710-11 
see also polynomial inequalities 

infinite, vs. finite, 230 
infinite planes, 728 
infinite series, 5 
infinite sums, 18 
infinity, 6 

of ideas, 230-1 

limits to, 173-5 
inflexions, 119 

points of, 201, 205-7, 228 
information, and data, 341 
ingenuity, 432-3 
initial points, 557, 620 
inner product, 584 
inscribed polygons, 179 
inspiration, 626-7 

and formalism, 554-627 
instantaneous acceleration, 209-10 
instantaneous velocity, 186, 209-10 
integer zero theorem, 140-1, I 63 
integers, 686 
integral calculus, 343 
integrals 

indefinite, 344-5 
special, 468-72 
trigonometric functions, 455-8, 

490 
see also definite integrals 

integrands, 345 
integration, 378 

as anti-differentiation, 344-51 
by parts, 466-72, 491 

multiple applications, 4 71-2 
by substitution, 461-5 
definite, 352-5, 378 
exponential functions, 349-51 
logarithmic functions, 351 
trigonometric functions, 455-61 

interest, compound, 243 
internal assessment criteria 

communication, 661-2 
explorations, 661-5 
mathematical presentation, 

662-3
personal engagement, 663-4 
reflection, 664 
use of mathematics, 665 

interquartile range (IQR), 292, 752 
intersections, 599-613, 692-5 

between lines and planes, 604-5 
of three planes, 610-13 
of two lines, 606-7 
of two planes, 607-9 

intuition, 659 
and luck,432-3 
and probability, 341 

invariance, and exponential 
functions, 248-9 

inverse cosine functions, 410 
inverse functions, 74-5 

exponential, 259-60 
graphical properties, 75-8 

inverse sine functions, 409-10 
inverse tangent functions, 4 I 0- I 1 
inverse trigonometric functions, 

409-12
derivatives, 442-3, 490 

IQR (interquartile range), 292, 752 
irrational numbers, 674, 679, 686 
irregular quadrilaterals, 729 

irregular shapes, area, 357-65 
isosceles triangles, 729 

Jeffreys, Sir Alec John (b.1950), 
553 

Joukowski aerofoil, 653 
Julia, Gaston (1893-1978), 654 
Julia set, 654 

Kandinsky, Wassily (1866-1944), 
493 

Kepler, Johannes (1571-1630), 375 
kinematics, 379 

area and, 369-71 
differential calculus, 208-11, 229 

kites, 729 
area, 733 

Kolmogorov, Andrey Nikolaevich 
(1903-87), 306 

Kramp, Christian (1760-1826), 31 

Lang, Andrew (1844-1912), 340 
language 

evolution, 94 
mathematics as, 48-95 
symbolic, 49-50 

Laplace, Pierre-Simon, marquis de 
(1749-1827), 300 

LCL (lower control limit), 495 
LCM (lowest common multiple), 

677-8
legal system, statistics and, 552 
Leibniz, Gottfried Wilhelm 

(1646-1716), 51,180,208, 
231,380 

Leibniz's formulae, 198 
Leonardo da Vinci (1452-1519), 

684 
Leonardo de Pisa (c. l l 70-c.1250), 

97 
limits, 168-80 

control, 495 
finding algebraically, I 76-7 
properties, 226-7 
to infinity, 173-5 
trigonometric, 436-7 

Lindemann, Carl Louis Ferdinand 
von (1852-1932), 245 

line segments, directed, 556 
linear combinations, 119, 563 
linear equations 

with complex coefficients, 
solving, 153-8 

solving, 706-7 
see also simultaneous linear 

equations 
linear functions, 120 
linearity, 187-8 
lines, 728 

and planes 
angles between, 602 
intersections, 604-5 

skew, 606 

Subject index 



two 
angles between, 599---602 
intersections, 606--7 

in two dimensions, 580-1 
vector equations of, 579, 623 
see also equations of lines; parallel 

lines; perpendicular lines; 
straight lines 

Liouville, Joseph (1809-82), 245 
loci, 569 
logarithm tables 

Briggs, 249-50 
Napier, 249-50 

logarithmic equations, 255-8 
logarithmic functions 

behavior, 258---61 
derivatives, 261---6 
integration, 351 
properties, 275 

logarithms 
and bases, 249-58 
changing base of, 253-4 
definition, 250 
properties, 238-43, 251-3, 275 

lower control limit (LCL), 495 
lower quartiles, 292, 752 
lowest common multiple (LCM), 

677-8
lowest terms, 6 79 
luck, and intuition, 432-3 

magnitudes 
vectors, 556-7, 567-9, 593-5 

in three-dimensional space, 
576 

major segments, 730 
malpractice, in explorations, 667 
Mandelbrot, Benoit (1924-2010), 

492,629,654 
Mandelbrot set, 629, 654 
many-to-one functions, 65-6 
mappings, 696--7 
mathematical induction, 25-31, 45 
Mathematical Intelligencer, The, 658 
mathematical paradoxes, 493 
mathematical presentation, in 

explorations, 662-3 
mathematics 

abstract nature of, 626 
aesthetics in, 232-77 
ancient, and modern methods, 

382-433
applications, 626, 627 
in art, 493 
beauty in,276--7,658 
changing structure of, 658-9 
communicating, 626--7 
connections, 650-4 
invention vs. discovery, 164-5 
as a language, 48-95 
long journey of, 96-165 
multiple perspectives in, 628-59 
in nature, 492-3 
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as science of patterns, 2-47 
use of, in explorations, 665 

maxima, 228 
local, 119, 199-200 
problems, 480-2 
tests for, 204-5 

mean,289,498,509,551, 750-1 
measures 

of central tendency, 288-91, 338, 
750-1

of dispersion, 291-8, 338, 752-3 
median, 289-90, 338, 501, 507, 

551, 750-1 
midpoints, 739-40 
mind maps, 670-1 
minima, 228 

local, 119, 199-200 
problems, 480-2 
tests for, 204-5 

minor segments, 730 
mixed numbers, 679 
Mobius transformations, 653 
mode,288-9, 338,498,507,551, 

750-1
modeling 

applications, 480-8 
and optimization, 215-17 
and problem-solving, 544-7, 

613-17
randomness, 494-553 
and real world, 166--231 

models, abstract, 167 
modern methods, and ancient 

mathematics, 382-433 
modulus, 57 

complex numbers, 108-9 
modulus-argument form, 636, 

638-42,657
Monty Hall dilemma, 312, 317 
multiples, 677-8 

constant, of functions, 190 
multiplication 

complex numbers, 110-11, 633, 
657 

by real numbers, 631, 637-8, 
657 

see also products; scalar 
multiplication 

multiplicative probability law, 313, 
339 

multiplicities, factors, 131 
music, and indices, 241 
mutually exclusive events, 303-4 

Napier, John (1550-1617), 250 
Napier logarithm tables, 249-50 
Napoleon Bonaparte (1769-1821), 

552 
nature, mathematics in, 492-3 
negative gradients, 199-200, 201, 

741-2
negative vectors, 557 

Newton, Isaac (1642-1727), 180, 
208,231,380,627,645 

Nightingale, Florence (1820-1910), 
634 

non-included angles, 419 
non-trivial vectors, 558 
normal curves, 532 

properties, 533 
normal distributions, 532-44, 551 

probability distribution functions, 
532 

standard, 539-40 
normal variables, 532 

probabilities of, 534-8 
standardized, 540-4 

normals, equations of, 188, 444---6 
notation 

factorial, 31-2 
set builder, 692 
sigma, 5-9 

null vectors, 558, 620 
number lines 

real, 695 
and sets, 695-6 

number patterns, 5-9 
number systems, 686--8 
numbers, 673-97 

curious, 4 
four-dimensional, 595 
heptagonal, 9 
hexagonal, 9 
history of, 164-5 
irrational, 674, 679, 686 
mixed, 679 
pentagonal, 9 
rational, 686 
square, 9 
transcendental, 245, 276 
triangular, 8 
see also complex numbers; Euler's 

number; real numbers 
Nunes, Pedro (1502-78), 383 

octagons, 729 
octonions, 164 
odd functions, 68, 71, 363, 429 
one-to-one functions, 66 
operations 

complex numbers, 109-18 
with complex numbers, 161 
complex numbers, modulus-

argument form, 638-42 
with functions, 70-8 
geometric vectors, 556---62 
polynomial functions, 118-31 
polynomials, 123-31 

opposite vectors, 557 
optimization, and modeling, 

215-17
origins, 563 
orthogonal, use of term, 584, 624 

parabolas, parameters, 121 



paradoxes 
mathematical, 493 
solving, 230 

parallel lines, 743-4 
gradients, 743 

parallelogram law, 631 
parallelograms, 729 

area, 732 
parameters, 54, 505 

binomial distributions, 507-13 
binomial variables, 509-11 
continuous random variables, 

522-7
discrete random variables, 

498-501
Poisson distributions, 516-1 7 

parametric equations, 580, 623 
of planes, 596-8 

parts, integration by, 466-72, 491 
Pascal, Blaise (1623-62), 38, 299 
Pascal's triangle, 505 
pathological functions, 433 
patterns, 276 

coefficient, 613 
mathematics as science of, 2-47

number, 5-9 
random numerical, 234 

PDFs see probability density 
functions (PDFs); 
probability distribution 
functions (PDFs) 

Pell, John (1611-85), 56 
PEMDAS rule, 673 
pentagonal numbers, 9 
pentagons, 729 
percentage decrease, 681-3 
percentage increase, 681-3 
percentages, 680-3 
perception, 433 
Perelman, Grigori Yakovlevich 

(b.1966), 652 
perimeters, 731-2 

sectors, 269-72 
permutations, 33 
perpendicular height, 736 
perpendicular lines, 743-4 

gradients, 743 
personal engagement, in 

explorations, 663-4

phasor diagrams, 638 
pi (p), 245, 679 
pictograms, 747-8 
pie charts, 746-7 
piecewise defined functions, 63-5 
plagiarism, 667 
planes, 728 

angles between two, 603-4 
Cartesian equations of, 596-8 
complex, 630-1, 633-8 
finite, 728 
Gaussian, 107 
infinite, 728 
and lines 

angles between, 602 
intersections, 604-5 

parametric equations of, 596-8 
and points, distance between, 605 
three, intersections, 610-I 3 
two, intersections, 607-9 
vector equations of, 596-9, 625 

Poincare, Jules Henri (1854-1912), 
652 

Poincare conjecture, 652 
points, 622-3, 728 

of concavity, 205-7 
distance between, 740 

in three-dimensional space, 
576 

of inflexion,201,205-7,228 
initial, 557, 620 
and planes, distance between, 605 
of tangency, 731 
terminal, 557, 620 
in three-dimensional space, 

574-5 
and vectors, 571-83 
see also stationary points 

Poisson distributions, 513-20, 551 
parameters, 516-I 7 
properties, 517-20 

Poisson, Simeon-Denis (1781-
1840), 513 

polar area diagrams, 634 
polar coordinates, 633 

and Cartesian coordinates, 635-6 
polar form, 633-8, 641-2, 657 

and Cartesian form, 635-6, 657 
Pollock, Paul Jackson (1912-56), 

493 
P6lya, George (1887-1985), 321 
polygons, 729 

frequency, 284 
inscribed, 179 
regular, 558 

polynomial equations, 140-53 
solving, 144-6 

polynomial functions 
graphs, 118-31 
operations, 118-31 
product, 131-40 
sum, 131-40 
zeros, 131-40 

polynomial inequalities, 140-53 
solving, 146-53 

polynomial remainder theorem, 
126-30

polynomial roots 
products, 136-40 
sum, 136-40 

polynomials, 119-31 
cubic, 208 
degree of, 162 
division, 125-6 
graphs of, 177 
higher-degree, 123 
integration by parts, 469-70 

operations, 123-31 
quartic, coefficients, 136 
theorems, 140-4 
of third degree, 136 
use of term, 119 
Viete's formulae, 162 
zero, 120 

populations, and samples 
compared, 281-6, 338 

position vectors, 557, 620, 622 
in three-dimensional space, 

574-5
positive gradients, 199-200, 201, 

741-2
positive integer powers, 189 
powers 

complex numbers, 116-18, 643-9 
positive integer, 189 
see also exponents; indices 

practice papers, 754-9 
predictions, 553 
primes, 46-7, 677-8 
prior learning, 672-753 
prisms 

hexagonal, 734 
surface area, 735 
triangular, 734 
volume, 735 

probability, 278-341 
axioms, 306 
conditional, 312-17, 339 
and counting methods, 304-6 
and cumulative distribution 

functions, 527-31 
experimental, 308-12 
and intuition, 341 
of normal variables, 534-8 
properties, 306-8, 339 
and statistics, 341 
theoretical, 299-306, 339 

probability density functions 
(PDFs), 551 

continuous random variables, 
522 

probability distribution functions 
(PDFs), 498-9, 513, 551 

discrete random variables, 496-8 
normal distributions, 532 

probability tree diagrams, 321-6 
problem-solving, and modeling, 

544-7, 613-17
product rule, 193-5, 228 
products 

dot, 584 
inner, 584 
polynomial functions, 131-40 
polynomial roots, 136-40 
quadratic equation roots, 104-5 
resulting in quadratic 

expressions, 698-9 
scalar, 583-92 
see also cross product; 

multiplication; scalar 
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products (continuer!) 

product; vector products 
progressions 

arithmetic, 10 
see also geometric progressions 

proofs, 4, 24-5 
formal, 626-7 

proper fractions, 679 
proper subsets, 693 
proportion, 683-5 
Ptolemy (c.90-168 cE), 386 
pure mathematics, applications, 231 
pyramids 

surface area, 735-6 
volume, 735--6 

Pythagoras (569-500 Bc), 719 
Pythagoras' theorem, 719-20 
Pythagorean identities, 393, 430 

quadratic equations 
discriminants of, I 02-4 
roots, 100, 102-3 

sum and product, 104-5 
solutions, 100 
solving 

by completing the square, 
98-101, 716-17

by factorization, 99-101, 715 
using quadratic formula, 

97-101
Viete's formulae, 162 

quadratic expressions 
factorization, 700-1 
products resulting in, 698-9 

quadratic formula, 97-10 l, 160 
quadratic functions, 120 

general, 102 
quadratic graphs, 55 
quadratic inequalities, 717-18 
quadratic sequences, 8 
quadratic trigonometric equations, 

413-14
quadrilaterals, 729 

irregular, 729 
qualitative data, 280 
quantitative data, 280 
quartic functions, 122 
quartic polynomials, coefficients, 

136 
quartiles, 291-3 

lower, 292, 752 
upper, 292, 752 

quaternions, 595, 659 
quintic functions, 122 
quotient rule, 195-7, 228 

radians, 26 7 
and angles, 394-5 
and degrees, 268 

radical expressions, substitution in, 
472-6

radical functions, 56 
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radicals, 6 7 4 
radii, 730 
random distributions, 496--503 
rnndom expe1·iments, 299, 339 
random numerical patterns, 234 
random samples, 281 
random variables, 495, 551 

see also continuous random 
variables; discrete random 
variables 

randomness 
exploring, 278-341 
modeling, 494-553 

range, 291, 752 
of functions, 50 
interquartile, 292, 752 

rates, related, 221-4 
rates of change 

average, 181-3 
trigonometric expressions, 450-5 

rational coefficients, equations 
with, 714 

rational functions, 59--63 
rational numbers, 686 
rational zero theorem, 140, 142-3, 

163 
ratios, 683-5 

common, 15 
golden, 233-4 
unitary, 683 
see also trigonometric ratios 

real number lines, 695 
real numbers 

field of, 115 
multiplication of complex 

numbers by, 631, 637-8, 657 
properties, 688 

real parts, 106 
reasoning, 4 7 
reciprocal trigonometric functions, 

439 
reciprocal trigonometric ratios, 

391-2
reciprocals, complex numbers, 

polar form, 641 
record keeping, explorations, 667-8 
rectangles, 729 

area, 732 
recurring decimals, 679 
recursive equations, 10 
recursive formulae, 475--6 
recursive functions, 234-8, 274 
reduction formulae, 466 
reflections, 720 
regular polygons, 558 
related rates, 221-4 
relations 

and functions, 50-3 
and mappings, 696 

relationships, functions and 
derivatives, 205-8 

relative frequency, 309 
remainder theorem, 162 

polynomial, 126--30 
revolution 

areas of, 483-8 
solids of, volume, 371-5, 379 
volumes of, 483-8 

Rhind Mathematical Papyrus, 56, 
679 

rhombuses, 729 
Riemann, Georg Friedrich 

Bernhard (1826--66), 47, 
358,653 

Riemann hypothesis, 4 7 
Riemann sums, 358 
Riemann surface, 653 
right-angled triangles, 729 

trigonometric ratios, 384-9 
roots 

complex numbers, 116--18, 
643-9,657

expressions with, 674--6 
quadratic equations, 100, 102-3 

sum and product, 104-5 
see also polynomial roots 

roots of unity 
complex nth, 647 
properties, 649 

rotations, 720 
rounding, 688-90 
rules 

chain, 191-3, 227 
differentiation, 189-205, 227 
product, 193-5, 228 
quotient, 195-7, 228 
of surds, 674 

Russell, Bertrand (1872-1970), 381 

sample space, 299 
samples 

and populations compared, 
281-6, 338

random, 281 
scalar multiplication, 560 

properties, 561, 620 
in three-dimensional space, 

575-6 
scalar product, 583-92, 624 

algebraic definitions, 587-9 
of two vectors, 584-6 

scalars, 557 
scalene triangles, 729 
second derivative test, 204-5, 228 
sectors, 7 31 

area, 269-72 
perimeters, 269-72 

segments 
directed line, 556 
major, 730 
minor, 730 

self-inverse functions, 78 
semicircles, 731 
sequences, 5-9,45,237-8 

arithmetic, 10-14 
convergence of, 178-9 



convergent, 178 
divergent, 178 
geometric, 15-24 
quadratic, 8 
see also series 

series, 5-9, 45 
convergence of, 179-80, 227 
convergent, 18-21, 179-80 
divergent, 18-21, 179-80 
finite, 5 
Fourier, 433 
harmonic, 5 
infinite, 5 
see also arithmetic series; 

geometric series; sequences 
set builder notation, 692 
sets, 691-7 

disjoint, 307, 693 
elements, 691 
empty, 691 
and inequalities, 695-6 
and number lines, 695-6 
universal, 691 
see also subsets 

shapes 
irregular, area, 357---05 
two-dimensional, 729-30 
see also three-dimensional shapes 

Shewhart, Walter Andrew 
(1891-1967), 495 

SIDS (sudden infant death 
syndrome), 552 

Sierpinski, Waclaw Franciszek 
(1882-1969), 15 

Sierpinski's triangle, 15, 277, 381 
sigma (S), notation, 5-9 
significant figures, 688 
signs, Descartes' rule of, 140 
similar triangles, 725-6 
similarity, 721, 724--8 
simplest form, 674 
simultaneous linear equations, 708-9 

solving 
elimination method, 708-9 
substitution method, 708 

sine functions 
data fitting, 406-8 
integration by parts, 4 70-1 
inverse, 409-10 
properties, 406 

sine ratio, 384, 429 
exact values, 396-7,429 

sine rule, 418-23, 431 
ambiguities, 419-20 
and triangle inequality, 423 

skew lines, 606 
slanted height, 736 
small fixed intervals, 513 
solids of revolution, volume, 371-5, 

379 
sources, acknowledgement, 667 
space 

hyperbolic, 659 

sample, 299 
see also three-dimensional space 

speed, 613 
see also velocity 

spheres 
surface area, 735 
volume, 735 

square numbers, 9 
squares, 729 

area, 732 
see also completing the square; 

difference of two squares 
standard deviation, 295-8, 509 
standard form, 690--1 
standard normal distributions, 

539--40 
standardized normal variables, 540--4 
stationary points, 199 

see also maxima; minima 
statistical data 

classification, 280-7, 328 
representation, 280--7, 328 

statistical graphs, 745-9 
statistics, 278-341, 745-53 

issues, 340-1, 552-3 
and legal system, 552 
and probability, 341 

Stein, Gertrude (1874-1946), 552 
stem and leaf diagrams, 748-9 
straight lines, 728 

gradients, 741-2 
in three-dimensional space, 581-3 
in two dimensions, 579 

string theory, 164 
subsets, 692-5 

proper, 693 
substitution 

integration by, 461-5 
into formulae, 705-6 
in radical expressions, 472---o 
special, 472-9 
trigonometric, 476-9, 491 

substitution method, simultaneous 
linear equations, 708 

subtraction 
algebraic fractions, 712-14 
complex numbers, 109 

successes, trials, 503 
sudden infant death syndrome 

(SIDS), 552 
sum 

arithmetic series, 12-14 
functions, 190-1 
geometric series, 1 7 
polynomial functions, 131--40 
polynomial roots, 136-40 
quadratic equation roots, 104--5 
see also addition 

sums, infinite, 18 
surds, 674 
surface area 

cones, 736 
cylinders, 735 

prisms, 735 
pyramids, 735---o 
spheres, 735 
three-dimensional shapes, 734-8 

symbolic language, 49-50 
symmetry, axis, 79-83 

Tagg, Stephen K., 341 
tally charts, 282 
tangency, points of, 731 
tangent functions, inverse, 410-11 
tangent identities, 393, 399, 429 
tangent ratio, 384, 429 

exact values, 396---7, 429 
tangents, 731 

equations of, 188, 444---o 
Tartaglia, Niccolo Fontana 

(c.1499-1557), 106 
terminal points, 557, 620 
terminating decimals, 679 
terms, 5 

lowest, 679 
theorems, 24 

Bayes', 326-33, 339, 552 
binomial, 38--43, 45 
conjugate root, 133-5 
De Moivre's, 643-9, 657 
factor, 127, 163 
Fermat's Last Theorem, 3--4

fundamental theorem of algebra, 
131-3, 163, 630

fundamental theorem of 
calculus, 357, 378, 459---o0 

Incompleteness Theorem, 165 
integer zero, 140--1, 163 
polynomial remainder, 126---30 
polynomials, 140--4 
Pythagoras', 719-20 
rational zero, 140, 142-3, 163 
Viete's, 104 
see also remainder theorem 

theoretical probability, 299-306, 339 
three-dimensional coordinate 

geometry, and vector 
algebra, 573--4 

three-dimensional shapes 
surface area, 734--8 
volume, 734--8 

three-dimensional space 
collinear vectors in, 577-9 
displacement vectors in, 574--5 
distance between two points in, 

576 
points in, 574-5 
position vectors in, 574--5 
scalar multiplication in, 575---o 
scalar product in, 587-9 
straight lines in, 581-3 
unit vectors in, 577-9 
vector addition in, 575---o 
vector magnitudes in, 576 

tori, 435 
volume, 488 
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torque, 594 
Torricelli, Evangelista (1608--47), 493 
Torricelli's Trumpet, 493 
total probability formula, 326, 339 
transcendental numbers, 245, 276 
transformations, 61 

complex numbers, 632-3, 656 
geometric, 720-2 
of graphs of functions, 79-89 
Mobius, 653 

translations, 83-4, 720 
horizontal, 83 
vertical, 84 

trapeziums, 729 
area, 733 

tree diagrams, probability, 321---6 
trials, 299, 339 

failures, 503 
successes, 503 

triangle inequality, and sine rule, 423 
triangle law, 559, 620 
triangles, 729 

area,423-5,431, 732 
equilateral, 729 
isosceles, 729 
Pascal's, 505 
scalene, 729 
Sierpinski's, 15,277, 381 
similar, 725---6 
see also right-angled triangles 

triangular numbers, 8 
triangular prisms, 734 
trigonometric equations 

quadratic, 413-14 
simple, 412 
solving, 412-15 

trigonometric expressions, rates of 
change,450-5 

trigonometric functions 
derivatives, 436--49, 490 

higher, 447-9 
graphs, 403-9, 430 
integrals, 455-8, 490 
integration, 455---61 
inverse tangent, 410-11 
periodic, 403--4 
reciprocal, 439 
see also cosine functions; inverse 

trigonometric functions; sine 
functions 

trigonometric identities, 393, 399 
trigonometric limits, 436-7 
trigonometric ratios, 429 

non-acute angles, 390 
reciprocal, 391-2 
right-angled triangles, 384--9 
and special angles, 395 
and unit circle, 389-97 

trigonometric substitution, 476--9, 
491 

trigonometry, applications, 383--4 
truth 

axioms vs., 47 
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searching for, 46--7 
Turing, Alan Mathison (1912-54), 

24 
Turnbull, Herbe11 Westren 

(1885-1961), 276 
turning points see stationary points 
two dimensions 

lines in,580-1 
scalar product in, 587-9 
straight lines in, 5 79 
vector algebra in, 565-7 

two-dimensional shapes, 729-30 

UCL (upper control limit), 495 
unions, 307, 692-5 
unique decomposition, 126-7, 162 
unit circle, and trigonometric ratios, 

389-97
unit vectors, 563, 569-71, 621 

in three-dimensional space, 
577-9

unitary method, 685---6 
unitary ratios, 683 
units, imaginary, 106 
unity, complex nth roots of, 64 7 
universal sets, 691 
upper control limit (UCL), 495 
upper quartiles, 292, 752 

values 
absolute, 711-12 
average, 498 
discrete, 496 
expected, 551 

variables 
binomial, 509-11 
dependent, 50 
independent, 50 
see also normal variables; random 

variables 
variance, 295-8, 498, 509, 551 

and constants, 298 
vector addition 

properties, 559, 620 
in three-dimensional space, 575-6 

vector algebra, 555, 621 
introduction, 563-71 
and three-dimensional coordinate 

geometry, 573--4 
in two dimensions, 565-7 

vector equations 
of lines, 579, 623 
of planes, 596-9, 625 

vector geometry, 555 
vector products, 592, 624-5 

geometric interpretations, 594--5 
magnitudes, 593--4 

vectors, 556, 622-3 
axiomatic approach, 617 
base, 569 
column, 83 
complex numbers as, 630-3, 656 
cross product, 592-6, 624--5 

direction, 556--7 
and equations of lines, 571-83 
geometric, operations, 556---62, 

620 
magnitudes, 556--7, 567-9, 593-5 

in three-dimensional space, 576 
negative, 557 
non-trivial, 558 
null,558,620 
opposite, 557 
and points, 571-83 
two, scalar product of, 584--6 
zero, 558, 620 
see also collinear vectors; 

displacement vectors; 
geometric vectors; position 
vectors; unit vectors 

velocity, 613 
instantaneous, 186, 209-10 

Venn,John(1834-1923), 302 
Venn diagrams, 302--4, 313 
vertical asymptotes, 1 70 
vertical dilations, 85 
vertical line test, 52-3 
vertical translations, 84 
Viete, Fran�ois (1540-1603), 104 
Viete's formulae, 136, 137, 162 
Viete's theorems, 104 
volume 

cones, 736 
cylinders, 735 
doughnuts, 488 
prisms, 735 
pyramids, 735---6 
solids of revolution, 371-5, 379 
spheres, 735 
three-dimensional shapes, 734--8 
tori, 488 

volumes of revolution, 483-8 

Wallis, John (1616--1703), 106 
Wallis, Wilson Allen (1912-98), 340 
Weierstrass, Karl (1815-97), 57 
Weierstrass functions, 433 
Wessel, Caspar (1745-1818), 630 
Whitehead, Alfred North (1861-

1947), 626 
Wigner, Eugene Paul(! 902-95), 94 
Wilczek, Frank Anthony (b.1951 ), 

165 
Wiles, Andrew (b.1953), 4 

Zaslavsky, Claudia (1917-2006), 15 
Zeno of Elea (c.490 ac-c.430 ac), 

168,230 
zero factor property, 97-8, 160 
zero polynomial, 120 
zero vectors, 558, 620 
zeros, polynomial functions, 131--40 






